(案)

農薬評価書

ジメテナミド

2009年3月30日

食品安全委員会農薬専門調査会

目 次

	負
〇 審議の経緯	4
〇 食品安全委員会委員名簿	4
〇 食品安全委員会農薬専門調査会専門委員名簿	4
〇 要約	5
I. 評価対象農薬の概要	6
1. 用途	6
2. 有効成分の一般名	6
3. 化学名	6
4. 分子式	7
5. 分子量	7
6. 構造式	
7. 開発の経緯	7
Ⅱ. 安全性に係る試験の概要	8
1. 動物体内運命試験	8
(1)動物体内運命試験(ラセミ体)	8
(2)ジメテナミド光学異性体の in vitro 代謝の比較検討(ラセミ体、 S 体	:)13
(3)ラットにおける植物代謝物の検索(ラセミ体)	13
(4) in vitro(肝及び腎)代謝の定量的検討(ラセミ体)	13
(5)ジメテナミド及びその誘導体のラット及びヒトヘモグロビンとの共有	
体)	14
(6)マウスにおけるスルホン酸体の検出(ラセミ体)	
(7)ラットにおける経皮吸収試験(ラセミ体、 S 体)	15
(8)ヒト及びラットの皮膚への in vitro 浸透性(ラセミ体)①	16
(9)ヒト及びラットの皮膚への in vitro 浸透性(ラセミ体)②	16
2. 植物体内運命試験(ラセミ体)	16
(1)とうもろこし	16
(2)だいず	17
(3)てんさい	18
3. 土壌中運命試験	19
(1)好気的土壌中運命試験(ラセミ体)	19
(2)好気的土壌中運命比較試験 $(ラセミ体、S体)$	20
(3)好気的及び嫌気的土壌中運命試験(ラセミ体)	20
(4)土壌表面光分解比較試験 $(ラセミ体、S体)$	21
(5)土壌吸着試験(ラセミ体)	22

(6)土壌吸脱着試験 $(S$ 体 $)$	22
4. 水中運命試験	22
(1)加水分解試験(ラセミ体)	22
(2)加水分解試験(S体)	22
(3)水中光分解試験(滅菌緩衝液)(ラセミ体)	23
(4)水中光分解試験(滅菌蒸留水及び自然水)(ラセミ体)	23
(5)水中光分解試験(滅菌自然水)(ラセミ体、 $\mathcal S$ 体)	23
(6)水中光分解試験(緩衝液)(S体)	24
5. 土壌残留試験	24
6. 作物残留試験	24
7. 一般薬理試験	25
(1)一般薬理試験(ラセミ体)	25
(2)一般薬理試験(8体、ラセミ体)	26
8. 急性毒性試験	27
(1)急性毒性試験(ラセミ体)	27
(2)急性毒性試験($oldsymbol{\mathcal{S}}$ 体)	29
9. 眼・皮膚に対する刺激性及び皮膚感作性試験	29
(1)眼・皮膚に対する刺激性及び皮膚感作性試験(ラセミ体)	29
(2)眼・皮膚に対する刺激性及び皮膚感作性試験(S体)	29
10. 亜急性毒性試験	30
(1)90 日間亜急性毒性試験(ラット)(ラセミ体)	30
(2)90 日間亜急性毒性試験(ラット)(S体)	30
(3)90 日間亜急性毒性試験(イヌ)(ラセミ体)	31
(4)21 日間亜急性経皮毒性試験(ウサギ)(ラセミ体)①	32
(5)21 日間亜急性経皮毒性試験(ウサギ)(ラセミ体)②	32
11. 慢性毒性試験及び発がん性試験	32
(1)1 年間慢性毒性試験(イヌ)(ラセミ体)	32
(2)2 年間慢性毒性/発がん性併合試験(ラット)(ラセミ体)	33
(3)94 週間発がん性試験(マウス)(ラセミ体)	34
12. 生殖発生毒性試験	34
(1)2 世代繁殖試験(ラット)(ラセミ体)	34
(2)発生毒性試験(ラット)(ラセミ体)	35
(3)発生毒性試験(ラット)(S体)	35
(4)発生毒性試験(ウサギ)(ラセミ体)	36
13. 遺伝毒性試験	36
(1)遺伝毒性試験(ラセミ体)	
(2)遺伝毒性試験(<i>S</i> 体)	
14. その他の試験	

2009/3/30 第49回農薬専門調査会幹事会 ジメテナミド評価書(案)

(1)ラットにおける肝薬物代謝酵素誘導の検討(ラセミ体)	39
Ⅲ. 食品健康影響評価	40
•別紙 1:代謝物/分解物略称	43
·別紙 2: 検査値等略称	45
·別紙 3: 作物残留試験成績	46
·参照	48

<審議の経緯>

1996年 4月 25日 ジメテナミド (ラセミ体製剤) 初回農薬登録

2005年 11月 29日 残留農薬基準告示(参照1)

2008年 4月 11日 農林水産省より厚生労働省へ農薬登録申請に係る連絡

及び基準設定依頼(新規:キャベツ、えだまめ、だい

ず等)

2008年 6月 2日 厚生労働大臣より残留基準設定に係る食品健康影響評

価について要請(厚生労働省発食安第0602005号)、

関係書類の接受(参照 2~112)

2008年 6月 5日 第241回食品安全委員会(要請事項説明)(参照113)

2008年 9月 19日 第25回農薬専門調査会総合評価第一部会(参照114)

2008年 11月 4日 第27回農薬専門調査会総合評価第一部会(参照115)

2009年 3月 30日 第49回農薬専門調査会幹事会(参照116)

<食品安全委員会委員名簿>

見上 彪(委員長)

小泉直子 (委員長代理)

長尾 拓

野村一正

畑江敬子

廣瀬雅雄

本間清一

小林裕子

<食品安全委員会農薬専門調査会専門委員名簿>

鈴木勝士 (座長) 佐々木有 根本信雄 林 真 (座長代理) 代田眞理子 平塚 明 相磯成敏 高木篤也 藤本成明 赤池昭紀 玉井郁巳 細川正清 石井康雄 田村廣人 堀本政夫 泉 啓介 津田修治 松本清司 今井田克己 津田洋幸 本間正充 上路雅子 長尾哲二 柳井徳磨 臼井健二 中澤憲一* 山崎浩史 太田敏博 永田 清 山手丈至 大谷 浩 納屋聖人 與語靖洋 西川秋佳 吉田 緑 小澤正吾 川合是彰 布柴達男 若栗 忍

根岸友惠

*:2009年1月19日まで

要 約

酸アミド系除草剤である「ジメテナミド」(ラセミ体) (CAS No. 87674-68-8) 及び「ジメテナミド P」(S体) (CAS No. 163515-14-8) について、農薬抄録を用いて食品健康影響評価を実施した。

評価に供した試験成績は、動物体内運命(ラット及びマウス等)、植物体内運命(とうもろこし、だいず及びてんさい)、土壌中運命、水中運命、土壌残留、作物残留、急性毒性(ラット、マウス及びウサギ)、亜急性毒性(ラット、ウサギ及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性試験等である。

試験結果から、ジメテナミド投与による影響は主に肝臓に認められた。発がん性、繁殖能に対する影響、催奇形性及び生体において問題となる遺伝毒性は認められなかった。ラセミ体及びS体の試験の比較から、両者の動態及び代謝は同等であり、毒性プロファイル及び毒性の程度もほぼ同等であると考えられた。

各試験で得られた無毒性量の最小値は、マウスを用いた94週間発がん性試験の3.8 mg/kg 体重/日であったので、これを根拠として、安全係数100で除した0.038 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

I. 評価対象農薬の概要

1. 用途

除草剤

2. 有効成分の一般名

和名:ジメテナミド

英名: dimethenamid (ISO 名)

和名:ジメテナミド P

英名: dimethenamid-P (ISO名)

3. 化学名

ジメテナミド

IUPAC

和名:(RS)-2-クロロ-N-(2,4-ジメチル-3-チエニル)-N-(2-メトキシ-1-メチルエチル)アセトアミド

英名:(RS)-2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)acetamide

CAS (No. 87674-68-8)

和名:(RS)-2-クロロ-N-(2,4-ジメチル-3-チエニル)-N-(2-メトキシ-1-メチルエチル)アセトアミド

英名:(RS)-2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)acetamide

ジメテナミドP

IUPAC

和名:(S)-2-クロロ-N-(2,4-ジメチル-3-チエニル)-N-(2-メトキシ-1-メチルエチル)アセトアミド

英名:(S)-2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)acetamide

CAS (No. 163515-14-8)

和名:2-クロロ-N-(2,4-ジメチル-3-チエニル)-N-[(1S)-2-メトキシ-1-メチルエチル]アセトアミド

英名:2-chloro-N-(2,4-dimethyl-3-thienyl)-N-[(1S)-2- methoxy-1-methylethyl]acetamide

4. 分子式

C₁₂H₁₈Cl NO₂S

5. 分子量

275.8

6. 構造式

ジメテナミド

ジメテナミドP

$$S$$
体: R 体=50:50

S体

7. 開発の経緯

ジメテナミドは、サンド社(スイス)によって開発されたチオフェン環を有する酸アミド系除草剤で、光学異性体(S体及びR体)のラセミ体である。非ホルモン・吸収移行型の除草剤で、雑草の幼芽部及び幼根部より吸収され、雑草の超長鎖脂肪酸の生合成を阻害することにより枯死させる。我が国では 1996 年にキャベツ、大豆等に農薬登録されており、海外では EU 及び米国等でとうもろこし、だいず等に登録されている。

ポジティブリスト制度導入に伴う暫定基準値が設定されている。今回、光学活性体であるジメテナミドP(活性成分であるS体の純度を高めたもの)に関して、キャベツ、えだまめ等への新規申請がなされている。

Ⅱ. 安全性に係る試験の概要

各種運命試験(I.1~4)は、ジメテナミドのチオフェン環の 3 位の炭素を 14C で標識したもの([thi-3-14C]ジメテナミド)、チオフェン環の 5 位の炭素を 14C で標識したもの([thi-5-14C]ジメテナミド)、またはジメテナミド P のチオフェン環の 3 位の炭素を 14C で標識したもの([thi-3-14C]ジメテナミド P)を用いて実施された。放射能濃度及び代謝物濃度は、特に断りがない場合はジメテナミドに換算した。代謝物/分解物略称及び検査値等略称は別紙 1 及び 2 に示されている。

1. 動物体内運命試験

- (1)動物体内運命試験(ラセミ体)
- ① 吸収

a. 吸収率

胆汁中排泄試験 [1.(1) **4** b.] より得られた尿中及び胆汁中排泄率ならびにカーカス 1 の放射能の合計より、ジメテナミドの体内吸収率は雄で 94.5%、雌で 92.8%と算出された。(参照 4)

b. 血中濃度推移

Wistar ラット (一群雌雄各 3 匹) に、[thi-3-14C]ジメテナミドを 10 mg/kg 体重 (以下、[1. (1)] において「低用量」という。) で単回経口または静脈内投与、1,000 mg/kg 体重 (以下、[1. (1)] において「高用量」という。) で単回経口投与し、血中濃度推移について検討された。

血中放射能濃度推移は表1に示されている。

低用量単回経口投与群では、血中放射能濃度は雄より雌で高く、すべてのラットで C_{max} への到達は遅かった。静脈内投与後群では、投与 0.25~3 時間後までの間に血中放射能濃度は上昇し、投与 72 時間後までほぼ一定であった。高用量単回経口投与群では、投与 168 時間後までの血中放射能濃度に明らかな低下がみられず、 $T_{1/2}$ は算出できなかった。いずれの投与群においても、投与 168 時間後の血中放射能濃度は高い値を示したことから、放射能は何らかの血液成分に結合していることが考えられた。(参照 4)

		1 /J///J				
投与量(mg/kg 体重)		10			1,000	
投与方法	経口		静周	派内	経	П
性別	雄	雌	雄	雌	雄	雌
T _{max} (時間)	48	72	72	4	48	72
$C_{max} (\mu g/g)$	5.45	9.83	18.9	18.1	586	434
T _{1/2} (時間)	255	334	359	294	_	_

表 1 血中放射能濃度推移

-

一:算出不可。

¹組織・臓器を取り除いた残渣のことをカーカスという(以下、同じ)。

② 分布

Wistar ラット(一群雌雄各 3 匹)に、[thi-3-14C]ジメテナミドを低用量または高用量で単回経口投与して体内分布試験が実施された。

主要組織における残留放射能濃度は表2に示されている。

血液及び脾臓を除くほとんどの組織において、残留放射能濃度は投与1時間後に最高に達した後減少した。血液及び脾臓では投与168時間後まで高い濃度が持続した。(参照4)

投与量 性別 投与1時間後 投与 168 時間後 (mg/kg 体重) 肝臟(8.2)、腎臟(7.0)、血液(6.2)、甲 血液(5.6)、脾臟(2.4)、肺(0.98)、肝臟 狀腺(2.2)、肺(2.1)、脾臟(1.6)、副腎 (0.82)、腎臟(0.68)、甲状腺(0.45)、 (1.5)、骨髓(1.1)、腎脂肪(0.8)、血漿 心臟(0.38)、骨髄(0.31)、副腎 (0.72)(0.27)、膵臓(0.18)、唾液腺(0.12)、 雄 リンパ球(0.11)、皮膚(0.10)、脳 (0.09)、胸腺(0.08)、腎脂肪(0.07)、 副睾丸(0.06)、筋肉(0.06)、血漿 10 (0.04)腎臓(14.3)、血液(13.1)、肝臓(10.9)、 血液(7.5)、脾臟(4.6)、肺(1.8)、腎臟 甲状腺(4.9)、肺(4.7)、脾臟(4.6)、腎 (1.1)、肝臟(0.75)、心臟(0.61)、甲状 脂肪(4.5)、骨髄(3.0)、副腎(2.3)、卵 腺(0.55)、副腎(0.50)、卵巣(0.49)、骨 雌 巣(2.0)、膵臓(1.2)、心臓(1.2)、皮膚 髄(0.42)、膵臓(0.23)、唾液腺(0.16)、 (1.0)、血漿(1.0)脳(0.14)、胸腺(0.11)、リンパ球 (0.11)、子宮(0.10)、腎脂肪(0.09)、皮 膚(0.08)、筋肉(0.08)、血漿(0.03) 副腎(824)、膵臓(770)、腎臓(633)、 血液(491)、脾臓(191)、肺(83)、腎臓 脾臟(585)、血液(538)、肝臟(399)、 (76)、肝臓(55)、心臓(48)、甲状腺 (34)、骨髓(28)、副腎(23)、唾液腺 腎脂肪(237)、肺(180)、骨髄(144)、 雄 甲状腺(110)、心臓(100)、血漿(59) (14)、膵臓(13)、皮膚(11)、リンパ球 (10)、副睾丸(8)、脳(8)、筋肉(7)、胸 腺(7)、腎脂肪(5)、血漿(4) 1.000 腎脂肪(98)、腎臟(94)、血液(87)、肝 血液(567)、脾臓(494)、肺(119)、腎 臟(72)、副腎(58)、脾臟(40)、肺(31)、 臟(86)、肝臟(62)、心臟(47)、副腎 卵巣(25)、甲状腺(21)、骨髄(18)、子 (45)、骨髓(44)、甲状腺(40)、卵巢 雌 宮(18)、膵臓(16)、心臓(13)、皮膚 (32)、皮膚(24)、膵臓(19)、胸腺(16)、 (13)、リンパ球(11)、血漿(10) 唾液腺(15)、子宮(11)、脳(11)、筋肉 (11)、リンパ球(9)、腎脂肪(7)、血漿 (5)

表 2 主要組織における残留放射能濃度 (µg/g)

③ 代謝物同定・定量

排泄試験 [1.(1)④ a.及び b.]で得られた投与後 72 時間の尿、糞及び胆汁を 試料として代謝物同定・定量試験が実施された。

尿、糞及び胆汁中代謝物は表3に示されている。

投与量、投与条件及び動物の性別に関係なく、ジメテナミドはグルタチオン抱合を初発反応として、それに続く酸化、加水分解等が生じる経路、または二量体形成、閉環等、広範に代謝されると考えられた。すべての投与群で同じ代謝物が検出され、代謝経路には性差及び投与量による差はみられなかった。(参照 5)

表3 尿、糞及び胆汁中代謝物(%TAR)

投与量 (mg/kg体重)	投与方法	性別	試料	親化 合物	代謝物			
. 8 8		1:41:	尿	0.2	M2(3.3)、M14(1.0)、M13 及び M16(0.9)、M19(0.5)、M1+M7 及び M18(0.4)、M5、M12 及び M17(0.3)、M3 及び M4(0.2)、M6 及び M26(0.1)、M9、M10、M11、M25 及び M30(いずれも<0.1)、未 知物質等(23.7)			
		雄	粪	0.9	M16(2.9)、M1+M7(2.7)、M13(1.5)、M14(1.4)、M23(1.3)、M6(0.8)、M10 及び M22(0.7)、M3(0.6)、M19、M20 及び M18(0.5)、M5 及び M21(0.4)、M11(0.3)、M8(0.2)、M15、M17、M2、M25、M26 及び M30(いずれも<0.1)、未知物質等(37.9)			
	単回経口	II/dt:	尿	0.7	M2(6.4) 、M13(2.9) 、M14(2.2) 、M17(1.7) 、M1+M7(1.6) 、M16(1.2) 、M5(1.1) 、M18(0.6) 、M21(0.5)、M6 及び M19(0.3)、M10、M11、M12 及び M25(いずれも 0.2)、M3、M9 及び M30(0.1)、M26(<0.1)、未知物質等(24.0)			
10		世	岻	粪	1.2	M16(3.3)、M23(2.2)、M13(1.9)、M1+M7 及び M14(1.8)、M18(0.5)、M5 及び M19(0.4)、M3、M6、 M20 及び M21(0.3)、M10 及び M11(0.2)、 M22(0.1)、M2、M17、M25、M26 及び M30(いずれ も<0.1)、未知物質等(29.6)		
10	+4-		1 511 :	が	摊	尿	0.2	M2(2.4)、M16(1.1)、M14(1.0)、M13(0.9)、M4 及び M21(0.5)、M18(0.4)、M1,+M7 及び M12(0.3)、M5、M11、M19、M25 及び M30(いずれも 0.2)、M3、M6、M10 及び M17(いずれも 0.1)、M9 及び M26(<0.1)、未知物質等(20.4)
	単回	ДΕ	雄	M23(3.2) 、M16(2.4) 、M11(1.5) 、M14(0.9) 、M18(0.7)、M3(0.5)、M5(0.4)、M9(0.3)、M6、M17、M19、M21、M22 及び M25(いずれも 0.2)、M1+M7、M10、M26 及び M30(いずれも 0.1)、M2(<0.1)、未知物質等(40.4)				
	静脈内	尿 0.5	0.5	M1+M7(3.9)、M2(3.4)、M14(2.5)、M13(2.3)、M17(1.9)、M16(1.0)、M25(0.9)、M18 及びM21(0.7)、M4 及びM5(0.6)、M6(0.5)、M19(0.4)、M10及びM12(0.3)、M3、M9、M11及びM30(いずれも0.2)、M26(0.1)、未知物質等(23.7)				
		糞 0.8				0.8	M23(2.6)、M1+M7(2.1)、M16(1.3)、M14(0.6)、M11(0.5)、M18(0.4)、M3 及び M6(0.3)、M5、M21 及び M22(0.2)、M10(0.1)、M2、M15、M17、M19、M20、M25、M26 及び M30(いずれも<0.1)、未知物質等(23.7)	

投与量	拉片	WH EII	<u>₹</u> 4₩1	親化	/♪=台+H/m			
(mg/kg 体重)	投与方法	性別	試料	合物	代謝物			
			尿	_	M5(7.5)、M1+M7(5.3)、M2(5.0)、M16(2.8)、M14(2.7)、M17(2.5)、M21 及び M18(0.9)、M13 及び M19(0.5)、M11、M12 及び M26(0.4)、M3(0.3)、M30(0.2)、M25(0.1)、未知物質等(23.7)			
		雄	粪	1.2	M16(2.0)、M1+M7(0.6)、M19(0.5)、M6(0.4)、M5、M13、M14、M18 及び M21(いずれも 0.3)、M10 及び M23(0.2)、M3 及び M22(0.1)、M2、M11、M15、M17、M20、M25、M26 及び M30(いずれも<0.1)、未知物質等(23.7)			
1,000	単回経口	此焦	尿	0.2	M2(6.8) 、M1+M7(5.9) 、M5(5.0) 、M14(3.9) 、M17(3.7) 、M16(1.7) 、M13(1.5) 、M4(1.1) 、M18(0.9) 、M19(0.6) 、M12(0.5) 、M21 及びM8(0.3)、M3、M10、M11及びM30(いずれも0.2)、M9、M25及びM26(<0.1)、未知物質等(23.7)			
		Poli		1.3	M16(1.0)、M1+M7(0.4)、M6及びM11(0.3)、M3及 び M21(0.2)、M5、M10、M13、M14、M22 及び M18(いずれも 0.1)、M2、M8、M15、M17、M19、 M20及びM23(いずれも<0.1)、未知物質等(23.7)			
	左復経口 雌		尿 —		M2(3.7)、M16(1.4)、M14(0.9)、M18(0.6)、M1+M7 及びM12(0.4)、M13及びM19(0.3)、M5、M17及び M26(0.2)、M11(0.1)、M3、M25及びM30(<0.1)、 未知物質等(23.7)			
					雄	粪	1.4	M16(4.7)、M1,7(2.9)、M14(2.1)、M 23(1.8)、M19(0.8)、M3(0.5)、M5(0.5)、M18(0.4)、M6(0.3)、M2(<0.1)、M12(<0.1)、M13(<0.1)、M15(<0.1)、M17(<0.1)、M25(<0.1)、M26(<0.1)、M30(<0.1)、未知物質等(23.7)
10		.11.44	尿	<0.1	M2(9.9)、M1,7(2.7)、M14(2.4)、M13 及び M16(2.1)、M5 及び M17(1.2)、M18(1.1)、 M12(0.7)、M21(0.3)、M11 及び M19(0.2)、M3、 M15 及び M26(0.1)、M6、M8、M10、M25 及び M30(いずれも<0.1)、未知物質等(23.7)			
		ル 住	粪	1.1	M1+M7(4.5)、M23 及び M16(1.7)、M13(1.1)、M14(0.9)、M6(0.6)、M18 及び M19(0.3)、M3、M5、及び M10(0.2)、M2、M8、M12、M15、M17、M21、M25、M26 及び M30(いずれも<0.1)、未知物質等(23.7)			
10	単回経口	雄	胆汁	<0.1	M5(6.0)、M1+M7(5.0)、M17(2.7)、M21(2.0)、M4(1.8)、M16 及び M23(0.7)、M8(0.5)、M14 及び M19(0.4)、M11 及び M2(0.3)、M18、M26 及び M30(0.2)、M10(0.1)、M9(<0.1)、未知物質等(23.7)			
10	十四四日	雌	胆汁 <0.1		M1+M7(4.8)、M17(3.2)、M5(2.0)、M21(1.8)、M4(1.3)、M8(0.8)、M2(0.7)、M23(0.6)、M30(0.4)、M16(0.3)、M11(0.2)、M14、M18、M19 及びM26(いずれも 0.1)、M10(<0.1)、未知物質等(23.7)			

-:検出されず。

4 排泄

a. 尿及び糞中排泄

Wistar ラット(一群雌雄各 6 匹)に、[thi-3-14C]ジメテナミドを低用量で単回経口または静脈内投与、高用量で単回経口投与あるいは、低用量の非標識体を14 日間反復経口投与後に標識体を単回投与して排泄試験が実施された。

尿及び糞中排泄率は表 4 に示されている。

いずれの投与群においても、投与後 168 時間で糞尿中に総投与放射能 (TAR) の 86~97%が排泄された。尿及び糞中への排泄に、投与経路及び反復投与の影響は認められなかった。低用量投与群における尿中排泄率は 31~53%で、その 3/4 が投与後 24 時間で排泄された。尿中排泄率は雄より雌の方で高く、糞中排泄率は雌より雄の方で高かった。高用量投与群では雌雄とも尿中への排泄が優位であった。(参照 4)

投与量	投与量		10 mg/kg 体重			1,000 mg/kg 体重		10 mg/kg 体重	
投与方	法	単回	経口	単回計	争脈内	単回	経口	反復	経口
性別		雄	雌	雄	雌	雄	雌	雌	雌
投与後	尿	23.2	35.5	24.4	36.5	11.9	16.4	24.5	38.5
24 時間	糞	34.0	32.1	45.1	18.3	4.5	2.7	36.1	20.3
24 时间	計	57.2	67.6	69.5	54.8	16.4	19.1	60.6	58.8
投与後	尿	35.3	46.9	31.2	49.4	61.6	63.1	34.9	53.3
168 時間	糞	57.7	47.6	56.4	36.6	30.1	26.1	61.6	39.9
100 44月1	計	93.0	94.5	87.6	86.0	91.7	89.2	96.5	93.2

表 4 尿及び糞中排泄率(%TAR)

b. 胆汁中排泄

胆管カニューレを挿入した Wistar ラット (一群雌雄各 3 匹) に、[thi-3-14C] ジメテナミドを低用量で単回経口投与して胆汁中排泄試験が実施された。

胆汁、尿及び糞中排泄率は表5に示されている。

投与後 168 時間における胆汁中への排泄は、雄で 82% TAR、雌で 75% TAR であった。胆汁中排泄の少なくとも 90% は投与後 24 時間で起こり、肝クリアランスは速かった。(参照 4)

X INCOMINA					
性別		雄	雌		
	胆汁	74.5	72.0		
投与後 24 時間	尿	5.8	9.9		
	糞				
	胆汁	82.2	75.1		
投与後 168 時間	尿	7.6	12.4		
	糞	2.2	3.7		
	カーカス	4.7	5.3		

表5 胆汁、尿及び糞中排泄率(%TAR)

-:検出されず。

(2) ジメテナミド光学異性体の $in\ vitro$ 代謝の比較検討(ラセミ体、S体)

Wistar ラットの肝切片を、12.5、25、37.5 及び 50 μ M の用量の[thi-3-14C]ジメテナミドまたは[thi-3-14C]ジメテナミド P と共に培養して、 $in\ vitro$ 代謝の比較検討が行われた。

ラセミ体及びS体の主要代謝物の比較は表6に示されている。

[thi-3-14C]ジメテナミド処理群では、主要代謝物として M4、M7、M25、M33、M34、M35(2種の異性体)及び M36(3種の異性体)が同定された。 *in vitro* 試験における主要代謝経路は、グルタチオン抱合、ジメチルチオフェン系の酸化反応、メトキシ基の脱メチル化、スルホキシド形成のための硫黄原子の酸化及びグルクロン酸抱合体形成のための水酸化代謝物のグルクロン酸化反応であり、基本的には *in vivo* 試験での代謝経路と同様であった。

 $in\ vitro$ 試験での代謝率は、ラセミ体で $56.8\sim96.5\%$ 、S体で $46.0\sim76.5\%$ であり、有意差は認められなかった。主要代謝物の相対量はラセミ体と S体で同様であり、 $in\ vitro$ 試験でのラセミ体と S体の代謝は質的にも量的にも同様であると考えられた。(参照 88)

	HPLC 測定で得られたピークの百分率(平均値)						
	未同定	M4	M25	M33	M35	iso M35	M36
ラセミ体	9.9	28.4	8.8	23.0	15.6	6.7	7.5
S 体	8.5	31.9	9.3	15.7	20.3	6.7	7.8

表 6 ラセミ体及び S体の主要代謝物の比較

(3) ラットにおける植物代謝物の検索(ラセミ体)

植物代謝物である M27、M31 及び M32 がラットで生成することを確認するために、SD ラット (一群雌雄各 5 匹) に $[thi-3-^{14}C]$ ジメテナミドを 1 または 100 mg/kg 体重の用量で単回経口投与し、投与後 3 日間の尿及び糞を採取して代謝物の同定・定量試験が実施された。その結果、尿中では M27 及び M31 が、糞中では M27 が確認されたが、M32 は確認されなかった。(参照 6)

(4) in vitro (肝及び腎) 代謝の定量的検討 (ラセミ体)

雄ラットの肝サイトゾール、肝ミクロゾーム及び肝ミクロゾーム/サイトゾール腎 S9 を用いて、各種補酵素(NADPH、GSH、FAD またはピリドキサールリン酸)の存在下または非存在下で[thi-3-14C]ジメテナミドをインキュベートし、代謝物の定量的検討が行われた。

ジメテナミドは *in vitro* でラット肝及び肝/腎酵素により急速に、かつ広範囲に代謝され、M2、M17/24、M25、M27、M30、M31 及び M32 が検出された。 *in vitro* における代謝経路は、第一段階としてグルタチオン抱合により M24 が生成し、その後硫黄を含む代謝物(M17、M25、M30、M32)が肝及び腎の連続的な酵素反応(主に酸化)によって生成されると考えられた。(参照 7)

(5)ジメテナミド及びその誘導体のラット及びヒトヘモグロビンとの共有結合能に 関する研究(ラセミ体)

ラットにおける血中濃度推移の検討試験[1.(1)① b.]で、投与 168 時間後においても血中放射能濃度は高い値を示していたことから、放射能はラットの血液成分と結合していることが考えられたので、ラット及びヒトヘモグロビンとの共有結合能に関する試験が実施された。

① メトヘモグロビンの測定

Wistar ラット (一群雄 6 匹) に、非標識のジメテナミドを 0、25、100、200 または 400 mg/kg 体重/日の用量で 4 日間連続経口投与後、血液を採取してメトヘモグロビン値が測定された。その結果、メトヘモグロビンの増加は認められなかった。(参照 8)

② アガロースゲルでのヘモグロビンの電気泳動

検体のヘモグロビンへの結合特性を検討するために、ラット及びヒトの透析溶血液と非標識のジメテナミドまたは[thi-3-14C]ジメテナミドを 37 $^{\circ}$ $^{\circ}$ $^{\circ}$ 0 で 15 分間培養し、電気泳動による分析が行われた。

ジメテナミドを溶血ラット赤血球に反応させた場合、共役結合を示唆するラットへモグロビンとの強力な結合を示し、溶解したヘモグロビンへの放射能の取り込みが認められた。一方、溶血ヒト赤血球に反応させても電気泳動パターンに変化はなかった。(参照 8)

③ ヘモグロビン鎖への結合

検体とラット血液との相互作用を特定し、ヒトに対する外挿を行うために、前述[1.(5)②]の培養液よりグロビン、ヘム蛋白及び遊離放射能を含む上清に分離して放射能が測定された。

ラット及びヒトヘモグロビンのいずれのヘム分画にも放射能はほとんど検出されなかったが、ラットのグロビンに大部分の放射能が含まれ、ヒトのグロビンにはきわめて少量の放射能しか検出されなかった。(参照 8)

以上より、ジメテナミドとラットへモグロビンとの相互作用は種特異的な反応であり、ヒトの血液とは結合しないことが示された。

(6) マウスにおけるスルホン酸体の検出(ラセミ体)

ICRマウス (一群雌雄各 5 匹) に、[thi-3-14C] ジメテナミドを 1 または 100 mg/kg 体重で単回強制経口投与し、投与後 96 時間の尿及び糞を採取して代謝物の検出・同定が行われた。

尿及び糞中排泄率は表7に、尿及び糞中の代謝物は表8に示されている。

排泄は雌雄で同等であった。高用量投与群では尿中排泄が増加し、糞中排泄は 低下した。マウスにおいて、ジメテナミドは代謝されてスルホン酸体 (M27) 及 びチオグリコール酸抱合体のスルホキシド(M31)が生成することが確認された。 (参照9)

			• • • • • • • • • • • • • • • • • • • •	
投与量	1 mg/k	g体重	100 mg/l	kg 体重
性別	雄	雌	雄	雌
尿	44.0	46.3	59.6	59.9
糞	47.3	42.1	33.6	28.3
ケージ洗浄液	1.7	2.9	1.0	0.6
合計	93.0	91.3	94.2	88.8

表 7 尿及び糞中排泄率 (%TAR)

表8 尿及び糞中の代謝物(%TRR)

投与量	1 mg/k	kg 体重	100 mg	/kg 体重
試料	尿	糞	尿	糞
M27	0.060	0.25	0.096	0.25
M31	0.25	0.25	0.24	0.40

(7) ラットにおける経皮吸収試験(ラセミ体、S体)

Wistar ラット (一群雄 16 匹) の刈毛した肩背部皮膚に、[thi-3-14C]ジメテナ ミド (ラセミ体) を 0.2、2.2 または 21 mg/kg 体重、あるいは $[\text{thi-}3-^{14}C]$ ジメテ ナミドP(S体) を 0.2、1.8 または 17 mg/kg 体重の用量で 4 または 8 時間暴露 し、経皮吸収試験が実施された。

8時間暴露の72時間後における各試料の放射能分布は表9に示されている。

Frontier 6.0 媒体を用いたラセミ体の経皮吸収は約 18%TAR に限定され、用量

を上げても吸収は増加せず、皮膚浸透性の飽和が示唆された。一方、 S 体の吸収
量は最大 27%TAR で、用量相関的に増加し、皮膚浸透性に飽和は示唆されなか
った。ラセミ体と S 体にみられた皮膚浸透性の違いは、用いた製剤媒体の違いに
よるもので、同じ媒体を用いた場合には同等であり、ラセミ体及び S 体固有の浸
透性によるものではなかった。(参照 10)

表 9 8 時間暴露の 72 時間後における各試料の放射能分布 (%TAR)

被験物質		ラセミ体				S体			
投与量(mg/kg体重)	0.2^{a}	2.2a	21a	21^{b}	$0.2^{\rm b}$	1.8^{b}	$17^{\rm b}$		
尿	8.9	4.2	3.9	11.6	5.0	10.6	8.4		
糞	5.4	3.2	3.5	10.6	6.3	10.9	11.0		
ケージ洗浄液	0.2	0.2	0.2	0.3	0.4	0.4	0.3		
血球	0.5	0.3	0.2	0.6	0.4	1.3	0.6		
血漿	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
腎臓	0.1	0.0	0.0	0.1	0.0	0.1	0.0		

肝臓	0.3	0.2	0.1	0.2	0.3	0.3	0.2
カーカス	2.8	1.5	1.3	3.0	2.7	3.8	2.8
合計(吸収)	18.2	9.6	9.1	25.8	15.2	27.3	23.3

a: Frontier 6.0 媒体を使用

(8) ヒト及びラットの皮膚への in vitro浸透性(ラセミ体)①

Wistar ラット (一群雄 3 匹) の腰背部皮膚及びヒト (白色人種女性、一群 3 人) の死亡直後の胴腹部皮膚に、[thi-3-14C]ジメテナミドを 5、20 または 80 mg/mL の用量で暴露し、皮膚浸透性について検討された。

 $0\sim8$ 時間で浸透した検体は、ヒト及びラットとも暴露量の 1%未満であり、皮膚のバリアー機能が確認された。 $0\sim24$ 時間においては、ヒト及びラットでそれぞれ暴露量の 2.9 及び 2.4%が浸透した。(参照 11)

(9) ヒト及びラットの皮膚への in vitro浸透性(ラセミ体)②

雌の Wistar ラットの腰背部皮膚 (一群の試料数 10) 及びヒト (コーカサス人) の背部または腹部皮膚 (一群の試料数 10) に、[thi-3-14C]ジメテナミドを 0.4、4 または 40 mg/mL の用量で暴露し、皮膚浸透性について検討された。

24 時間の暴露で、ラットでは用量に関係なく暴露量の約 40%が皮膚へ浸透した。ヒトでは皮膚洗浄液から最も多くの放射能が検出され(中、高用量で約 80%)、皮膚への浸透は低用量で最大 26%であった。(参照 12)

2. 植物体内運命試験(ラセミ体)

(1) とうもろこし

とうもろこし(品種: 不明)の播種 1 日後に、[thi-3-14C]ジメテナミド乳剤を 1,680 g ai/ha(実使用最高薬量)または 4,480 g ai/ha(過剰薬量)の用量で土壌 表面に発芽前処理し、処理 50、116 及び 130 日(収穫期)後に試料を採取して 植物体内運命試験が実施された。

各試料における放射能分布は表 10 に、実使用最高薬量処理区の茎葉試料における代謝物は表 11 に示されている。

とうもろこしは土壌よりジメテナミドを吸収し、総残留放射能(TRR)は処理量に比例して増加した。放射能吸収率は両処理区とも処理 50 日後に採取した茎葉試料において最大であり、処理量の 0.7%であった。両処理区の試料において、植物体内における茎葉部から穂軸及び穀粒への放射能の移行は小さく、90%TRR以上が茎葉部に存在した。植物の生育に伴いメタノール抽出性放射能が減少し、非抽出残渣に多くの放射能が残留した。

代謝物の内訳は両処理区の茎葉試料でほぼ同様であり、親化合物はいずれの試料からも検出されなかった。代謝物としてM23、M26、M27、M30、M31 及びM32 が同定されたが、いずれも10%TRR 未満であった。また、未同定化合物が

^b: BAS 656 07 H 媒体を使用

30 以上分離されたが、それらの生成量はいずれも 10%TRR 及び 0.05 mg/kg 以下であった。穀粒試料については、総残留放射能が少なかったため代謝物の同定は行われなかった(0.01 mg/kg)。(参照 13)

	- '			•		
試彩	KI.	実使用最高	薬量処理区	過剰薬量処理区		
#UTT		mg/kg	%TRR	mg/kg	%TRR	
処理 50 日後	茎葉	0.308	100	0.752	100	
	茎葉	0.403	96.7	1.120	96.2	
処理 116 日後	穂軸	0.012	0.9	0.039	1.0	
	未成熟穀粒	0.021	2.4	0.051	2.8	
	茎葉	0.504	91.8	1.600	91.5	
処理 130 日後	穂軸	0.021	1.9	0.056	1.9	
	成熟穀粒	0.022	6.3	0.059	6.5	

表 10 各試料における放射能分布

表 11 実使用最高薬量処理区の茎葉試料における代謝物 (%TRR)

	親化合物	代謝物								
茎葉試料		M23	M26	M27	M30	M31	M32 a	末司定		
					14190	M191	W152 "	化合物c		
処理 50 日後	ND	3.6	2.3	6.1	1.6	1.7	3.7	64.4		
処理 116 日後	ND	0.6	1.2	7.4	3.7	2.9	0.6	69.5		
処理 130 日後	ND	1.	4 b	2.5	2.0	0.7	5.6	76.2		

ND: 検出されず。

(2) だいず

だいず (品種: 不明) の播種 1 日後に、[thi-3-14C]ジメテナミド乳剤を 1,680 g ai/ha (実使用最高薬量) または 3,370 g ai/ha (過剰薬量) の用量で土壌表面に発芽前処理し、処理 49、100 及び 118 日(収穫期)後に試料を採取して植物体内運命試験が実施された。

各試料における放射能分布は表 12 に、実使用最高薬量処理区の各試料における代謝物は表 13 に示されている。

だいずは土壌よりジメテナミドを吸収し、総残留放射能は処理量と比例して増加した。両処理区の試料において、吸収された放射能のほとんどが根及び茎葉部に留まることが示された。

代謝物の内訳は、処理 49 及び 100 日後の茎葉及び 118 日後の子実においてほぼ同様であり、親化合物はいずれの試料からも検出されなかった。主要代謝物は M23、M27、M30 及び M31 であった。また、30 種以上の未同定化合物が検出されたが、それぞれの生成量はいずれも 5% TRR 及び 0.02 mg/kg 以下であった。

(参照 14)

a: M32 の他、M9 及び M11 を含む可能性あり。

b: M23 と M26 の合計。

c: 10%TRR 以下、0.05 mg/kg 以下の 30 種以上の化合物を含む。

	24	Д Д- (1 1 1 − 0 0	., 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.1.		
試彩	KI.	実使用最高	薬量処理区	過剰薬量処理区		
#UT		mg/kg	%TRR	mg/kg	%TRR	
処理 49 日後	茎葉	2.16	100	3.72	100	
処理 100 日後	茎葉	1.86	95.3	2.94	93.7	
定连100 日復	未成熟子実	0.092	4.7	0.196	6.3	
	茎葉	2.12	58.3	2.37	54.9	
処理 118 日後	子実	0.24	5.6	0.483	4.1	
	根	2.64	36.2	5.08	38.3	

表 12 各試料における放射能分布

表 13 実使用最高薬量処理区の各試料における代謝物 (%TRR)

		代謝物					
試料	親化合物	M23	M27	M30+M31	未同定 化合物 a		
処理 49 日後 茎葉	ND	16.8	7.0	6.0	52.5		
処理 100 日後 茎葉	ND	5.3	10.6	7.8	61.9		
処理 118 日後 子実	ND	3.7	7.5	11.7	56.0		

ND: 検出されず。

(3) てんさい

てんさい (品種: GALA) の子葉展開後に、[thi-3-14C]ジメテナミド乳剤を 450 g ai/ha (実使用最高薬量) の用量で 3 回 (処理間隔を $9\sim12$ 日として合計 1,350 g ai/ha 処理)、または $900\sim1,800$ g ai/ha (過剰薬量) の用量で 4 回 (処理間隔を $8\sim21$ 日として合計 5,400 g ai/ha)を植物体全体に散布し、最終処理 126 日 日後 (実使用最高薬量処理区) または 105 日後 (過剰薬量処理区) に試料を採取して植物体内運命試験が実施された。

実使用最高薬量処理区の各試料における代謝物は表14に示されている。

茎葉部及び根部のいずれにおいても親化合物は検出されなかった。主要代謝物として、根部では M23、M27、M28 及び M29 が、茎葉部では M27、M29 及び M30 が同定されたが、いずれも 10%TRR 未満であった。また、50 種以上の未同定化合物が検出されたが、それぞれの生成量はいずれも 10%TRR 以下であった。(参照 15)

表 14 実使用最高薬量処理区の各試料における代謝物 (%TRR)

	総残留放		代謝物							
試料	射能濃度 (mg/kg)	親化合物	M23	M27	M28	M29	M30	末司定 化合物a		
根	0.078	ND	1.1	6.0	2.3	5.7	ND	61.2		
茎葉	0.284	ND	ND	6.5	ND	1.0	9.4	75.1		

ND: 検出されず。

a:5%TRR以下、0.02 mg/kg以下の30種以上の化合物を含む。

a:10%TRR以下の50種以上の化合物を含む。

以上より、植物における代謝には植物種間で大きな差はみられず、主要代謝経路は、塩素と水酸基の置換反応、その後の水酸基の酸化による M23 の生成(とうもろこし、だいず、てんさい)、グルタチオンの抱合による M24 生成、その加水分解による M25 の生成、M25 の脱アミノ化による M26 (とうもろこし)及び M32 (とうもろこし)の生成、またはマロン酸との反応による M29 (てんさい)の生成、次いで酸化による M28 (てんさい)、M30 (とうもろこし、だいず、てんさい)及び M31 (とうもろこし、だいず)の生成、 β -リアーゼ開裂及び酸化による M27 (とうもろこし、だいず、てんさい)の生成と考えられた。M23 の一部は土壌からも吸収されると推定された。

3. 土壤中運命試験

(1) 好気的土壌中運命試験(ラセミ体)

壌土 (米国、アイオワ州) を用いて、[thi-3-14C]ジメテナミドを乾土あたり 2.93 mg/kg(湿土あたり 2.36 mg/kg)となるように湿潤土壌及び $HgCl_2$ で処理した土壌にそれぞれ混和処理し、暗条件下、25℃で最長 365 日間インキュベートして好気的土壌中運命試験が実施された。

各土壌における残留放射能は表 15 に、湿潤土壌における抽出放射能の主要成分は表 16 に示されている。

HgCl₂処理土壌では、この処理を行っていない土壌と比べて土壌中残留放射能の減少が緩慢であったことから、好気的土壌におけるジメテナミドの分解に微生物が関与していることが示唆された。

好気的土壌中でジメテナミドは経時的に分解し、処理 365 日後には 2.2%TAR まで減少した。主要分解物は M23 及び $^{14}CO_2$ であった。M23 は試験の経過とともに増加し、90 日後に最大(14.8%TAR)となった後除々に減少した。 $^{14}CO_2$ の生成は試験の経過とともに増加し、365 日後には 17.7%TAR に達した。抽出残渣は 365 日後には 22.3%TAR まで増加した。また、M27、Fr.1B 及び Fr.4(それぞれ M27 及び M23 に類似した構造を持つ)、さらに数種の未同定代謝物が検出されたが、その生成量はいずれも 10%TAR 未満であった。

好気的土壌中でのジメテナミドの推定半減期は38日であった。(参照16)

	湿潤	土壌	HgCl ₂ 処理土壌		
	%TAR	mg/kg 湿土	%TAR	mg/kg 湿土	
処理0日後	98.1	2.25	87.6	2.01	
処理 365 日後	51.6	1.18	79.5	1.82	

表 15 各土壌における残留放射能

分解物	処理(処理 0 日後		0 日後	処理 365 日後			
JJ 75F-177	%TAR	mg/kg	%TAR	mg/kg	%TAR	mg/kg		
親化合物	100	2.29	18.3	0.42	2.2	0.05		
M23	0.9	0.02	14.8	0.34	6.6	0.15		
M27+Fr.1B a	1.1	0.03	6.1	0.14	7.4	0.17		
Fr.4 b	0.2	0.01	5.9	0.14	4.6	0.11		
$^{14}\mathrm{CO}_2$	-	-	6.1	0.14	17.7	0.41		

表 16 湿潤土壌における抽出放射能の主要成分

- -: 未分析
- a: Fr.1B は M27 によく似た構造の化合物と推定される。
- b: Fr.4 は M23 によく似た構造の化合物と推定される。

(2) 好気的土壌中運命比較試験(ラセミ体、S体)

埴壌土(米国、イリノイ州)に、[thi-3-14C]ジメテナミド(ラセミ体)または [thi-3-14C]ジメテナミド P(S体)を乾土あたり 1.9 mg/kg(1,400 g ai/ha 相当量)となるように混和処理し、暗条件下、 23 ± 1 ℃で最長 182 日間インキュベートして好気的土壌中運命試験が実施された。さらに、5 倍量の過剰量処理区を設定し分解物の同定試験が実施された。

処理 182 日後における放射能分布は表 17 に示されている。

ラセミ体及び S体のいずれにおいても、試験の経過に従いメタノール系溶媒による抽出性放射能が減少した。結合性放射能は経時的に増加し、その 55%の 21.9% TAR がフミン酸画分に存在した。親化合物は徐々に分解し、処理 182 日後には $1.5\sim1.6\%$ TAR $(0.023\sim0.025~mg/kg)$ まで減少した。分解物として M11、M23、M26、M27、M30、M31 及び M32 が同定されたが、いずれも 10% TAR 未満であった。未同定分解物は 10% TAR を超えたが、それぞれが 5% TAR 未満の多種の分解物を含んでいた。主要分解物は約 30% TAR 生成した 14 CO $_{2}$ であり、多種の極性化合物に分解された後、無機化されると考えられた。

推定半減期は両化合物とも10日であった。

両化合物間には、好気的土壌中における挙動及び分解に差はないものと考えられた。(参照 89)

		-								
$^{14}\mathrm{CO}_2$		14CO ₂ 抽出性放射能		フルボ酸画分		フミン酸画分		非抽出画分		
	%TAR	mg/kg	%TAR	mg/kg	%TAR	mg/kg	%TAR	mg/kg	%TAR	mg/kg
ラセミ体	28.5	0.455	26.8	0.427	8.0	0.128	21.9	0.350	9.6	0.153
S 体	29.2	0.465	24.8	0.396	7.6	0.120	21.9	0.350	10.4	0.165

表 17 処理 182 日後における放射能分布

(3) 好気的及び嫌気的土壌中運命試験(ラセミ体)

壌土 (米国、アイオワ州) に、[thi-3-14C]ジメテナミドを乾土あたり 2.93 mg/kg (湿土あたり 2.36 mg/kg) となるように混和処理し、暗条件下、25℃で、最初の 30 日間は好気的条件で、その後は嫌気的条件で最長 93 日間インキュベート

して、好気的及び嫌気的土壌中運命試験が実施された。

抽出放射能の主要成分は表 18 に示されている。

土壌中残留放射能は、好気的条件下の 30 日後で 97.6%TAR、嫌気的条件下の 58 及び 93 日後で 92.8%TAR 以上であり、揮発性成分の生成による放射能の減少はみられなかった。

嫌気的土壌中でジメテナミドは経時的に分解し、93 日後には 36.2%TAR まで減少した。主要代謝物は M23 であった。M23 は試験の経過とともに増加し、93 日後に 8.7%TAR 生成した。 14 CO $_2$ の生成量は 93 日後で 3.3%TAR であった。抽出残渣は 93 日後には 19.2%TAR まで増加した。

好気的及び嫌気的土壌中でのジメテナミドの推定半減期は **53.8** 日であった。 (参照 **17**)

		好気的	条件下		嫌気的条件下				
分解物	処理() 日後	処理 30 日後		処理 58 日後		処理 93 日後		
	%TAR	mg/kg	%TAR mg/kg		%TAR	mg/kg	%TAR	mg/kg	
親化合物	100	2.29	55.9	1.28	45.0	1.03	36.2	0.83	
M23	0.9	0.02	3.9	0.09	7.4	0.17	8.7	0.20	
M27+Fr.1B a	1.1	0.03	2.2	0.05	2.4	0.06	3.5	0.06	
Fr.4 b	0.2	0.01	2.0	0.05	3.0	0.07	2.4	0.06	
$^{14}\mathrm{CO}_2$	-	-	1.5	0.04	2.0	0.05	3.3	0.08	

表 18 抽出放射能の主要成分(%TAR)

(4) 土壌表面光分解比較試験(ラセミ体、S体)

埴壌土(米国、イリノイ州)に、[thi-3-14C]ジメテナミドまたは[thi-3-14C]ジメテナミド P を乾土あたり 1.9 mg/kg(1,400 g ai/ha 相当量)となるように添加した後、 22 ± 1 ℃で最長 23 日間キセノン光(光強度: $783~W/m^2$ (ラセミ体)、 $743~W/m^2$ (S体)、波長: $300\sim800~nm$)を照射して土壌表面光分解試験が実施された。

ラセミ体及び S体はいずれも緩やかな分解を示し、23 日後にそれぞれ 57.6 及び 64.3% TAR の親化合物が残存していた。主要分解物は 14 CO $_2$ であり、23 日後の生成量はラセミ体及び S体でそれぞれ 12.3 及び 10.1% TAR であった。その他多数の未知分解物が認められたが、いずれも 10% TAR 以下であった。

推定半減期は、ラセミ体及びS体でそれぞれ29.9及び44.7日(北緯 40° 、正午の春季太陽光換算でそれぞれ40及び56.8日)であった。

両化合物間には、土壌表面光分解における挙動及び分解に差はないものと考えられた。(参照 90)

^{-:} 未分析。

a: Fr.1B は M27 によく似た構造の化合物と推定される。

b: Fr.4 は M23 によく似た構造の化合物と推定される。

(5) 土壌吸着試験(ラセミ体)

4 種類の国内土壌 [埴壌土(福島)、砂質埴壌土(愛知)、軽埴土(高知)、砂土(宮崎)] を用いて土壌吸着試験が実施された。

Freundlich の吸着係数 K^{ads} は $0.5\sim1.0$ 、有機炭素含有率により補正した吸着係数 Koc は $32\sim87$ であった。(参照 18)

(6) 土壌吸脱着試験 (S体)

5種類のヨーロッパ土壌 [砂質埴壌土 (イタリア)、埴壌土 (ギリシャ)、砂壌土 (英国)、シルト質壌土 (フランス)、砂土 (ドイツ)]、5種類の米国土壌 [埴土 (アリゾナ州)、壌土及び砂壌土 (カリフォルニア州)、埴壌土及びシルト質壌土 (イリノイ州)]及び1種類の国内土壌 [砂壌土 (茨城)]を用いて土壌吸脱着試験が実施された。

各土壌における Freundlich の吸着係数 K^{ads} 、有機炭素含有率により補正した 吸着係数 K^{des} 、有機炭素含有率により補正した脱着係数 K^{des} oc は表 19 に示されている。(参照 91、92)

供試土壌	吸着	係数	脱着係数		
产的工 农	$ m K^{ads}$	Koc	$ m K^{des}$	$ m K^{des}oc$	
ヨーロッパ土壌	$1.23 \sim 13.5$	$90 \sim 474$	$2.40\sim 20.9$	110~609	
米国土壌	$0.72 \sim 3.02$	$105 \sim 247$	1.40~3.89	$138\sim 357$	
国内土壌	3.34	58.0	4.19~4.98	$72.5 \sim 86.2$	

表 19 各土壌における吸着係数及び脱着係数

4. 水中運命試験

(1)加水分解試験(ラセミ体)

pH4(フタル酸緩衝液)、pH7(リン酸緩衝液)及びpH9(ホウ酸緩衝液)の各滅菌緩衝液に、ジメテナミドを 1 μg/mL となるように添加した後、暗条件下、 25 ± 1 ℃で最長 6 カ月間インキュベートして加水分解試験が実施された。

試験期間中、 $pH4\sim9$ の各緩衝液中でのジメテナミド分解は認められなかった。 (参照19)

(2) 加水分解試験 (S体)

[thi-3-14C]ジメテナミド P を、pH 5 (リン酸緩衝液)、pH 7 (リン酸緩衝液) 及び pH 9 (ホウ酸緩衝液) の各滅菌緩衝液に $100 \, \mu g/mL$ となるように添加した後、暗条件下、 25 ± 1 ℃で最長 $31 \,$ 日間インキュベートして加水分解試験が実施された。

ジメテナミド P は、pH 5~9 の各緩衝液中で試験期間中安定であり、推定半減期は 30 日以上であった。ラセミ体と同様に、S 体において加水分解は環境中での分解要因ではないと考えられた。(参照 93)

(3) 水中光分解試験 (滅菌緩衝液) (ラセミ体)

滅菌した pH 7 のリン酸緩衝液に、[thi-3-14C]ジメテナミドを $100 \mu g/mL$ となるように添加した後、 25° で最長 19 日間キセノン光(光強度: $855 W/m^2$ 、波長: $300\sim800 nm$)を照射して水中光分解試験が実施された。

親化合物は徐々に分解し、19日後には 42.7 %TAR まで減少した。主要分解物は $^{14}\text{CO}_2$ であり、19日後に 7.8 %TAR 生成した。分解物として M-PC1、M3、M9 及び M11 が同定されたが、生成量は試験期間を通して 1.9 %TAR 以下であった。また、多数の未同定化合物が認められたが、いずれも 4%TAR 以下であった。

推定半減期は 16.4 日(北緯 40° 、正午の春季太陽光換算で 23.9 日)であった。(参照 20)

(4) 水中光分解試験 (滅菌蒸留水及び自然水) (ラセミ体)

滅菌蒸留水(pH 6.94)及び自然水(荒川水系河川水、pH 7.21)に、ジメテナミドを $1.5~\mu g/mL$ となるように添加した後、滅菌蒸留水では 25° で最長 7日間キセノン光(光強度: $25.4\sim27.6~W/m^2$ 、波長: $310\sim400~nm$)を、自然水では 25° で最長 3日間キセノン光(光強度: $27.1\sim29.5~W/m^2$ 、波長: $310\sim400~nm$)を照射して水中光分解試験が実施された。

滅菌蒸留水では、親化合物は7日後に74%TAR まで減少し、推定半減期は333時間であった。自然水では、親化合物は3日後に26%TAR まで減少し、推定半減期は約36時間であった。(参照21)

(5)水中光分解試験(滅菌自然水)(ラセミ体、S体)

滅菌自然水 [池水 (米国、ミネソタ州)、pH 7.4] に、 $[thi-5-^{14}C]$ ジメテナミドまたは $[thi-5-^{14}C]$ ジメテナミド P を 5 μ g/mL となるように添加した後、25±2°Cで最長 17 日間キセノン光(光強度:597 W/m²、波長:300~800 nm)を照射して水中光分解試験が実施された。

ラセミ体及び S体とも親化合物は徐々に分解し、17 日後にはそれぞれ 24.4 及び 29.8% TAR まで減少した。主要分解物は 14 CO $_2$ であり、17 日後の生成量はラセミ体及び S体でそれぞれ 35.1 及び 26.9% TAR であった。その他に M11、M15、 M15 酸化体、側鎖水酸化体及びアルデヒド誘導体が同定された。ラセミ体では M11 及び M15 の合計が 8 日後に 15.9% TAR 検出されたが、その他の分解物は 試験期間を通していずれも 10% TAR 未満であった。未同定化合物はラセミ体で 21.9% TAR、S体で 20.6% TAR を占めたが、これらは多数の分解物からなり、個々の生成量はすべて 10% TAR 以下であった。

推定半減期は、ラセミ体及びS体でそれぞれS及びS日であり、平均S5日であり、春季東京(北緯S5°)の照射条件換算ではS7日であった。

両化合物間には、滅菌自然水中光分解における挙動及び分解に差はないものと

考えられた。(参照 22)

(6) 水中光分解試験(緩衝液)(S体)

[thi-3-14C]ジメテナミド P を、pH 7 のリン酸緩衝液に 99.8 μ g/mL となるように添加した後、 25 ± 0.5 ℃で最長 16 日間キセノン光(光強度:1,100 W/m²、波長: $300\sim800$ nm)を照射して水中光分解試験が実施された。

親化合物は徐々に分解し、16 日後には 43.5%TAR まで減少した。主要分解物は 14 CO $_{2}$ であり、16 日後に 6.5%TAR 生成した。その他に M-PC1、M3、M9 及び M11 が同定されたが、生成量は試験期間を通して 1.8%TAR 以下であった。また、多数の未同定化合物が認められたが、いずれも 5%TAR 以下であった。

推定半減期は 13.7 日(北緯 40° 、正午の春季太陽光下で 25.7 日)であった。本試験の結果より、S体の緩衝液中での光分解による挙動はラセミ体と同様であると考えられた。(参照 94)

5. 土壌残留試験

火山灰土・壌土(北海道)及び沖積土・壌土(岡山)を用いて、ジメテナミド(ラセミ体)及び M23 を分析対象化合物とした土壌残留試験(容器内及び圃場)が実施された。

結果は表 20 に示されている。M23 の残留値はいずれの時点においても定量限界 (0.04 mg/kg) 以下であった。(参照 23)

試験	濃度 1)	土壌	推定半減期(日) ジメテナミド
容器内試験	1.35 mg/kg	火山灰土・壌土	10~14
>□-101 10-400C	1.55 llig/kg	沖積土・壌土	$26 \sim 28$
圃場試験	周担学龄 1140://		7~20
围场 的	1,140 g ai/ha	沖積土・壌土	8~11

表 20 土壌残留試験成績(推定半減期)

6. 作物残留試験

とうもろこし、だいず、キャベツ及びえだまめを用いて、ジメテナミド(ラセミ体)、M23及びM27を分析対象化合物とした作物残留試験が実施された。

結果は別紙 3 に示されている。ジメテナミド、M23 及び M27 の残留値は、いずれも定量限界未満であった。(参照 24)

なお、作物残留データは全て定量限界未満であったため、食品中より摂取される 推定摂取量は算出されなかった。

^{1):} 圃場試験では乳剤、容器内試験では標準溶液を使用

7. 一般薬理試験

(1) 一般薬理試験(ラセミ体)

ジメテナミドのマウス及びラットを用いた一般薬理試験が実施された。 結果は表 21 に示されている。(参照 25~29)

表 21 一般薬理試験 (ラセミ体)

試験の種類	動物種	動物数 /群	投与量 (mg/kg 体重) (投与経路)	最大無作用量(mg/kg 体重)	最小作用量(mg/kg 体重)	結果の概要
一般状態 (Irwin 法)	ICR マウス	雄 4	0、60、200、 600、2,000 (経口) ^a	60	200	200 mg/kg 体重で放 体重 で応 で で で で で で で で で で で で で で で で で で
ヘキソバル ビタール 睡眠時間	ICR マウス	雄 5 雌 5	0、60、300、 1,500 (経口) ^a	60	300	300 mg/kg 体重の雄、 1,500 mg/kg 体重の 雌でヘキソハンビタール 誘発睡眠時間延長、 雌 1 例死亡、1,500 mg/kg 体重で雄全 例、雌 2 例死亡
呼吸、循環器	SD ラット	雄 2	0、3、7、15、30 (静脈内) ^b	-	3	3 mg/kg 体重以上で、用量依存性の一過性の血圧降下、心拍数減少 30 mg/kg 体重で呼吸深度及び呼吸速度増加 心電図に対する影響なし
骨格筋 (傾斜試験)	ICR マウス	雄 10	0、16、80、400、 2,000 (経口) ^a	80	400	400 mg/kg 体重で筋 弛緩作用増強(有意差 なし)、痙攣 2,000 mg/kg 体重で 筋弛緩作用増強、痙 攣、振戦、5 例死亡
血液凝固	Wistar ラット	雄 10	0、60、300、 1,500 (経口) ^a	300	1,500	1,500 mg/kg 体重で 全血凝固時間延長 PT、APTT に対して 影響なし

注)溶媒として、aはポリエチレングリコール 200、bは 20%ポリエチレングリコール 400 を用いた。

^{-:}最大無作用量が設定できない。

(2) 一般薬理試験 (S体、ラセミ体)

ジメテナミド P(S体) 及びジメテナミド (ラセミ体) のラット及びマウスを用いた一般薬理試験が実施された。結果は表 22 に示されている。

本試験結果から、薬理作用においてマウスの電撃痙攣及びラットの血圧上昇作用ではS体がやや強めであったが、S体及びラセミ体の毒性はほぼ同程度であると考えられた。(参照95)

表 22 一般薬理試験 (S体、ラセミ体)

計験の任料	£1, 14, 1£	動物数	投与量 a	最大無作用量	最小作用量	公田の恒田
試験の種類	動物種	/群	(mg/kg 体重)	(mg/kg 体重)	(mg/kg 体重)	結果の概要
	SD ラット	雄 5	S 体: 0、150、 500、1,500	150	500	500 mg/kg 体重以上で流涎、覚醒状態低下、潮紅、腹臥位、呼吸緩徐、接触反応の過反応、軟便、流淚、接近反応消失等、4 例死亡 1,500 mg/kg 体重で全例死亡
			ラセミ体: 0、1,500	_	1,500	腹臥位/円背位、流 涎、歩行異常、潮紅、 移動性減少、接触反 応の過反応等、全例 死亡
一般状態 (Irwin 法)	ICR マウス	雄 3 雌 3	S 体: 0、150、 500、1,500	雄:150 雌:500	雄:500 雌:1,500	500 mg/kg 体 で
			ラセミ体: 0、1,500	_	1,500	振戦、歩行失調、正 向反射着地不全、耳 介反射低下、異常歩 行、低体温等、雄2 例、雌全例死亡

	試験の種類	動物種	動物数 /群	投与量 a (mg/kg 体重)	最大無作用量(mg/kg 体重)	最小作用量 (mg/kg 体重)	結果の概要
	自発運動量	SD	雄 5	S 体: 0、150、500、1,500	500	1,500	1,500 mg/kg 体重で 3 例死亡、自発運動 量抑制傾向(有意差
中枢神	日光建划里	ラット	本庄 9	ラセミ体: 0、1,500	_	1,500	なし) 1 例死亡、自発運動 量に影響なし
経系	電撃痙攣	ICR	雄 5	S 体: 0、150、 500、1,500	500	1,500	1,500 mg/kg 体重で 強直性伸展痙攣誘 発閾値低下
	电争注争	マウス	<u>х</u> де 9	ラセミ体: 0、1,500	_	1,500	強直性伸展痙攣誘 発閾値低下傾向(有 意差なし)
Щ	1圧、心拍数	SD ラット 雄		S 体: 0、150、 500、1,500	500	1,500	1,500 mg/kg 体重で 4 例死亡、収縮期血 圧上昇 心拍数に影響なし。
				ラセミ体: 0、1,500	_	1,500	2 例死亡、血圧、心 拍数に影響なし
	腎機能	SD ラット	雄 5	S 体: 0、150、 500、1,500	150	500	500 mg/kg 体重以 上で尿量、Na+/K+ 比低下、Cl ⁻ 排泄量 減少、浸透圧上昇 1,500 mg/kg 体重で Na+、K+排泄量減 少、全例死亡
				ラセミ体: 0、1,500	_	1,500	尿量、Na+、K+、Cl⁻ 減少、Na+/K+比低下、 全例死亡
	血液凝固	SD	雄 5	S体: 0、150、 500、1,500	1,500	_	影響なし
	业11人次CIPI	ラット	<u> </u>	ラセミ体: 0、1,500	1,500	_	影響なし

a : 投与経路はすべて経口、溶媒は 0.5%CMC-Na 溶液を用いた。

-:最大無作用量または最小作用量が設定できない。

8. 急性毒性試験

(1) 急性毒性試験 (ラセミ体)

ジメテナミド原体 (ラセミ体) のラット、マウス及びウサギを用いた急性毒性 試験が実施された。結果は表 23 及び 24 に示されている。(参照 30~44)

表 23 急性毒性試験概要 (ラセミ体)

投与経路	動物種	LD ₅₀ (mg		観察された症状
 経口 a	Wistar ラット 雄 5 匹	2,360	雌	衰弱、無関心、粗毛、腹臥、運動減少、 あえぎ呼吸、反応低下、呼吸速度減少、 呼吸困難
	Wistar ラット 雌 5 匹		2,100	衰弱、無関心、振戦、間代性痙攣、運 動減少、眼球突出、反応低下
経口c	SD ラット 雌雄各 5 匹	371	427	口腔、眼、鼻からの分泌物、活動低下、 湿潤ラ音、糞の着染、軟便、腹部痙攣、 不規則歩行、振戦、呼吸低下、不規則 呼吸、尿着染、虚脱
経口b	SD ラット 雌雄各 5 匹	2,140	1,300	行動不活発、軟便、粗毛、喘鳴、呼吸 困難、死戦期痙攣
経口c	SD ラット 雌雄各 5 匹	451	501	口、眼、鼻からの分泌物、糞の着染、 軟便、呼吸低下、呼吸困難、虚脱
経口c	Wistar ラット 雌 5 匹		500	行動不活発、無関心、立毛、流涎、呼 吸緩徐、振戦
経口b	Wistar ラット 雌雄各 5 匹	1,250	1,250	行動不活発、無関心、立毛、流涎、呼 吸緩徐、振戦、下痢
経口a	NMRI マウス 雄 5 匹	3,170		衰弱、無関心、振戦、間代性痙攣、横 臥、運動減少、筋肉弛緩、呼吸速度減 少、呼吸困難
	NMRI マウス 雌 5 匹		2,360	衰弱、無関心、痙攣、呼吸速度減少、 横臥、運動減少、筋肉弛緩、呼吸困難
経口·	NZW ウサギ 雌雄各 5 匹	998	998	散瞳、縮瞳、眼瞼下垂、活動低下、食 欲減少、頻呼吸、呼吸困難、会陰の汚 れ、運動失調、腹臥姿勢、痙攣、鳴き 声、正向反射の減少及び消失
経皮c	Wistar ラット 雌雄各 5 匹	>2,380	>2,380	症状及び死亡例なし
経皮c	Wistar ラット 雌 5 匹		>2,000	症状及び死亡例なし
経皮c	NZW ウサギ 雌雄各 5 匹	>2,000	>2,000	症状及び死亡例なし
経皮c	NZW ウサギ 雌雄各 5 匹	>2,000	>2,000	症状及び死亡例なし
-T -	Wistar ラット	LC50 (mg/L)	鎮静、呼吸困難、湾曲姿勢、粗毛
吸入 c	雌雄各 5 匹	>4.99	>4.99	死亡例なし
吸入c	Wistar ラット 雌雄各 5 匹	>6.6	>6.6	呼吸困難、被毛の乱れ 死亡例なし

注) 溶媒として、a はポリエチレングルコール 200 を、b はコーン油を用い、c は媒体による希釈を行わずに投与した。

ジメテナミドの代謝物(M23 及び M27)のラットを用いた急性経口毒性試験が 実施された。結果は表 24 に示されている。(参照 45、46)

XII WEFERMAND (14010)								
被験物質	投与	動物種	LD ₅₀ (mg	/kg 体重)	観察された症状			
1次款的員	経路	到777里	雄	雌	既宗されりに近代			
M23	経口	SD ラット 雌雄各 5 匹	>5,000	>5,000	活動性低下、蒼白、立毛、 背彎姿勢、流涎 死亡例なし			
M27	経口	SD ラット 雌雄各 5 匹	>5,000	>5,000	水様便、軟便、肛門生殖器 周囲の汚れ 死亡例なし			

表 24 急性毒性試験概要 (代謝物)

(2) 急性毒性試験 (S体)

ジメテナミド P 原体 (S体) のラット及びウサギを用いた急性毒性試験が実施された。結果は表 25 に示されている。(参照 $96 \sim 98$)

投与経路			/kg 体重)	観察された症状	
汉子胜蹈	到707里	雄	雌	既奈で私の心に仏	
経口	SD ラット 雌雄各 5 匹	429	531	流涙、流涎、湿潤ラ音、行動不活発、 肛門・生殖器部黄色汚染、鼻、口、頬 の黒色または茶色着染、傾眠	
経皮	NZW ウサギ 雌雄各 5 匹	>2,000	>2,000	症状及び死亡例なし	
	SD ラット		mg/L)	呼吸困難、湿潤ラ音、流涙、血涙、鼻	
吸入	雌雄各5匹	>2.2	>2.2	部からの澄明/赤色分泌物、顔部赤色物 付着、死亡例なし	

表 25 急性毒性試験概要 (S体)

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

(1)眼・皮膚に対する刺激性及び皮膚感作性試験(ラセミ体)

NZW ウサギを用いた眼刺激性試験及び皮膚刺激性試験が実施された。その結果、ウサギの眼粘膜に対して軽度の刺激性が、皮膚に対して極軽微から軽度の刺激性が認められた。(参照 47~52)

DUHA アルビノモルモット及び Ibm:GOHI モルモットを用いた Maximization 法による皮膚感作性試験が実施された。その結果、DUHA アルビノモルモットでは皮膚感作性は陰性であったが、Ibm:GOHI モルモットでは陽性であった。(参照 $53\sim54$)

(2) 眼・皮膚に対する刺激性及び皮膚感作性試験(S体)

NZW ウサギを用いた眼刺激性試験及び皮膚刺激性試験が実施された。その結果、ウサギの眼粘膜に対して軽度の刺激性が、皮膚に対して弱い刺激性が認められた。(参照 99~100)

Hartley モルモットを用いた Buehler 法による皮膚感作性試験が実施され、結

注)検体は無希釈のまま使用した。

果は陽性であった。(参照 101)

10. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)(ラセミ体)

SD ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、50、150、500、1,500 及び3,000 ppm: 平均検体摂取量は表 26 参照) 投与による 90 日間亜急性毒性試験が実施された。また衛星群として、雌雄の対照群及び3,000 ppm 投与群を設け、検体混入飼料を 90 日間与えた後、4 週間の回復期間をおいた。

表 26 90 日間亜急性毒性試験 (ラセミ体、ラット) の平均検体摂取量

投与群 (ppm)		50	150	500	1,500	3,000
平均検体摂取量	雄	3.5	10.0	33.5	98.0	204
(mg/kg 体重/日)	雌	3.9	11.8	40.1	119	238

各投与群で認められた毒性所見は表 27 に示されている。

本試験において、1,500 ppm 以上投与群の雌雄に体重増加抑制等が認められたので、無毒性量は雌雄とも 500 ppm(雄:33.5 mg/kg 体重/日、雌:40.1 mg/kg 体重/日)であると考えられた。なお、4 週間回復試験群では、投与終了時にみられた変化のほとんどに回復性が認められた。(参照 55)

表 27 90 日間亜急性毒性試験 (ラット) (ラセミ体) で認められた毒性所見

投与群	雄	雌
3,000 ppm	・Alb、Glob 増加 ・GGT 上昇 ・T.Chol 増加 ・肝補正重量 ² 増加	・摂餌量減少 ・Glob 増加 ・GGT 上昇
1,500 ppm 以上	・体重増加抑制 ・TP 増加	・体重増加抑制 ・TP 増加 ・T.Chol 増加 ・肝補正重量増加 ・小葉中心性肝細胞肥大
500 ppm 以下	毒性所見なし	毒性所見なし

(2) 90 日間亜急性毒性試験 (ラット) (S体)

SD ラット (一群雌雄各 10 匹) を用いた混餌 (原体: 0、500、1,500 及び3,000 ppm: 平均検体摂取量は表 28 参照) 投与による 90 日間亜急性毒性試験が実施された。

-

² 最終体重を共変数として共分散分析した肝重量(以下、同じ)。

表 28 90 日間亜急性毒性試験 (ラット) (S体) の平均検体摂取量

投与群 (ppm)		500	1,500	3,000
平均検体摂取量	雄	37	110	222
(mg/kg 体重/日)	雌	40	125	256

各投与群で認められた毒性所見は表 29 に示されている。

500 ppm 投与群の雄で肝比重量³増加が認められたが、組織学的変化を伴っていないことから一般的な適応による生理学的反応であると考えられた。

本試験において、1,500 ppm 以上投与群の雄で門脈周囲性肝細胞肥大等が、500 ppm 以上投与群の雌で小葉中心性肝細胞肥大が認められたので、無毒性量は雄で 500 ppm (37 mg/kg 体重/日)、雌で 500 ppm (40 mg/kg 体重/日) 未満であると考えられた。(参照 102)

表 29 90 日間亜急性毒性試験 (ラット) (S体) で認められた毒性所見

投与群	雄	雌
3,000 ppm	・APTT 延長傾向 ・T.Chol 増加	・APTT 延長 ・肝絶対重量及び対脳重比4増加
1,500 ppm 以上	・肝絶対重量増加・体重増加抑制傾向・GGT 増加・肝比重量及び対脳重比増加・門脈周囲性肝細胞肥大・門脈周囲好酸性封入体	・体重増加抑制傾向 ・肝比重量増加
500 ppm 以上	500 ppm 毒性所見なし	・小葉中心性肝細胞肥大

(3)90日間亜急性毒性試験(イヌ)(ラセミ体)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 (原体:0、100、750 及び 2,000 ppm: 平均検体摂取量は表 30 参照) 投与による 90 日間亜急性毒性試験が実施された。

表 30 90 日間亜急性毒性試験 (イヌ) (ラセミ体) の平均検体摂取量

投与群 (ppm)		100	750	2,000
平均検体摂取量	雄	4.72	33.6	89.6
(mg/kg 体重/日)	雌	4.98	39.7	87.4

各投与群で認められた毒性所見は表 31 に示されている。

本試験において、750 ppm 以上投与群の雌雄に病理組織学的変化を伴う肝比重量増加等が認められたので、無毒性量は雌雄とも 100 ppm (雄: 4.72 mg/kg 体重/日、雌: 4.98 mg/kg 体重/日) であると考えられた。(参照 56)

4 脳重量に比した重量を対脳重比という(以下、同じ)。

³ 体重比重量を比重量という(以下、同じ)。

24 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						
投与群	雄	雌				
2,000 ppm	• 体重增加抑制	・T.Chol 増加				
	肝絶対重量増加	・ALP 増加				
	• 肝暗色化	肝絶対重量増加				
	・肝類洞拡張	・肝分葉隆起				
750 ppm 以上	・肝比重量増加	体重增加抑制				
	小葉周辺性肝細胞空胞化	・肝比重量増加				
		小葉周辺性肝細胞空胞化				
		・肝類洞拡張				
100 ppm	毒性所見なし	毒性所見なし				

表 31 90 日間亜急性毒性試験 (イヌ) (ラセミ体) で認められた毒性所見

(4) 21 日間亜急性経皮毒性試験(ウサギ)(ラセミ体)①

NZW ウサギ (一群雌雄各 5 匹) を用いた経皮 (原体: 0、50、150 及び 500 mg/kg 体重/日) 投与による 21 日間亜急性経皮毒性試験が実施された。

本試験において、いずれの投与群においても、投与部位の皮膚に検体の軽度な刺激性に由来するものと思われる所見(紅斑、浮腫、表皮肥厚、過角化または円形細胞浸潤)が認められたが、全身性の毒性所見は認められなかったので、無毒性量は雌雄とも皮膚に対して 50 mg/kg 体重/日未満、一般毒性に対して 500 mg/kg 体重/日であると考えられた。(参照 57)

(5) 21 日間亜急性経皮毒性試験(ウサギ)(ラセミ体)②

NZW ウサギ (一群雌雄各 5 匹) を用いた経皮 (原体:0 及び 1,190 mg/kg 体 重/日) 投与による 21 日間亜急性経皮毒性試験が実施された。

本試験において、投与群では投与部位の皮膚に検体の軽度な刺激性に由来するものと思われる所見(紅斑、浮腫、表皮肥厚、過角化及び炎症性細胞浸潤)が認められたが、全身性の毒性所見は認められなかったので、無毒性量は雌雄とも皮膚に対して 1,190 mg/kg 体重/日未満、一般毒性に対して 1,190 mg/kg 体重/日であると考えられた。(参照 58)

11. 慢性毒性試験及び発がん性試験

(1) 1年間慢性毒性試験(イヌ)(ラセミ体)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 (原体:0.50.250 及び 1,250 ppm: 平均検体摂取量は表 32 参照) 投与による 1 年間慢性毒性試験が実施された。

表 32	1 年間慢性毒性試験	(イヌ)	(ラセミ体)	の平均検体摂取量

投与群 (ppm)		50	250	1,250
平均検体摂取量	雄	1.9	10.1	48.7
(mg/kg 体重/日)	雌	2.1	9.1	49.3

各投与群で認められた毒性所見は表33に示されている。

本試験において、1,250 ppm 投与群の雌雄に体重増加抑制等が認められたので、無毒性量は雌雄とも 250 ppm(雄: 10.1 mg/kg 体重/日、雌: 9.1 mg/kg 体重/日)であると考えられた。(参照 59)

(抄録 109~114 頁)

投与群雄雌1,250 ppm・体重増加抑制
・ALP 及び T.Chol 増加
・肝補正重量増加
・小葉周辺性肝細胞空胞化
・小葉申間帯肝細胞肥大・ALP 増加
・肝補正重量増加
・小葉周辺性肝細胞空胞化
・小葉申間帯肝細胞肥大250 ppm 以下毒性所見なし毒性所見なし

表 33 1 年間慢性毒性試験(イヌ)(ラセミ体)で認められた毒性所見

(2)2年間慢性毒性/発がん性併合試験(ラット)(ラセミ体)

SD ラット(主群:一群雌雄各 50 匹、中間と殺群:一群雌雄各 20 匹)を用いた混餌(原体:0、100、700 及び 1,500 ppm: 平均検体摂取量は表 34 参照)投与による 2 年間慢性毒性/発がん性併合試験が実施された。

表 34 2年間慢性毒性/発がん性併合試験(ラット)(ラセミ体)の平均検体摂取量

投与群 (ppm)		100	700	1,500
平均検体摂取量	雄	5.1	36.0	80.0
(mg/kg 体重/日)	雌	6.8	49.0	109

各投与群で認められた毒性所見は表35に示されている。

腫瘍性病変として、1,500 ppm 投与群の雄で肝細胞腺腫、肝細胞癌、雌で卵巣管状腺腫、700 ppm 投与群の雌で甲状腺ろ胞状腺腫及び 100 ppm 投与群の雌で乳腺癌の発生頻度増加または増加傾向がみられた。

肝腫瘍については、肝細胞腺腫、肝細胞癌及び合計腫瘍の発生頻度に統計学的有意差は認められなかった。卵巣管状腺腫に関しては、腺腫及び腺腫+過形成の発生頻度に有意差は認められなかった。700 ppm 投与群における甲状腺ろ胞細胞腺腫及び 100ppm 投与群における乳腺癌の発生頻度には有意差が認められたが、いずれもより高用量投与群では統計学的に有意でなく、発生数も増加していないことから、これらの変化は検体の影響ではないと考えられた。

本試験において、700 ppm 以上投与群の雌雄で体重増加抑制等が認められたので、無毒性量は雌雄とも 100 ppm(雄:5.1 mg/kg 体重/日、雌:6.8 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 60)

表 35 2 年間慢性毒性/発がん性併合試験(ラット)(ラセミ体)で認められた毒性所見

投与群	雄	雌
1,500 ppm	・食餌効率低下 ・GGT 増加 ・好酸性変異肝細胞巣	・T.Chol 増加
700 ppm 以上	・体重増加抑制 ・摂餌量減少	・体重増加抑制 ・摂餌量減少 ・食餌効率低下 ・肝補正重量増加 ・胆管過形成
100 ppm	毒性所見なし	毒性所見なし

(3)94週間発がん性試験(マウス)(ラセミ体)

ICR マウス (主群:一群雌雄各 52 匹) を用いた混餌 (原体:0、30、300、1,500 及び 3,000 ppm: 平均検体摂取量は表 36 参照) 投与による 94 週間発がん性試験が実施された。また、衛星群(中間と殺群)として、対照群及び 3,000 ppm 群(一群雌雄各 16 匹)が設けられた。

表 36 94 週間発がん性試験 (マウス) (ラセミ体) の平均検体摂取量

投与群 (ppm)		30	300	1,500	3,000
平均検体摂取量	雄	3.8	40.8	205	431
(mg/kg 体重/日)	雌	4.1	40.1	200	411

各投与群で認められた毒性所見は表37に示されている。

本試験において、300 ppm 以上投与群の雌雄で肝細胞肥大が認められたので、無毒性量は雌雄とも 30 ppm (雄:3.8 mg/kg 体重/日、雌:4.1 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 61)

表 37 94 週間発がん性試験(マウス)(ラセミ体)で認められた毒性所見

投与群	雄	雌
3,000 ppm	・肝補正重量増加	
	・小葉全域に及ぶ肝細胞肥大	
1,500 ppm 以上	・体重増加抑制	体重増加抑制
		肝、腎補正重量増加
300 ppm 以上	· 小葉中心性肝細胞肥大	・小葉全域に及ぶ肝細胞肥大
30 ppm	毒性所見なし	毒性所見なし

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)(ラセミ体)

Wistar ラット (一群雌雄各 25 匹) を用いた混餌 (原体: 0、100、500 及び 2,000 ppm: 平均検体摂取量は表 38 参照) 投与による 2 世代繁殖試験が実施された。

	マントノーローマッシ	• • •	. , , , , , , , , , , ,	17 40 1 10 10 10	
投与群			100 ppm	500 ppm	$2,000~\mathrm{ppm}$
	P 世代	雄	6.9	34.1	138
平均検体摂取量(mg/kg体重/日)	r ETV	雌	9.1	44.1	175
	F ₁ 世代	雄	6.7	33.9	142
	TI ET	雌	8.6	44.2	177

表 38 2 世代繁殖試験 (ラット) (ラセミ体) の平均検体摂取量

各投与群で認められた毒性所見は表39に示されている。

本試験において、親動物では 500 ppm 以上投与群の P及び F_1 雌雄で肝比重量増加が、児動物では 2,000 ppm 投与群で F_1 及び F_2 哺育児で体重増加抑制が認められたので、無毒性量は親動物では雌雄とも 100 ppm (P雄: 6.9 mg/kg 体重/日、P雌: 9.1 mg/kg 体重/日、 F_1 雄: 6.7 mg/kg 体重/日、 F_1 雌: 8.6 mg/kg 体重/日)、児動物では 500 ppm (P雄: 34.1 mg/kg 体重/日、P雌: 44.1 mg/kg 体重/日、 F_1 雄: 33.9 mg/kg 体重/日、 F_1 雌: 44.2 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。(参照 62)

	投与群	親 : P、	児:F ₁	親:F ₁ 、児:F ₂				
	1又一子4十	雄 雌		雄	雌			
	$2,000~\mathrm{ppm}$	体重增加抑制	• 摂餌量減少	体重增加抑制	 肝絶対重量増加 			
親		• 摂餌量減少	肝絶対重量増加	• 摂餌量減少				
動		肝絶対重量増加		肝絶対重量増加				
物	500 ppm	· 肝比重量増加	 肝比重量増加 	 肝比重量増加 	肝比重量増加			
170	以上							
	100 ppm	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし			
児	2,000 ppm	• 体重增加抑制		• 体重增加抑制				
1								
動	500 ppm	毒性所見なし		毒性所見なし				
物	以下							

表 39 2世代繁殖試験(ラット)(ラセミ体)で認められた毒性所見

(2)発生毒性試験(ラット)(ラセミ体)

SD ラット(一群雌各 25 匹)の妊娠 $6\sim15$ 日に強制経口(原体:0、50、215 及び 425 mg/kg 体重/日、溶媒:0.5%CMC)投与して、発生毒性試験が実施された。

本試験において、215 mg/kg 体重/日以上投与群の母動物に流涎、腹部被毛汚れ、体重増加抑制及び肝絶対及び比重量増加が認められ、425 mg/kg 体重/日投与群の胎児に早期吸収胚増加が認められたので、無毒性量は母動物で 50 mg/kg 体重/日、胎児で 215 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 63)

(3)発生毒性試験(ラット)(S体)

SD ラット(一群雌各 25 匹)の妊娠 $6\sim15$ 日に強制経口(原体:0、25、150

及び 300 mg/kg 体重/日、溶媒 : 0.5%CMC) 投与して、発生毒性試験が実施された。

各投与群で認められた毒性所見は表 40 に示されている。

本試験において、150 mg/kg 体重/日以上投与群で母動物に体重増加抑制等が、 胎児に骨化遅延が認められたので、無毒性量は母動物及び胎児とも 25 mg/kg 体 重/日であると考えられた。催奇形性は認められなかった。(参照 103)

双10 压时沙江		プライザル は 11170				
投与群	母動物	胎児				
300 mg/kg 体重/日	·流淚、立毛、過剰流涎、自発 運動低下、被毛褐色汚染、眼 粘膜腫大、眼瞼下垂、皮膚暗 桃色、体温低下	・骨化遅延(胸骨中心)				
150 mg/kg 体重/日以上	・体重増加抑制 ・摂餌量減少	・骨化遅延(恥骨)				
25 mg/kg 体重/日	毒性所見なし	毒性所見なし				

表 40 催奇形性試験(ラット)(S体)で認められた毒性所見

【納屋専門委員コメント】

最高用量の300 mg/kg 体重/日投与群で、胎児に骨化遅延が観察されている。この用量で胎児体重に変化がないのであれば、「胎児の発育遅延に起因した骨化遅延」とみなすことは難しい。その場合には「催奇形性は認められない」とは言えなくなる。胎児体重に対する影響の有無を確認したい。

(4)発生毒性試験(ウサギ)(ラセミ体)

NZW ウサギ (一群雌 20 匹) の妊娠 $6\sim18$ 日に強制経口 (原体:0、37.5、75 及び 150 mg/kg 体重/日、溶媒:0.5%CMC) 投与して、発生毒性試験が実施された。

本試験において、150 mg/kg 体重/日投与群の母動物で流/早産(2 例)及び摂 餌量減少が認められたが、胎児には検体投与による悪影響は認められなかったの で、無毒性量は母動物で75 mg/kg 体重/日、胎児で本試験の最高用量150 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照64)

13. 遺伝毒性試験

(1)遺伝毒性試験(ラセミ体)

ジメテナミド原体(ラセミ体)の細菌を用いた DNA 修復試験、復帰突然変異試験、チャイニーズハムスターV79 細胞を用いた HGPRT 前進突然変異試験、チャイニーズハムスター卵巣(CHO)細胞を用いた染色体異常試験、ラット初代培養肝細胞を用いた *in vitro* 細胞毒性試験、*in vitro* 及び *in vivo* 不定期 DNA 合成(UDS)試験、マウス Balb/c-3T3 細胞を用いた *in vitro* 形質転換試験、マウスを用いた小核試験、ラットを用いた優性致死試験が実施された。

結果は表 41 に示されている。Fischer ラット初代培養肝細胞を用いた *in vitro* UDS 試験において陽性の結果が得られたが、*in vivo* UDS 試験では陰性であり、マウスの小核試験及びラットの優性致死試験を含め、その他の試験ではすべて陰性であったことから、ジメテナミドには生体において問題となる遺伝毒性はないものと考えられた。(参照 65~80)

		表 41 遺伝毒性試験	概要(ラセミ体)	
	試験	対象	処理濃度・投与量	結果
	DNA 修復 試験	Bacillus subtilis (H-17、M-45 株)	678~21,700 μg/ディスク (+/-S9)	陰性
	復帰突然 変異試験	Salmonella typhimurium (TA98、TA100、TA1535、 TA1537、TA1538 株) Escherichia coli (WP2 uvrA 株)	10~500 μg/7° ν-\ (+/-S9) 50~6,500 μg/7° ν-\ (-S9) 100~10,000 μg/7° ν-\ (+S9) 39~1,250 μg/7° ν-\ (+/-S9)	陰性
	HGPRT 前進突然 変異試験	チャイニーズハムスター V79 細胞	33~333 μg/mL (+/-S9)	陰性
in	染色体異常 試験	チャイニーズハムスター CHO 細胞	10~100 μg/mL (-S9) 150~400 μg/mL (+S9)	陰性
vitro	細胞毒性 試験	Wistar ラット 初代培養肝細胞 Fischer ラット	試験 1: 0.228~200 μg/mL 試験 2: 2.5~70 μg/mL 試験 1: 0.228~200 μg/mL	EC ₅₀ =21.4 EC ₅₀ =8.57
		初代培養肝細胞 Wistar ラット 初代培養肝細胞	試験 2: 2.5~70 μg/mL 1.19~119 μg/mL	EC50=16.9 陰性
	UDS 試験	Fischer ラット 初代培養肝細胞	0.025~10 μg/mL	陽性
		Wistar ラット 初代培養肝細胞	0.0128~1,000 μg/mL	陰性
	形質転換 試験	マウスクローン Balb/c-3T3 細胞	15~100 μg/mL	陰性
	UDS 試験	Fischer ラット(肝細胞) (一群雄 6 匹)	0、158、500 mg/kg 体重 (単回強制経口投与)	陰性
in	小核試験	ICR マウス(骨髄細胞) (一群雌雄 5 匹)	0、710 mg/kg 体重/日 (強制経口投与、1日1回、2日間)	陰性
vivo	/1、作》《 計入前央	NMRI マウス(骨髄細胞) (一群雌雄 5 匹)	0、1,000 mg/kg 体重 (単回強制経口投与)	陰性
	優性致死 試験	SD ラット (一群雄 40~75 匹)	0、275、550、1,100 mg/kg 体重 (単回強制経口投与)	陰性

注) +/- S9: 代謝活性化系存在下及び非存在下

試験 (一群雄 40~75 匹)

代謝物 M23 及び M27 について、細菌を用いた復帰突然変異試験、チャイニーズ ハムスターV79 細胞を用いた前進突然変異試験及びマウスを用いた小核試験が実 施された。

(単回強制経口投与)

試験結果は、表 42 に示されているとおりすべて陰性であった。(参照 81~86)

被験 物質		試験	対象	処理濃度・投与量	結果
Moo	in vitro	復帰突然 変異試験	S. typhimurium (TA98、TA102、TA1535、 TA1537 株) S. typhimurium (TA100 株)	250~4,000 μg/7° ν-ト (+/-S9) 313~5,000 μg/7° ν-ト (+/-S9)	陰性
M23		HGPRT 前進突然 変異試験	チャイニーズハムスター V79 細胞	84.4~2,700 μg/mL (+/-S9)	陰性
in vivo		小核試験	NMRI マウス(骨髄細胞) (一群雌雄 6 匹)	0、75、150、300 mg/kg 体重 (単回強制経口投与)	陰性
	in	復帰突然 変異試験	S. typhimurium (TA98、TA100、TA102、 TA1535、TA1537 株)	313~5,000 μg/7° ν-ト (+/-S9)	陰性
M27	vitro	HGPRT 前進突然 変異試験	チャイニーズハムスター V79 細胞	106~3,400 μg/mL (+/-S9)	陰性
	in vivo	小核試験	NMRI マウス(骨髄細胞) (一群雌雄 6 匹)	0、500、1,000、2,000 mg/kg 体重 (単回強制経口投与)	陰性

表 42 遺伝毒性試験概要(代謝物)

注) +/-S9: 代謝活性化系存在下及び非存在下

(2) 遺伝毒性試験 (S体)

ジメテナミド P 原体 (S体) の細菌を用いた復帰突然変異試験、チャイニーズ ハムスターCHO 細胞を用いた前進突然変異試験、染色体異常試験、ラット初代 培養肝細胞を用いた $in\ vitro\ UDS$ 試験、マウスを用いた小核試験が実施された。

結果は表 43 に示されている。サルモネラ菌を用いた復帰突然変異試験の 1 試験において、代謝活性化系非存在下の TA100 株でのみ陽性の結果が得られたが、 TA100 株と同様に塩基対置換型変異を検出する TA1535 に対しては陰性であったことから、その遺伝毒性は高感度な TA100 だけが検出し得る程度の弱いものと考えられた。その他の $in\ vitro$ 試験の結果はすべて陰性であり、マウスを用いた小核試験の結果も陰性であったことから、ジメテナミド P 原体には生体において問題となる遺伝毒性はないと考えられた。(参照 $104\sim111$)

		表 43 遺伝毒性試験概要	(<i>S</i> 体)	
試験		対象	処理濃度・投与量	結果
in vitro	復帰突然 変異試験	S. typhimurium (TA98、TA100、TA1535、TA1537 株) E. coli (WP2uvrA 株)	100~5,000 μg/プ レート (+/-S9)	TA100 のみ-S9 で陽性
		S. typhimurium (TA98、TA100、TA1535、TA1537 株) E. coli (WP2uvrA 株)	20~5,000 μg/ブ° ν-ト (+/-S9)	陰性

		S. typhimurium (TA98、TA100、TA1535、TA1537 株) E. coli (WP2uvrA 株)	4~5,000 μg/プ レート (+/-S9)	陰性
		S. typhimurium (TA100 株)	100~5,000 μg/7° ν-\ (-S9)	陰性
	HGPRT 前 進 突 然 変異試験	チャイニーズハムスター CHO 細胞	100~400 μg/mL (-S9) 100~450 μg/mL (+S9)	陰性
	染色体 異常試験	チャイニーズハムスター CHO 細胞	0.5~5,000 μg/mL (+/-S9)	陰性
	UDS 試験	ラット初代培養肝細胞	7~125 μg /mL	陰性
in vivo	小核試験	ICR マウス(骨髄細胞) (一群雌雄 15 匹)	0、103、205、410 mg/kg 体重 (単回腹腔内投与)	陰性

注) +/- S9: 代謝活性化系存在下及び非存在下

14. その他の試験

(1) ラットにおける肝薬物代謝酵素誘導の検討(ラセミ体)

SD ラット (一群雄 6 匹) に、原体を 0、25、100、200 及び 400 mg/kg 体重/日の濃度で 4 日間連続強制経口投与して、肝酵素 (P450、EROD、PROD、NCPR、UDPGT、GSH、GST) の誘導について検討された。また、400 mg/kg 体重/日投与群には、別途回復群(4 日間休薬)及び相当する対照群が設けられた。

100 mg/kg 体重/日以上投与群で、肝絶対重量、比重量及び対脳重比の有意な増加が認められた。回復群では絶対及び比重量に有意な増加が認められたが、その増加率は主群より低く、回復傾向がみられた。

ミクロゾームにおける P450、EROD、NCPR 及び UDPGT は 400 mg/kg 体 重/日投与群で、PROD は 100 mg/kg 体重/日以上投与群で有意な増加を示した。サイトゾールにおける GSH には有意差はみられなかったが、GST 活性は全投与群で用量関連的に増加した。肝酵素活性の増加及び休薬による回復傾向は肝重量の変化と一致していた。

4日間連続経口投与により、肝重量の増加及び肝薬物代謝酵素の用量関連性のある誘導が確認され、休薬により回復傾向がみられたことから、これらの変化は可逆的なものであると考えられた。(参照 87)

皿. 食品健康影響評価

参照に挙げた資料を用いて農薬「ジメテナミド」の食品健康影響評価を実施した。 ラットに経口投与されたジメテナミドは、投与後 168 時間で 86~97%TAR が糞尿中に排泄された。低用量では尿中排泄率は雄より雌の方で高く、糞中排泄率は雄の方が高かったが、高用量では雌雄とも尿中排泄が優位であった。胆汁中排泄は、投与後 168 時間で 75~82%TAR であり、その 90%以上が投与後 24 時間で排泄され、肝クリアランスは速やかであった。主要組織中の残留放射能濃度は、血液及び脾臓を除くほとんどの組織で投与1時間後に最大となった後減少したが、血液及び脾臓では投与168 時間後まで高い濃度が持続した。これはジメテナミドとラットへモグロビンとの共役結合を示唆する強力な結合によるもので、ヒトの血液とは結合しないことが示されており、種特異的な反応と考えられた。ジメテナミドはグルタチオン抱合を初発反応として、それに続く酸化、加水分解等が生じる経路、または二量体形成、閉環等、広範に代謝されると考えられた。

とうもろこし、だいず及びてんさいを用いた植物体内運命試験において、植物体に吸収された放射能は、ほとんどが根または茎葉部に留まり、穀粒及び種子への移行は少なかった。いずれの植物においても親化合物は検出されず、主要代謝物はM23、M27、M30及びM31であった。代謝経路としては、塩素と水酸基の置換反応に続く酸化反応、またはグルタチオン抱合を初発反応とし、その後の酸化、脱アミノ化、各種抱合体の生成等が考えられた。

ジメテナミド、代謝物 M23 及び M27 を分析対象化合物とした作物残留試験の結果、作物中のジメテナミド及び代謝物の残留値はいずれも定量限界未満であった。 各種毒性試験結果から、ジメテナミド投与による影響は主に肝臓に認められた。 発がん性、繁殖能に対する影響、催奇形性及び生体において問題となる遺伝毒性は 認められなかった。ラセミ体及び S体の試験の比較から、両者の動態及び代謝は同

各種試験結果から、農産物中の暴露評価対象物質をジメテナミド(親化合物のみ) と設定した。

等であり、毒性プロファイル及び毒性の程度もほぼ同等であると考えられた。

各試験における無毒性量及び最小毒性量は表44に示されている。

S体のラットを用いた 90 日間亜急性毒性試験の雌で無毒性量が設定できなかったが、最小毒性量でみられた影響は、肝重量の増加を伴わない低頻度の軽微な小葉中心性肝細胞肥大のみであり、無毒性量は最小毒性量 (40 mg/kg 体重/日) 付近と考えられ、ラセミ体の無毒性量とほぼ同等であると考えられた。

表 44 各試験における無毒性量及び最小毒性量

	五 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		<u> </u>	
動物種	試験	無毒性量 (mg/kg 体重/日)	最小毒性量 (mg/kg 体重/日)	備考 1)
	90 日間亜急性 毒性試験 (ラセミ体) 90 日間亜急性 毒性試験	雄:33.5 雌:40.1 雄:37 雌:-	雄: 98.0 雌: 119 雄: 110 雌: 40	雌雄:体重增加抑制等 雄:門脈周囲性肝細胞肥大等 雌:小葉中心性肝細胞肥大
	(S体) 2年間慢性 毒性/発がん性 併合試験 (ラセミ体)	雄:5.1 雌:6.8	雄: 36.0 雌: 49.0	雌雄: 体重増加抑制等 (発がん性は認められない)
ラット	2世代繁殖試験 (ラセミ体)	親動物 P雄: 6.9 P雌: 9.1 F ₁ 雄: 6.7 F ₁ 雌: 8.6 児動物 P雄: 34.1 P雌: 44.1 F ₁ 雄: 33.9 F ₁ 雌: 44.2	親動物 P 雄: 34.1 P 雌: 44.1 F ₁ 雄: 33.9 F ₁ 雌: 44.2 児動物 P 雄: 138 P 雌: 175 F ₁ 雄: 142 F ₁ 雌: 177	親動物 雌雄:肝比重量増加 児動物 雌雄:体重増加抑制 (繁殖能に対する影響は認め られない)
	発生毒性試験 (ラセミ体)	母動物:50 胎児:215	母動物:215 胎児:425	母動物:体重増加抑制等 胎児:早期吸収胚増加 (催奇形性は認められない)
	発生毒性試験 (S体)	母動物:25 胎児:25	母動物:150 胎児:150	母動物:体重増加抑制等 胎児:骨化遅延 (催奇形性は認められない)
マウス	94 週間 発がん性試験 (ラセミ体)	雄:3.8 雌:4.1	雄: 40.8 雌: 40.1	雌雄:肝細胞肥大 (発がん性は認められない)
ウサギ	発生毒性試験 (ラセミ体)	母動物:75 胎児:150	母動物:150 胎児:一	母動物:流/早産等 胎児:毒性所見なし (催奇形性は認められない)
イヌ	90 日間亜急性 毒性試験 (ラセミ体) 1 年間慢性	雄: 4.72 雌: 4.98 雄: 10.1	雄: 33.6 雌: 39.7 雄: 48.7	雌雄:病理組織学的変化を伴 う肝比重量増加等 雌雄:体重増加抑制等
	毒性試験 (ラセミ体)	雌: 9.1	雌:49.3	

^{1):}備考に最小毒性量で認められた所見の概要を示す。

^{-:}無毒性量または最小毒性量が設定できなかった。

食品安全委員会農薬専門調査会は、各試験で得られた無毒性量の最小値がマウスを用いた 94 週間発がん性試験の 3.8 mg/kg 体重/日であったので、これを根拠として、安全係数 100 で除した 0.038 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

ADI 0.038 mg/kg 体重/日

(ADI 設定根拠資料) 発がん性試験

(動物種) マウス(期間) 94 週間(投与方法) 混餌

(無毒性量) 3.8 mg/kg 体重/日

(安全係数) 100

<別紙1:代謝物/分解物略称>

記号	化学名
M1	N-(2,4-dimethyl-3-thienyl)-N-(2-hydroxy-1-methylethyl)-2-(methylthio)-acetamide
M2	N-(2,4-dimethyl-3-thienyl)-N-(2-hydroxy-1-methylethyl)-2-(methylsulfinyl)-acetamide
М3	N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-acetamide
M4	2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-acetamide-S-oxide
M5	2-chloro-N-(2-hydroxymethyl-4-methyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-acetamide
M6	1,5-Dihydro-1-(2-methoxy-1-methylethyl)-8-methyl-thieno[2,3-f][4,1]oxazepin-2(3H)-one
M7	2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-hydroxy-1-methylethyl)-acetamide
M8	3,4-dihydro-4-(2,4-dimethyl-3-thienyl)-5-methyl-2H-1,4-oxazin-3-one
M9	4-(2,4-dimethyl-3-thienyl)-5-methyl-3-morpholinone
M10	N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-2-(methylsulfinyl)-acetamide
M11	N-(2,4-dimethyl-3-thienyl)-2-hydroxy-N-(2-methoxy-1-methylethyl)-acetamide
M12	N-(2,4-dimethyl-3-thienyl)-N-(2-hydroxy-1-methylethyl)-acetamide
M13	N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-2-(methylsulfinyl)-acetamide
M14	N-(2,4-dimethyl-3-thienyl)-N-(2-hydroxy-1-methylethyl)-2-(methylsulfonyl)-acetamide
M15	4-(2,4-dimethyl-3-thienyl)-6-hydroxy-5-methyl-3-morpholinone
M16	N-(2-hydroxymethyl-4-methyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-2-(methysulfinyl)-acetamide
M17	N-acetyl-S-{2-[N'-(2,4-dimethyl-3-thienyl)-N'-(2-methoxy-1-methyl-ethyl) amino]-2-oxoethyl}-cycteine
M18	N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-2-methylthio-acetyl)-alanine
M19	N-(2,4-dimethyl-3-thienyl)-N-[(methysulfonyl)acetyl]-alanine
M20	1,5-dihydro-1-(2-methoxy-1-methylethyl)-8-methyl-thieno[3,4-f][4,1]oxazepin-2(3H)-one
M21	4-(2,4-dimethyl-3-thienyl)-6-hydroxy-5-methyl-3-thiomorpholinone
M22	2,2'-dithiobis[N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-acetamide
M23	N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-oxamicacid
M24	S-(2-N'-(2,4-dimethyl-3-thienyl)-N'-(2-methoxy-1-methylethyl)amino-2-oxoethyl)-gluttathione
M25	S-(2-N'-(2,4-dimethyl-3-thienyl)-N'-(2-methoxy-1-methylethyl)amino-2-oxoethyl)-cysteine

2009/3/30 第49回農薬専門調査会幹事会 ジメテナミド評価書(案)

記号	化学名
M26	3-[[2-[N'-(2,4-dimethyl-3-thienyl)-N'-(2-methoxy-1-methylethyl)amino]-2-oxoethyl]thio]-2-hydroxy-propanoicacid
M27	N-((1-methyl-2-methoxy)ethyl-N-(2,4-dimethylthienyl)acetamide-2-sulfonic acid
M28	3-[S-[2-[N'-(2,4-dimethyl-3-thienyl)-N"-(2-methoxy-1-methylethyl)amino]-2-oxoethyl]sulfinyl]alanine
M29	N-(carboxyacetyl)-S-[2-[N'-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-amino-2-oxoethyl]cysteine
M30	3-[S-[2-[N'-(2,4-dimethyl-3-thienyl)-N'-(2-methoxy-1-methylethyl)amino] sulfinyl]-2-hydroxy-propionicacid
M31	3-[S-[2-[N'-(2,4-dimethyl-3-thienyl)-N'-(2-methoxy-1-methylethyl)amino]-2-oxoethyl]sulfinyl-aceticacid
M32	N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-carboxymethylenethionyl acetamide
M33	Glutathione conjugate of 2-Chloro-N-(2-methoxy-1-methyl-ethyl)-N-[2-methyl-1-(2-oxo-ethyl)-allyl]-acetamide
M34	Glucuronic acid conjugate of 2-chloro-N-(2,4-dimethyl-thiophen-3-yl)-N-(2-hydroxy-1-methyl-ethyl)-acetamide
M35	Hydroxylated 2-chloro-N-(2,4-dimethyl-thiophen-3-yl)-N-(2-methoxy-1-methyl-ethyl)-acetamide
M36	Glucuronic acid conjugate of hydroxylated 2-chloro-N-(2,4-dimethyl-thiophen-3-yl)-N-(2-methoxy-1-methyl-ethyl)-acetamide
M-PC1	1-(1-methoxy-2-methylethyl)-7-methyl-thieno[2,3-e]-piperdine-2-one

<別紙2:検査値等略称>

略称	名称
ai	有効成分量
Alb	アルブミン
ALP	アルカリホスファターゼ
APTT	活性化部分トロンボプラスチン時間
C_{max}	最高濃度
CMC	カルボキシメチルセルロース
EC_{50}	50%効果濃度
EROD	エトキシレゾルフィン O デエチラーゼ
FAD	フラビンアデニンジヌクレオチド
GGT	γ-グルタミルトランスフェラーゼ (=γ-グルタミルトランスペプチダーゼ (γ-GTP))
Glob	グロブリン
GSH	総グルタチオン
GST	グルタチオン-S-トランスフェラーゼ
LC_{50}	半数致死濃度
LD_{50}	半数致死量
NADPH	ニコチンアミドアデニンジヌクレオチドリン酸
NCPR	NADPH-チトクローム P450 還元酵素
P450	チトクローム P450
PHI	最終使用から収穫までの日数
PROD	ペントキシレゾルフィン O デアルキラーゼ (~デペンチラーゼ)
PT	プロトロンビン時間
$T_{1/2}$	消失半減期
TAR	総投与(処理)放射能
T.Chol	総コレステロール
T_{max}	最高濃度到達時間
TP	総蛋白質
TRR	総残留放射能
UDPGT	ビリルビン抱合酵素 (ウリジン二リン酸グルクロニルトランスフェラーゼ)

1 <別紙3:作物残留試験成績>

作物名				PHI	残留值(mg/kg)											
(栽培形態)	試験 圃場	使用量	回数			公的分析機関						社内分析機関				
(分析部位)	数	(g ai/ha)	(回)	(目)	ジメテ	ナミド	M	23	M	27	ジメテ	ナミド	M	23	M	27
実施年度					最훼値	平均值	最高値	平均值	最高値	平均值	最훼値	平均值	最純	平均值	最高値	平均值
とうもろこし (露地(子実) 1992 年度	2		1	92 90	<0.01 <0.01	<0.01 <0.01					<0.01 <0.01	<0.01 <0.01				
とうもろこし (露地(子実) 1993 年度	2		1	115 110	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02	<0.05 <0.05	<0.05 <0.05	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02	<0.05 <0.05	<0.05 <0.05
飼料用とうもろこし (露地)(乾燥子実) 1992 年度	2		1	154 139	<0.01 <0.01	<0.01 <0.01					<0.01 <0.01	<0.01 <0.01				
飼料用とうもろこし (露地)(乾燥子実) 1993 年度	2		1	142 149	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02	<0.05 <0.05	<0.05 <0.05	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02	<0.05 <0.05	<0.05 <0.05
とうもろこし (露地(青刈り) 1992 年度	2	$1{,}140~^{\rm EC}$	1	84 118	<0.01 <0.01	<0.01 <0.01					<0.01 <0.01	<0.01 <0.01				
とうもろこし (露地(青刈り) 1993 年度	2		1	86 141	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02	<0.05 <0.05	<0.05 <0.05	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02	<0.05 <0.05	<0.05 <0.05
だいず (露地)(乾燥子実) 1992 年度	2		1	131 162	<0.01 <0.01	<0.01 <0.01					<0.01 <0.01	<0.01 <0.01				
だいず (露地)(乾燥子実) 1993 年度	2		1	149 143	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02	<0.05 <0.05	<0.05 <0.05	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02	<0.05 <0.05	<0.05 <0.05
キャベツ (露地)(葉球) 1996 年度	2		1	60 76	<0.01 <0.01											

2009/3/30 第49回農薬専門調査会幹事会 ジメテナミド評価書(案)

作物名										残留値(mg/kg)					
(栽培形態)	試験 圃場	使用量	回数	PHI			公的分	析機関					社内分	析機関		
(分析部位)	数	(g ai/ha)	(回)	(日)	ジメテ	ナミド	M	23	M	27	ジメテ	ナミド	M	23	M	27
実施年度					最高値	平均値	最훼	平均值	最高値	平均値	最高値	平均値	最高値	平均値	最高値	平均值
えだまめ (露地) (さやを含む子実) 1992 年度	2		1	103 101	<0.01 <0.01	<0.01 <0.01					<0.01 <0.01	<0.01 <0.01				
えだまめ (露地) (さやを含む子実) 1993 年度	2	$1{,}140~{ m EC}$	1	118 114	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02	<0.05 <0.05	<0.05 <0.05	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02	<0.05 <0.05	<0.05 <0.05
えだまめ (露地)(さや) (花梗を除去) 2004 年度	2		1	79 67	<0.01 <0.01	<0.01 <0.01					<0.01 <0.01	<0.01 <0.01				

注) EC: 乳剤

全てのデータが定量限界未満の場合は定量限界値の平均に<を付して記載した。

- 1 <参照>
- 2 1 食品、添加物等の規格基準(昭和34年厚生省告示第370号)の一部を改正する件(平成
- 3 17年11月29日付、平成17年厚生労働省告示第499号)
- 4 2 農薬抄録 ジメテナミド (ラセミ体) (除草剤) (平成 20 年 3 月 31 日改訂): BASF アグ
- 5 口株式会社、未公表
- 6 3 農薬抄録 ジメテナミド P (除草剤) (平成 20 年 3 月 31 日改訂): BASF アグロ株式会
- 7 社、未公表
- 8 4 単回及び反復投与後のラットにおける吸収、分布及び排泄(ラセミ体)(GLP対応):サ
- 9 ンド社 (スイス)、1988 年、未公表
- 10 5 ラットにおける代謝 (ラセミ体) (GLP 対応): サンドアグロ社 (スイス)、1992 年、未
- 11 公表
- 12 6 ラットにおける植物代謝物の検索 (ラセミ体) (GLP 対応): サンドアグロ社 (スイス)、
- 13 1992年、未公表
- 14 7 *in vitro* (肝及び腎) 代謝の定量的検討 (ラセミ体) (GLP 対応): サンドアグロ社 (スイ
- 15 ス)、1993年、未公表
- 16 8 $[^{14}C]$ -ジメテナミド (SAN582H) またはその誘導体のラットおよびヒトヘモグロビンと
- 17 の共役結合能に関する研究 (ラセミ体): サンドアグロ社 (スイス)、1992 年、未公表
- 18 9 マウスにおけるスルホン酸代謝物の検出(ラセミ体)(GLP 対応):サンドアグロ社(ス
- 19 イス)、1992年、未公表
- 20 10 ラットにおける ${}^{14}\text{C}$ -標識 RS-ジメテナミド及び ${}^{14}\text{C}$ S-ジメテナミドの経皮吸収試験(GLP)
- 21 対応): BASF 毒性研究所(ドイツ)、1999 年、未公表
- 22 11 ¹⁴C-標識体のヒト及びラットの皮膚への *in vitro* 浸透性 (GLP 対応): サンドアグロ社 (ス
- 23 イス)、1993年、未公表
- 24 12 ¹⁴C-標識体のヒト及びラットの皮膚への *in vitro* 浸透性 (ラセミ体) (GLP 対応): コーヴ
- 25 アンス (英国)、2001年、未公表
- 26 13 とうもろこしにおける植物体内運命試験 (ラセミ体) (GLP 対応): サンドクロップ プ
- 27 ロテクション社 (米国)、1995年、未公表
- 28 14 大豆における植物体内運命試験 (ラセミ体) (GLP 対応): サンドクロップ プロテクシ
- 29 ョン社 (米国)、1991年、未公表
- 30 15 てんさいにおける植物体内運命試験 (ラセミ体) (GLP 対応): サンドアグロ社 (スイス、
- 31 フランス)、1999年、未公表
- 32 16 好気的土壌中運命に関する試験 (ラセミ体) (GLP 対応): サンドクロップ プロテクシ
- 33 ョン社(米国)、1990年、未公表
- 34 17 嫌気的土壌中運命に関する試験 (ラセミ体) (GLP 対応): サンドクロップ プロテクシ
- 35 ョン社 (米国)、1990年、未公表
- 36 18 ジメテナミドの土壌吸着試験:エス・ディー・エス バイオテック つくば研究所、1992
- 37 年、未公表
- 38 19 加水分解運命試験 (ラセミ体): エス・ディー・エス バイオテック つくば研究所、1992

- 1 年、未公表
- 2 20 水中光分解運命試験 (緩衝液) (GLP 対応): サンドアグロ社 (米国)、1992 年、未公表
- 3 21 水中光分解運命試験 (緩衝液及び自然水) (GLP 対応): エス・ディー・エス バイオテ
- 4 ック つくば研究所、1992年、未公表
- 5 22 水中光分解運命試験(滅菌自然水)(ラセミ体及びS体)(GLP対応): BASF農業研究所
- 6 (米国)、2006年、未公表
- 7 23 土壌残留試験成績: エス・ディー・エス バイオテック つくば研究所、1992~1993年、
- 8 未公表
- 9 24 作物残留試験成績:エス・ディー・エス バイオテック つくば研究所、残留農薬研究所、
- 10 1992~2004年、未公表
- 11 25 Irwin 法を用いた一般症状観察: ハンティンドン リサーチセンター (英国)、1993 年、
- 12 未公表
- 13 26 ヘキソバルビタール誘導睡眠時間に及ぼす影響: ハンティンドン リサーチセンター (英
- 14 国)、1993年、未公表
- 15 27 循環器及び呼吸に及ぼす影響: ハンティンドン リサーチセンター (英国)、1993年、未
- 16 公表
- 17 28 骨格筋に及ぼす影響 (傾斜試験): ハンティンドン リサーチセンター (英国)、1993年、
- 18 未公表
- 19 29 血液凝固に及ぼす影響:ハンティンドン リサーチセンター (英国)、1993年、未公表
- 20 30 雄ラットにおける急性経口毒性試験 (GLP 対応): サンド社 (スイス) 1985 年、未公表
- 21 31 雌ラットにおける急性経口毒性試験 (GLP 対応): サンド社 (スイス) 1985 年、未公表
- 22 32 ラットにおける急性経口毒性試験 (GLP 対応): バイオ/ダイナミクス社 (米国) 1991 年、
- 23 未公表
- 24 33 ラットを用いた急性経口毒性試験 (ラセミ体) (GLP 対応): ヘーゼルトン・ラボラトリ
- 25 ーズ (米国) 1989 年、未公表
- 26 34 ラットを用いた急性経口毒性試験 (ラセミ体) (GLP 対応): バイオ/ダイナミクス社 (米
- 27 国) 1991年、未公表
- 28 35 ラットにおける急性経口毒性 (GLP 対応): サンドアグロ社 (スイス) 1992 年、未公表
- 29 36 雄マウスにおける急性経口毒性試験 (GLP 対応): サンド社 (スイス) 1986 年、未公表
- 30 37 雌マウスにおける急性経口毒性試験 (GLP 対応): サンド社 (スイス) 1986 年、未公表
- 31 38 ウサギにおける急性経口毒性試験(GLP対応): バイオリサーチ ラボラトリーズ社(カ
- 32 ナダ) 1991年、未公表
- 33 39 ラットにおける急性経皮毒性試験 (GLP 対応): サンド社 (スイス) 1985 年、未公表
- 34 40 ラットを用いた急性経皮毒性試験 (ラセミ体) (非 GLP): サンドアグロ社 (スイス) 1986
- 35 年、未公表
- 36 41 ウサギにおける急性経皮毒性試験 (ラセミ体) (GLP 対応): バイオ/ダイナミクス (米国)
- 37 1991年、未公表
- 38 42 ウサギを用いた急性経皮毒性試験(ラセミ体)(GLP対応):バイオ/ダイナミクス(米国)

- 1 1991年、未公表
- 2 43 ラットにおける急性吸入毒性試験(GLP対応): リサーチ・アンド・コンサルティング・
- 3 カンパニー (スイス)、1987 年、未公表
- 4 44 ラットを用いた急性吸入毒性試験 (ラセミ体) (GLP 対応): リサーチ・アンド・コンサ
- 5 ルティング・カンパニー (スイス)、1989年、未公表
- 6 45 ジメテナミドのオキサミド体 (動植物土壌中代謝物・M23) のラットを用いた急性経口毒
- 7 性試験 (GLP 対応): ファルマコ LSR 社 (英国)、1995 年、未公表
- 8 46 ジメテナミドのスルホン酸体(動植物土壌中代謝物・M27)のラットを用いた急性経口毒
- 9 性試験(GLP対応): バイオ/ダイナミクス(米国)、1992年、未公表
- 10 47 ウサギを用いた皮膚一次刺激性試験 (GLP 対応): ヘーゼルトン ラボラトリーズ アメ
- 11 リカ (米国)、1988年、未公表
- 12 48 ウサギを用いた皮膚刺激性試験 (GLP 対応): バイオ/ダイナミクス (米国)、1991 年、
- 13 未公表
- 14 49 ウサギを用いた皮膚刺激性試験 (ラセミ体) (GLP 対応): バイオ/ダイナミクス (米国)、
- 15 1991年、未公表
- 16 50 ウサギを用いた眼粘膜刺激性試験 (GLP 対応): ヘーゼルトン ラボラトリーズ アメリ
- 17 カ (米国)、1988年、未公表
- 18 51 ウサギを用いた眼刺激性試験 (ラセミ体) (GLP 対応): バイオ/ダイナミクス (米国)、
- 19 1988 年、未公表
- 20 52 ウサギを用いた眼刺激性試験(ラセミ体)(GLP 対応): バイオ/ダイナミクス(米国)、
- 21 1988年、未公表
- 22 53 モルモットを用いた皮膚感作性試験 (GLP 対応): サンド社 (スイス)、1987 年、未公表
- 23 54 モルモットにおける皮膚感作性試験 (GLP 対応): RCC (スイス)、1995 年、未公表
- 24 55 ラットを用いた亜急性経口毒性試験 (ラセミ体) (GLP 対応): ハンティンドン・リサー
- 25 チ・センター (英国)、1987年、未公表
- 26 56 イヌを用いた亜急性経口毒性試験 (ラセミ体) (GLP 対応): インバレスク・リサーチ・
- 27 インターナショナル (英国)、1987年、未公表
- 28 57 ウサギを用いた 3 週間経皮毒性試験 (ラセミ体) (GLP 対応): サンドアグロ社 (スイス)、
- 29 1990年、未公表
- 30 58 ウサギを用いた 3 週間限界経皮毒性試験 (ラセミ体) (GLP 対応): サンドアグロ社 (ス
- 31 イス)、1990年、未公表
- 32 59 イヌを用いた飼料混入投与による 52 週間経口毒性試験 (ラセミ体) (GLP 対応): インバ
- 33 レスク・リサーチ・インターナショナル (英国)、1989 年、1993 年、未公表
- 34 60 ラットを用いた飼料混入投与による慢性毒性/発がん性併合試験(ラセミ体)(GLP 対
- 35 応): ハンティンドン・リサーチ・センター (英国)、1990年、1993年、未公表
- 36 61 マウスを用いた飼料混入投与による発がん性試験 (ラセミ体) (GLP 対応): ハンティン
- 37 ドン・リサーチ・センター (英国)、1990年、1995年、未公表
- 38 62 ラットを用いた繁殖毒性試験 (ラセミ体) (GLP 対応): リサーチ・アンド・コンサルテ

- 1 ィング・カンパニー (スイス)、1990年、未公表
- 2 63 ラットにおける催奇形性試験 (ラセミ体) (GLP 対応): アーガス リサーチ ラボラト
- 3 リーズ (米国)、1987年、未公表
- 4 64 ウサギにおける催奇形性試験 (ラセミ体) (GLP 対応): アーガス リサーチ ラボラト
- 5 リーズ (米国)、1988年、未公表
- 6 65 細菌を用いた復帰変異試験 (ラセミ体) (GLP 対応): NOTOX (オランダ)、1985 年、未
- 7 公表
- 8 66 細菌を用いた復帰変異試験 (ラセミ体) (GLP 対応): ビー・エム・エル、1985 年、未公
- 9 表
- 10 67 復帰変異原性試験 (ラセミ体) (GLP 対応): ヘーゼルトン・ラボラトリーズ (米国)、1989
- 11 年、未公表
- 12 68 チャイニーズハムスターの卵巣細胞を用いた *in vitro* 細胞遺伝学的試験 (ラセミ体)
- 13 (GLP 対応): ヘーゼルトン バイオテクノロジーズ社 (オランダ)、1985 年、未公表
- 14 69 マウス骨髄における小核試験 (ラセミ体) (GLP 対応): ヘーゼルトン・マイクロテスト
- 15 (英国)、1993年、未公表
- 16 70 マウス骨髄細胞を用いた小核試験 (ラセミ体) (GLP 対応): サンドアグロ社 (スイス)、
- 17 1986年、未公表
- 18 71 細菌を用いた DNA 修復試験 (ラセミ体) (GLP 対応): ビー・エム・エル、1992 年、未
- 19 公表
- 20 72 チャイニーズハムスターV79 細胞 (HGPRT) を用いた *in vitro* 前進突然変異試験 (ラセ
- 21 ミ体) (GLP 対応): サンドアグロ社 (スイス)、1986 年、未公表
- 22 73 ラットの初代肝細胞を用いた *in vitro* 細胞毒性試験 (ラセミ体) (GLP 対応): ヘーゼル
- 23 トン・マイクロテスト (英国)、1992 年、未公表
- 24 74 ラットの初代肝細胞を用いた *in vitro* 細胞毒性試験 (ラセミ体) (GLP 対応): ヘーゼル
- 25 トン (米国)、1992年、未公表
- 26 75 ラットの肝細胞を用いた *in vitro* 不定期 DNA 合成 (ラセミ体) (GLP 対応): サンドアグ
- 27 口社 (スイス)、1986年、未公表
- 28 76 ラットの初代培養肝細胞を用いた *in vitro* 不定期 DNA 合成 (ラセミ体) (GLP 対応): サ
- 29 ンドアグロ社 (スイス)、1989年、未公表
- 30 77 ラットの肝細胞を用いた *in vitro* 不定期 DNA 合成 (ラセミ体) (GLP 対応): ヘーゼルト
- 31 ン・マイクロテスト (英国)、1990年、未公表
- 32 78 ラットの肝臓における *in vitro* 不定期 DNA 合成(ラセミ体) (GLP 対応): ヘーゼルトン・
- 33 マイクロテスト (英国)、1993 年、未公表
- 34 79 ラットにおける優性致死試験 (ラセミ体) (GLP 対応): マイクロバイロジカル・アソシ
- 35 エイツ (米国)、1995年、未公表
- 36 80 マウス Balb/c-3T3 細胞を用いた in vitro 形質転換 (GLP 対応): ヘーゼルトン・バイオ
- 37 テクノロジー (オランダ)、1995年、未公表
- 38 81 ジメテナミドのオキサミド体 (動植物土壌中代謝物・M23) のサルモネラ菌を用いた復帰

- 1 変異性試験(GLP対応): ヘーゼルトン ヨーロッパ社(英国)、1995年、未公表
- 2 82 ジメテナミドのスルホン酸体 (動植物土壌中代謝物・M27) のサルモネラ菌を用いた復帰
- 3 変異性試験 (GLP 対応): ヘーゼルトン ヨーロッパ社 (英国)、1995 年、未公表
- 4 83 代謝物 (M23) のマウス骨髄細胞を用いた小核試験 (GLP 対応): RCC (スイス)、1998
- 5 年、未公表
- 6 84 代謝物 (M27) のマウス骨髄細胞を用いた小核試験 (GLP 対応): RCC (スイス)、1998
- 7 年、未公表
- 8 85 代謝物 (M23) のチャイニーズ・ハムスターV79 細胞を用いた *in vitro* 前進突然変異試験
- 9 (GLP 対応): RCC (スイス)、2000 年、未公表
- 10 86 代謝物 (M27) のチャイニーズ・ハムスターV79 細胞を用いた *in vitro* 前進突然変異試験
- 11 (GLP 対応): RCC (スイス)、2000 年、未公表
- 12 87 ラットにおける肝酵素誘導の検討 (ラセミ体) (GLP 対応): サンドアグロ社 (スイス)、
- 13 1994年、未公表
- 14 88 BAS 656 H 光学異性体の in vitro 代謝の比較検討 (ラセミ体、S 体) (GLP 対応): BASF
- 15 毒性研究所 (ドイツ)、2002 年、未公表
- 16 89 好気的土壌代謝比較試験 (ラセミ体、S体) (GLP対応): サンドアグロ社 (米国)、1997
- 17 年、未公表
- 18 90 土壌表面光分解比較試験(ラセミ体、S体)(GLP対応): サンドアグロ社(米国)、1997
- 19 年、未公表
- 20 91 土壌吸着性試験 (S体) (GLP対応): サンドアグロ社 (米国)、1997年、未公表
- 21 92 日本土壌における土壌吸着及び脱着試験(S体)(GLP対応): BASF 農業研究所(ドイ
- 22 ツ)、2006年、未公表
- 23 93 加水分解運命試験(S体)(GLP対応): サンドアグロ社(米国)、1997年、未公表
- 24 94 水中光分解運命試験 (緩衝液) (S体) (GLP対応): サンドアグロ社 (米国)、1997年、
- 25 未公表
- 26 95 生体機能に及ぼす影響 (S 体及びラセミ体) (GLP 対応): 日精バイリス (株) 滋賀研
- 27 究所、2006年、未公表
- 28 96 ラットにおける急性経口毒性試験 (S体) (GLP対応): ハンティンドン・ライフサイエ
- 29 ンス社 (米国)、1996年、未公表
- 30 97 ウサギにおける急性経皮毒性試験 (S体) (GLP対応): ハンティンドン・ライフサイエ
- 31 ンス社 (米国)、1996年、未公表
- 32 98 ラットにおける急性吸入毒性試験 (S体) (GLP対応): ハンティンドン・ライフサイエ
- 33 ンス社(米国)、1996年、未公表
- 34 99 ウサギにおける皮膚刺激性試験 (S体) (GLP対応): ハンティンドン・ライフサイエン
- 35 ス社 (米国)、1996 年、未公表
- 36 100 ウサギにおける眼刺激性試験 (S体) (GLP対応): ハンティンドン・ライフサイエ
- 37 ンス社 (米国)、1996年、未公表
- 38 101 モルモットにおける皮膚感作性試験 (S 体) (GLP 対応): ハンティンドン・ライフ

- 1 サイエンス社 (米国)、1996年、未公表
- 2 102 ラットを用いた 90 日間反復混餌投与毒性試験(S体) (GLP 対応):ハンティンドン・
- 3 ライフサイエンス社 (米国)、1996 年、未公表
- 4 103 ラットを用いた催奇形性試験 (S体) (GLP対応): アーガス リサーチ ラボラト
- 5 リーズ (米国)、1996年、未公表
- 6 104 細菌を用いた復帰変異原性試験(S体)(GLP対応):マイクロバイオロジカルアソ
- 7 シエーツ社 (米国)、1996年、未公表
- 8 105 細菌を用いた復帰突然変異試験 (S体) (GLP対応): BASF 毒性研究所 (ドイツ)、
- 9 1997年、未公表
- 10 106 細菌を用いた復帰突然変異試験(参考標準品)(GLP対応): BASF 毒性研究所(ド
- 11 イツ)、1997年、未公表
- 107 細菌を用いた復帰突然変異試験 (S体) (GLP対応): マイクロバイオロジカルアソ
- 13 シエーツ社 (米国)、1997年、未公表
- 14 108 チャイニーズハムスター卵巣由来の培養細胞(CHO)を用いた in vitro 染色体異常
- 15 試験(S体)(GLP対応):マイクロバイオロジカルアソシエーツ社(米国)、1996年、
- 16 未公表
- 17 109 マウスの骨髄細胞を用いた小核試験 (S体) (GLP対応):マイクロバイオロジカル
- 18 アソシエーツ社 (米国)、1996年、未公表
- 19 110 チャイニーズ・ハムスターCHO 細胞を用いた in vitro 遺伝子突然変異試験 (HGPRT
- 20 前進突然変異試験)(S体)(GLP対応):マイクロバイオロジカルアソシエーツ社(米国)、
- 21 1996年、未公表
- 22 111 ラット初代培養肝細胞を用いた不定期 DNA 合成 (UDS) 試験 (S体) (GLP 対応):
- 23 マイクロバイオロジカルアソシエーツ社(米国)、1996年、未公表
- 24 112 食品健康影響評価について
- 25 (URL;http://www.fsc.go.jp/hyouka/hy/hy-uke-dimethenamid-200603.pdf)
- 26 113 第 241 回食品安全委員会
- 27 (URL;http://www.fsc.go.jp/iinkai/i-dai241/index.html)
- 28 114 第 25 回食品安全委員会農薬専門調査会総合評価第一部会
- 29 (URL;http://www.fsc.go.jp/senmon/nouyaku/sougou1 dai25/index.html)
- 30 115 第 27 回食品安全委員会農薬専門調査会総合評価第一部会
- 31 (URL;http://www.fsc.go.jp/senmon/nouyaku/sougou1_dai27/index.html)
- 32 116 第 49 回食品安全委員会農薬専門調査会幹事会
- 33 (URL;http://www.fsc.go.jp/senmon/nouyaku/kanjikai_dai49/index.html)