(案)

農薬評価書

クロメプロップ

2009年3月30日 食品安全委員会農薬専門調査会

目 次

	頁
〇審議の経緯	3
〇食品安全委員会委員名簿	3
〇食品安全委員会農薬専門調査会専門委員名簿	3
〇要約	6
I.評価対象農薬の概要	
1. 用途	7
2. 有効成分の一般名	7
3. 化学名	7
4. 分子式	7
5. 分子量	7
6. 構造式	7
7. 開発の経緯	7
Ⅱ. 安全性に係る試験の概要	8
1. 動物体內運命試験	8
(1)吸収	8
(2)分布	9
(3)代謝物同定·定量	
(4)排泄	
2. 植物体内運命試験	
3. 土壌中運命試験	11
(1)好気的湛水土壌中運命試験	11
(2)好気的土壌中運命試験(畑地条件)	12
(3)土壌吸着試験	12
4. 水中運命試験	13
(1)加水分解試験	13
(2)水中光分解試験(緩衝液及び自然水)	13
5. 土壌残留試験	13
6. 作物等残留試験	14
(1)作物残留試験	14
(2)魚介類における最大推定残留値	14
7. 一般薬理試験	
8. 急性毒性試験	15
9. 眼・皮膚に対する刺激性及び皮膚感作性試験.	
10. 亜急性毒性試験	16
(1)00 ロ関亜角性事性試験(ラット)	16

(2)90 日間亜急性毒性試験(マウス)	17
(3)28 日間亜急性毒性試験(イヌ)<参考データ>	18
11. 慢性毒性試験及び発がん性試験	18
(1)1年間慢性毒性試験(イヌ)	18
(2)2 年間慢性毒性/発がん性併合試験(ラット)	20
(3)2 年間慢性毒性/発がん性併合試験(マウス)	20
12. 生殖発生毒性試験	
(1)2 世代繁殖試験(ラット)	21
(2)発生毒性試験(ラット)	22
(3)発生毒性試験(ウサギ)	
13. 遺伝毒性試験	23
Ⅲ. 食品健康影響評価	26
•別紙 1:代謝物/分解物略称	30
- 別紙 2∶検査値等略称	31
- 参昭	32

<審議の経緯>

1988年 3月 24日 初回農薬登録

2005年 11月 29日 残留農薬基準告示 (参照 1)

2007年 3月 5日 厚生労働大臣より残留基準(暫定基準)設定に係る食品

健康影響評価について要請(厚生労働省発食安第

0305014 号) (参照 2)

2007年 3月 6日 関係書類の接受 (参照 3)

2007年 3月 8日第181回食品安全委員会(要請事項説明)(参照4)

2007年 6月 19日 第5回農薬専門調査会確認評価第三部会 (参照5)

2007年 11月 12日 第9回農薬専門調査会確認評価第三部会 (参照6)

2008年 7月 18日 農林水産省より厚生労働省へ基準設定依頼(魚介類)

2008年 10月 7日 厚生労働大臣より残留基準設定に係る食品健康影響評

価について要請(厚生労働省発食安第 1007002 号)及

び関係書類の接受(参照7、8)

2008 年 10 月 9 日 第 257 回食品安全委員会 (要請事項説明) (参照 9)

2008年 10月 15日 追加資料受理 (参照 10)

2008年 11月 12日 第17回農薬専門調査会確認評価第二部会(参照11)

2009 年 3月 30日 第49回農薬専門調査会幹事会 (参照12)

<食品安全委員会委員名簿>

見上 彪(委員長)

小泉直子(委員長代理)

長尾 拓

野村一正

畑江敬子

廣瀬雅雄*

本間清一

*:2007年4月1日から

く食品安全委員会農薬専門調査会専門委員名簿>

(2007年3月31日まで)

鈴木勝士 (座長) 三枝順三 根岸友惠 林 廣瀬雅雄 (座長代理) 佐々木有 直 赤池昭紀 高木篤也 平塚 明 石井康雄 玉井郁巳 藤本成明 泉 啓介 田村庸人 細川正清

上路雅子	津田修治	松本清司
臼井健二	津田洋幸	柳井徳磨
江馬 眞	出川雅邦	山崎浩史
大澤貫寿	長尾哲二	山手丈至
太田敏博	中澤憲一	與語靖洋
大谷 浩	納屋聖人	吉田緑
小澤正吾	成瀬一郎	若栗 忍
小林裕子	布柴達男	
(2007年4月1日から)		
鈴木勝士 (座長)	三枝順三	西川秋佳**
林 真 (座長代理*)		布柴達男
赤池昭紀	代田眞理子****	根岸友惠
石井康雄	高木篤也	平塚明
泉啓介	玉井郁巳	藤本成明
上路雅子	田村廣人	細川正清
臼井健二	津田修治	松本清司
江馬	津田洋幸	柳井徳磨
大澤貫寿	出川雅邦	山崎浩史
太田敏博	長尾哲二	山手丈至
大谷 浩	中澤憲一	與語靖洋
小澤正吾	納屋聖人	吉田 緑
小林裕子	成瀬一郎***	若栗 忍
. ,, ,,, ,	,,,,,,	*:2007年4月11日から
		**: 2007年4月25日から
		***: 2007年6月30日まで
		****: 2007年7月1日から
(2008年4月1日から)		
鈴木勝士 (座長)	佐々木有	根本信雄
林 真 (座長代理)	代田眞理子	平塚 明
相磯成敏	高木篤也	藤本成明
赤池昭紀	玉井郁巳	細川正清
石井康雄	田村廣人	堀本政夫
泉 啓介	津田修治	松本清司
今井田克己	津田洋幸	本間正充
上路雅子	長尾哲二	柳井徳磨
A 11 11 11 11	r >== -t-	t ttisat t

山崎浩史

山手丈至

與語靖洋

中澤憲一

永田 清

納屋聖人

臼井健二

大谷 浩

太田敏博

小澤正吾西川秋佳吉田 緑川合是彰布柴達男若栗 忍

小林裕子 根岸友惠 *:2009年1月19日まで

要約

フェノキシ酸系除草剤である「クロメプロップ」(CAS No.84496-56-0) について、農薬抄録を用いて食品健康影響評価を実施した。

評価に供した試験成績は、動物体内運命(ラット)、植物体内運命(水稲)、土壌中運命、水中運命、作物等残留、急性毒性(ラット及びマウス)、亜急性毒性(ラット、マウス及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット及びマウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性試験等である。

試験結果から、クロメプロップ投与による影響は主に血液(貧血)、肝臓及び腎臓に認められた。催奇形性及び生体において問題となる遺伝毒性は認められなかった。マウスを用いた 2 年間慢性毒性/発がん性併合試験において、雄の最高投与群で肝臓の血管内皮腫の発生頻度が増加したが、遺伝毒性試験の結果から、腫瘍の発生機序は遺伝毒性メカニズムとは考え難く、評価に当たり閾値を設定することが可能であると考えられた。

各試験の無毒性量の最小値は、ラットを用いた 2 世代繁殖試験の 0.43 mg/kg 体重/日であったが、より長期の 2 年間慢性毒性/発がん性併合試験では 0.62 mg/kg 体重/日であり、この差は用量設定の違いによるもであると考えられたことから、より長期の試験結果を一日摂取許容量(ADI)の根拠とすることが妥当と考えられた。したがって、ラットを用いた 2 年間慢性毒性/発がん性併合試験の無毒性量 0.62 mg/kg 体重/日を根拠として、安全係数 100 で除した 0.0062 mg/kg 体重/日を ADI と設定した。

I. 評価対象農薬の概要

1. 用途

除草剤

2. 有効成分の一般名

和名:クロメプロップ

英名: clomeprop (ISO 名)

3. 化学名

IUPAC

和名: (R.S)-2-(2.4-ジクロロ-m-トリルオキシ)プロピオンアニリド

英名: (R,S)-2-(2,4-dichloro-m-tolyloxy)propionanilide

CAS (No.84496-56-0)

和名:2-(2,4-ジクロロ-3-メチルフェノキシ)-*N*-フェニルプロパンアミド

英名: 2-(2,4-dichloro-3-methylphenoxy)-N-phenylpropanamide

4. 分子式

 $C_{16}H_{15}Cl_2NO_2$

5. 分子量

324.2

6. 構造式

※原休中組成

R体:S体=50:50

7. 開発の経緯

クロメプロップは、三菱油化株式会社により開発されたフェノキシ酸系除草剤であり、その後、現在のバイエルクロップサイエンス株式会社に承継された。本剤は水田条件下において水稲に高い選択性を示し、一年生広葉雑草及び多年生雑草のウリカワ、ホタルイ、マツバイに効果を示す。本剤はホルモン作用を持つ吸収移行型の除草剤であり、作用機構として、根部、茎葉基部及び茎葉部から吸収された後、植物体内を移行してオーキシン作用を撹乱し、その結果、正常な生体制御機構を破壊し枯死させると考えられる。また、スルホニル尿素(SU)系除草剤とは殺草機構が異なるため、SU抵抗性雑草の防除及び発生防止に有効である。

1988年3月24日に日本において初回農薬登録され、ポジティブリスト制度導入に伴う暫定基準値が設定されている。今回、魚介類への残留基準値の設定が申請されている。

Ⅱ. 安全性に係る試験の概要

農薬抄録(2008年)を基に、毒性に関する主な科学的知見を整理した。(参 照3)

各種運命試験(I. 1~4)は、クロメプロップのジクロロフェニル基の炭素を 1^4 C で均一標識したもの($[dic^{-14}C]$ クロメプロップ)及びフェニル基の炭素を 1^4 C で均一標識したもの($[phe^{-14}C]$ クロメプロップ)を用いて実施された。放射 能濃度及び代謝物濃度は特に断りがない場合はクロメプロップに換算した。代 謝物/分解物略称及び検査値等略称は別紙 1 及び 2 に示されている。

1. 動物体内運命試験

(1) 吸収

①吸収率

排泄試験[1.(4)]より得られた[dic- 14 C]クロメプロップの 5 mg/kg 体重(以下、[1.]において「低用量」という)単回投与群の尿中排泄率との比較から算出された吸収率は、雄及び雌でそれぞれ 84.2 及び 84.1%であった。(参照 3)

②血中濃度推移

Fischer ラットに $[dic^{-14}C]$ クロメプロップを低用量(一群雌雄各 8 匹)または 50 mg/kg 体重(以下、[1.]において「高用量」という)(一群雄 7 匹、雌 6 匹)で単回経口投与、あるいは低用量で反復投与(非標識クロメプロップを低用量で 14 日間連続投与後、 $[dic^{-14}C]$ クロメプロップを低用量で単回経口投与、一群雌雄各 5 匹)して、血中濃度推移が検討された。

血中放射能濃度推移は表1に示されている。

低用量単回投与及び低用量反復投与後、最高濃度(C_{max})に達した血中放射能濃度は、一相性の減衰を示した。高用量単回投与後は(消失の遅延が認められる)非線形の減衰を示した。

いずれの投与群においても、消失半減期($T_{1/2}$)は雄より雌の方がやや長かった。(参照 3)

投与量	5 mg/kg 体重		50 mg/kg 体重		5 mg/kg 体重	
(大学里	単回経口		単回	経口	反復経口	
性別	雄	雌	雄	雌	雄	雌
T _{max} (時間)	6	6	12	12	4.5	7.5
C _{max} (µg/g)	4.23	7.68	70.4	87.5	5.45	7.10
T _{1/2} (時間)	5.14	6.51	3.12	4.38	4.75	5.95

表 1 血中放射能濃度推移

(2)分布

Fischer ラット (一群雌雄各 8 匹) に $[dic^{-14}C]$ クロメプロップまたは $[phe^{-14}C]$ クロメプロップを低用量または高用量で単回経口投与して、体内分布試験が実施された。また、[1.(4)]で得られた臓器及び組織についても体内分布試験が実施された。

投与 1 日後では、いずれの投与群でも消化管(内容物を含む)及びカーカスを除くと血液での放射能分布率が最も高く、 $[dic^{-14}C]$ クロメプロップ低用量群では $0.7\sim1.5\%$ TAR($0.53\sim1.13~\mu g/g$)、高用量群で $4.4\sim6.4\%$ TAR($34.7\sim49.4~\mu g/g$)であった。 $[phe^{-14}C]$ クロメプロップ投与群では、低用量群で 0.18%TAR($0.14~\mu g/g$)、高用量群で 0.2%TAR($1.63~\mu g/g$)であった。 $[phe^{-14}C]$ クロメプロップ投与群における臓器及び組織内放射能濃度は、低用量群及び高用量群とも $[dic^{-14}C]$ クロメプロップ投与群の $1/3\sim1/100$ の範囲にあった。用量が増大しても臓器及び組織への分布率は血漿を除いてほぼ一定であった。

投与7日後では、いずれの投与群でも臓器及び組織内濃度は極めて低く、また前投与による顕著な分布の変動も見られなかった。 $[dic^{-14}C]$ クロメプロップ投与群では用量が増大すると、脂肪組織及び骨髄に貯留する傾向が見られ、 $[phe^{-14}C]$ クロメプロップ投与群では赤血球への貯留が見られた。

低用量反復投与時の放射能の臓器・組織内濃度及び分布率は、低用量単回 投与時と差は認められなかった。高用量反復投与時の放射能の臓器・組織内 濃度及び分布率は、高用量単回投与時より増大した。(参照3)

(3)代謝物同定·定量

排泄試験[1.(4)]で得られた投与後7日の尿及び糞を用いて、代謝物同定・定量試験が実施された。

親化合物は、いずれの投与群においても糞中にのみ認められた([dic-14C] クロメプロップ投与群の雄で $8.6 \sim 13.7 \%$ TAR、雌で $10.3 \sim 16.0 \%$ TAR、[phe-14C] クロメプロップ投与群の雄で $12.5 \sim 14.4 \%$ TAR、雌で $11.0 \sim 14.1 \%$ TAR)。[dic-14C] クロメプロップ投与群の雌雄では、代謝物として C(雄: $67.1 \sim 80.3 \%$ TAR、雌: $53.8 \sim 76.5 \%$ TAR)が最も多く認められ、その大部分は尿から回収された。また、Cの前駆体である B(雄: $3.3 \sim 6.8 \%$ TAR、雌: $7.5 \sim 14.2 \%$ TAR)も主要代謝物として認められた。

低用量単回投与群と高用量単回投与群を比較すると、C は用量の増大とともに雌雄で低下し、中でも雌では低用量投与時の総残留放射能(TRR)の79.9%から高用量投与時の68.3%TRRへと低下した。一方、B は用量の増加とともに雌雄とも増加した。

[phe- 14 C]クロメプロップ投与群では、投与放射能の大部分は β -D-グルクロニダーゼ/アリルサルファターゼで加水分解される各種抱合体として尿中に排泄された。各種抱合体のアグリコンは Γ と同定された。 Γ の尿及び糞中にお

ける合計は、雄で 60.9~63.0%TAR、雌で 59.7~62.7%TAR であった。

クロメプロップのラット体内における主要代謝経路は、尿中での親化合物のアミド結合の加水分解(B及びC)、側鎖の酸化及び水酸化等により生じたFの各種抱合化が考えられた。(参照3)

(4) 排泄

①単回経口

Fischer ラット(一群雌雄各 5 匹)に $[dic^{-14}C]$ クロメプロップを低用量または高用量で単回経口投与、もしくは $[phe^{-14}C]$ クロメプロップを低用量または高用量で単回経口投与し、排泄試験が実施された。

単回経口投与群の雌雄では、標識位置及び用量にかかわらず投与後7日以内で総投与放射能(TAR)の95.3~101%が回収された。主要排泄経路は尿中であった(73.7~82.1%TAR)。糞中への排泄は17.3~22.7%TARと尿中排泄に比べて少なかった。性別、用量及び標識位置による顕著な差は認められなかった。(参照3)

②反復経口(15日間反復投与)

Fischer ラット (一群雌雄各 5 匹) に非標識クロメプロップを低用量で 14 日間連続投与後、[dic-14C]クロメプロップを低量用量で単回経口投与し、排泄試験が実施された。

投与後7日以内で99.9~103%TAR が回収された。主要排泄経路は尿中であった(82.0~86.0%TAR)。 糞中への排泄は16.4~17.7%TAR と尿中への排泄に比べて少なかった。性別による差は認められなかった。(参照3)

③反復経口(4日間反復投与)

Fischer ラット (一群雄 3 匹) に $[dic^{-14}C]$ クロメプロップを低用量または 高用量で 4 日間連続投与し、排泄試験が実施された。

低用量群では4日間で96.7%TAR が回収された。主要排泄経路は尿中であった(79.0%TAR)。糞中への排泄は17.7%TARであった。高用量群では、4日間で85.1%TARが回収され、低用量群と比較すると4日間での排泄率は低用量群よりも高用量群の方が低かった。低用量群と同様に主要排泄経路は尿中であった(69.1%TAR)。糞中への排泄は16.0%TARであった。(参照3)

2. 植物体内運命試験

水耕液に調製した $[dic^{-14}C]$ クロメプロップまたは $[phe^{-14}C]$ クロメプロップに稲(品種:日本晴)の根部を浸漬処理(クロメプロップ濃度:0.32~ppm)及び $[dic^{-14}C]$ クロメプロップを田面施用(1.2~kg~ai/ha)し、植物体内運命試験が実施された。

根部を 24 時間浸漬処理後、吸収及び移行性を確認したところ、植物体内の放

射能は処理 1 時間後に総処理放射能(TAR)の 3.6%であったが、処理 24 時間後には 11.8%TAR となり、植物体内に吸収された放射能は経時的に増加する傾向を示した。吸収放射能の分布は、茎葉部で総残留放射能(TRR)の 8.5%、根部で 91.5%TRR であった。代謝物同定試験では、有機相画分から親化合物の他にB、C及びDが認められ、これらが主要代謝物であると考えられた。また、代謝物M(約 3~4%TRR)及び親化合物が直接水酸化されている E の存在も推定された。有機相画分における親化合物は、処理直後の 79%TRR から処理 68 時間後の 10.8%TRR へと減少した。また、B と D は合量で処理 4 時間後に 14.0%TRR を占めたが、それ以後は減少し、処理 68 時間後には 4.5%TRR となった。一方、C は経時的に増加し、処理 68 時間後には 8.0%TRR に到達した。水相画分を加水分解した結果、C が 40.0~41.3%TRR の範囲で認められ、C はグルコース等の抱合体を形成していると判断された。

田面処理で植物体に吸収された放射能は、処理 21 及び 40 日後でそれぞれ 1.7 及び 2.7% TAR であり、吸収放射能の約 3/4 は根部に留まっていた。茎葉部では抱合体を含めた主要代謝物として、処理 21 日後に C が認められた。処理 21 日後における C の生成量は 11.9% TRR、次いで B が 4.5% TRR 認められた。処理 40 日後には、C が 13.3% TRR、B が 2.7% TRR 認められた。根部でも抱合体を含めた主要代謝物として C が認められた。C の生成量は、処理 21 日後で 49.8% TRR、40 日後で 40.4% TRR であった。

クロメプロップの水稲における主要代謝経路は、アミド結合の加水分解による代謝物 B の生成、それに続く酸化による代謝物 C の生成、代謝物 C の抱合による抱合体の生成であると考えられた。 (参照 3)

3. 土壌中運命試験

(1) 好気的湛水土壤中運命試験

 $[dic^{-14}C]$ クロメプロップまたは $[phe^{-14}C]$ クロメプロップを水田土壌 [ut] 生 (愛知) 及び埴壌土 (栃木) に乾土あたり 1.5~1.6~mg/kg の濃度で添加し、好気的湛水条件下における土壌中運命試験が実施された。

[dic-14C]クロメプロップを処理した両土壌では、特に愛知土壌で、アセトン抽出画分及び有機相画分として回収された放射能が経時的に減少した。処理 200 日後において愛知土壌でアセトン抽出画分が約 8%TAR、有機相画分が約 3%TAR であったのに対し、栃木土壌ではアセトン抽出画分が 53%TAR、有機相画分が 39%TAR と放射能の消失は愛知土壌と比べると緩慢であった。放射性成分として親化合物の他に主要分解物 B が親化合物の減衰とともに増加し、10 日後に $57\sim62\%$ TAR になり、その後減少し、200 日後に $0.6\sim28\%$ TAR になった。その他、微量分解物として C 及び L が 6.6%TAR 未満認められた。

[phe-14C]クロメプロップを処理した両土壌では、[dic-14C]クロメプロップ処理時と比較して培養初期からアセトン抽出画分及び有機相画分の放射能が速やかに減少したのに対して、土壌残渣画分が増大した。放射性成分とし

て親化合物の他に分解物 D 及び E が認められたが、その生成量はいずれの時点でも 2%TAR 以下であった。

好気的湛水条件下におけるクロメプロップの推定半減期は、標識位置及び 供試土壌にかかわらず 5 日以内であった。(参照 3)

(2) 好気的土壌中運命試験(畑地条件)

[dic-14C]クロメプロップまたは [phe-14C]クロメプロップを水田土壌 [埴土(愛知)及び埴壌土(栃木)]—に乾土あたり 1.5~1.6~mg/kg の濃度で添加し、畑地条件下における土壌中運命試験が実施された。

[dic-14C]クロメプロップを処理した両土壌では、アセトン抽出画分及び有機相画分として回収される放射能は、試験直後から速やかな減少が認められた。両画分放射能の減少に伴い、試験初期から土壌残渣画分及び水相水溶性画分の放射能が増加した。土壌残渣画分は愛知土壌において処理 20 日後以降200 日までは 30~35%TAR を維持し、栃木土壌では処理 50 日後に 35%TARを示した後は減少し、200 日後には 29%TAR となった。

[dic-14C]クロメプロップを処理した両土壌では、親化合物は速やかに消失し、主要分解物として B が処理 10 日後に最大 $33\sim44\%$ TAR 生成し、その後減少し、200 日後に $0.1\sim0.6\%$ TAR になった。また、微量分解物として C 及び L が認められたが、その生成量はいずれの時点においても 4% TAR 以下であった。

[phe-14C]クロメプロップを処理した両土壌でも、親化合物は速やかに減少し、また、いずれの時点においても 5%TAR 以上生成した分解物は無かった。

畑地条件下におけるクロメプロップの推定半減期は、標識位置及び供試土 壌にかかわらず7日以内であった。

 CO_2 の発生量は、湛水条件で 101 日後に 1.1 (栃木)~17 (愛知)%TAR であったが、畑地条件では経時的に増加し 23 (栃木)~29 (愛知)%TAR になった。

クロメプロップの土壌中における主要分解経路は、アミド結合の加水分解による主要分解物 B 及びアニリン(推定分解物)の生成、その後の B の水酸化及び最終的な CO_2 までの分解と考えられた。(参照 3)

(3)土壤吸着試験

クロメプロップの水溶解度が低いため、土壌吸着性試験の実施は不可能と 考えられた。

土壌中運命試験[3.(1)及び(2)]で、土壌中の主要分解物として認められた B を用いて、土壌吸着試験が 2 種類の米国土壌 [埴壌土 (Hatzenbeler) 及びシルト質壌土 (Oregon)] 及び 2 種類の国内土壌 [埴壌土 (栃木) 及び砂土 (宮崎)] を用いて実施された。

Freundlich の吸着係数 Kads は 1.15~47.3、有機炭素含率により補正した吸着係数 Koc は 37.1~430 であった。(参照 3)

4. 水中運命試験

(1)加水分解試験

非標識のクロメプロップを用い、滅菌 0.05 M Clark and Lubs 緩衝液(pH 4、7 及び 9)の各緩衝液に 0.015 mg/L に用量で添加し、 25 ± 0.1 °C の暗所条件下で 5 日間インキュベートして、加水分解試験が実施された。

クロメプロップは緩衝液中でほとんど分解されず、pH4、7及び9のクロメプロップの残留はそれぞれ99.3、104及び101%であった。(参照3)

(2) 水中光分解試験 (緩衝液及び自然水)

[dic-14C]クロメプロップを滅菌 0.025~M リン酸緩衝液(pH 7)または滅菌自然水(英国 Essex 州、池水、pH 7.8)に $0.0186~\mu g/mL$ (実測値 $0.0194~\mu g/mL$)の用量で添加し、 $25\pm2^{\circ}C$ で 119 時間、キセノンランプ光 [光強度:466 W/m²(緩衝液)、529~W/m²(自然水)、測定波長: $290\sim800~nm$] を連続照射する水中光分解試験が実施された。

緩衝液中では光分解を受けて分解物 N 及び極性物質が生じ、推定半減期は2.28 日と算出された。北緯35 度、春期(4~6月)の太陽光条件に換算した推定半減期は、15.4 日と算出された。自然水中でも緩衝液中と類似した光分解が認められ、N 及び極性分解物が生じ、推定半減期は2.67 日と算出された。北緯35 度、春期(4~6月)の太陽光条件に換算した推定半減期は、20.4 日と算出された。

クロメプロップの水中における光分解経路は分解物 N を経る高揮発性の極性物質の生成と考えられた。(参照 3)

5. 土壤残留試験

洪積・埴土(愛知)及び火山灰土・埴壌土(栃木)を用い、クロメプロップ及び 分解物 Bを分析対象化合物とした土壌残留試験(容器内及び圃場)が実施された。推定半減期は表 2 に示されている。(参照 3)

試験 濃度*			推定半減期(日)		
		土壌	クロメプロップ	クロメプロップ +分解物 B	
容器内試験	0 5 m m/l m	洪積·埴土	3	14	
谷岙門武鞅	2.5 mg/kg	火山灰土·埴壤土	3	12	
圃場試験	1.2 kg ai/ha	洪積·埴土	3	4	
囲場武鞅		火山灰土·埴壤土	2	2	

表 2 土壤残留試験成績(推定半減期)

^{*:}容器内試験では純品、圃場試験では2%粒剤を使用。

6. 作物等残留試験

(1)作物残留試験

水稲を用い、クロメプロップ及び代謝物 B を分析対象化合物とした作物残留試験が実施された。結果は表 3 に示されている。可食部(玄米)では、クロメプロップ及び代謝物 B とも定量限界未満であった。(参照 3)

作物名	試験	大験 使用量		試験 由田县 回		PHI -		残留値(mg/kg)			
実施年	圃場	使用里 (g ai/ha)	数	(日)	クロメフ	プロップ	代謝	物 B			
天旭十	数	(g al/lia)	(回)	(11)	最高値	平均值	最高値	平均值			
水稲 (玄米) 1986 年	2 2	900	2	106 122	<0.005 <0.005	<0.005 <0.005	<0.007 <0.007	<0.007 <0.007			
水稲 (稲わら) 1992 年	2 2	800	2	106 122	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02			

表 3 作物残留試験成績

(2) 魚介類における最大推定残留値

クロメプロップ及び代謝物 B の公共用水域における予測濃度である水産 動植物被害予測濃度(水産 PEC)及び生物濃縮係数(BCF)を基に、魚介類 の最大推定残留値が算出された。

クロメプロップの水産 PEC は 0.0034 μg/L、BCF は 130(試験魚種: コイ)、 魚介類における最大推定残留値は 0.002 mg/kg であった。

Bの水産 PEC は 0.63 μg/L、BCF は 76(計算値)、魚介類における最大推定残留値は 0.239 mg/kg であった。(参照 8)

7. 一般薬理試験

ラット、マウス、モルモット及びウサギを用いた一般薬理試験が実施された。 結果は表 4 に示されている。(参照 3)

[・]処理方法は湛水散布処理とし、2%粒剤を用いた。

[・]すべてのデータが定量限界未満の場合は定量限界値の平均に<を付して記載した。

表 4 一般薬理試験概要

ā	式験の種類	動物種	動物数 /群	投与量 (mg/kg 体重) (投与経路)	最大無作用量 (mg/kg 体重)	最小作用量 (mg/kg 体重)	結果の概要
中	一般状態 (Irwin 法)	ICR マウス	雄 10	0、50、500、 5,000 (経口)	5,000	-	影響なし。
枢神経	自発運動	SD ラット	雄 5	0、50、500、 5,000 (経口)	5,000	-	影響なし。
系	筋弛緩 作用	ICR マウス	雄 10	0、50、500、 5,000 (経口)	5,000	I	影響なし。
自律神	摘出回腸	Hartley モルモッ ト	雄 3	0.01、0.1 mg/mL (<i>in vitro</i>)	0.1 mg/mL	_	影響なし。
経系	小腸輸送	SD ラット	雄 10	0、50、500、 3,000 (経口)	3,000	l	影響なし。
呼吸·循環器系	血圧 血流 心拍数 心電図 呼吸	NZW ウサギ	雄 3	0.1、1.0 mg/L (静脈内)	1.0 mg/L	_	影響なし。
血液	血液凝固	SD ラット	雄 5	0、50、500、 5,000 (経口)	5,000	_	影響なし。
系	溶血	NZW ウサギ	雄 1	9.3×10 ⁻⁸ M (in vitro)	$9.3 \times 10^{-8} \mathrm{M}$	_	溶血作用なし。
尿	尿量 pH 蛋白 比 リウム カリウム クロール	SD ラット	雄 5	0、50、500、 5,000 (経口)	5,000	_	影響なし。

8. 急性毒性試験

クロメプロップ、代謝物 B 及びクロメプロップの光学異性体(S(+)) 及び R(-))を用いた急性毒性試験が実施された。結果は表 5 に示されている。(参照 3)

検体	投与	動物種	LD ₅₀ (mg/kg 体重)		観察された症状
1央 1	経路	性別・匹数	雄	雌	既奈さ4075近次
	経口	Fischer ラット 雌雄各 10 匹	>5,000	3,520	雌雄:立毛、下痢、軟便、被毛失沢 雌:貧血、死亡(1,750 mg/kg 体重以 上、死亡例に腸管内出血)
	経口	BDF ₁ マウス 雌雄各 10 匹	>5,000	>5,000	症状及び死亡例なし
原体	経皮	Fischer ラット 雌雄各 10 匹	>5,000	>5,000	症状及び死亡例なし
	経皮	BDF ₁ マウス 雌雄各 10 匹	>5,000	>5,000	症状及び死亡例なし
	吸入	SD ラット	LC ₅₀ (mg/L) 為		浅呼吸、行動抑制、分泌反応の増加
	级八	雌雄各 5 匹	>1.5	>1.5	死亡例なし
			$\mathrm{LD}_{50}(\mathrm{mg}$	/kg 体重)	音及び接触に対する反射消失、自発 運動減少、横臥、体温低下、流涎、眼
代謝物 B	経口	Wistar ラット 雌雄各 10 匹	594	444	驗下垂/閉鎖、立毛、下痢、貧血、背位 死亡 (雄: 417 mg/kg 体重以上、雌: 347mg/kg 体重以上)
光学異性体 <i>S</i> (+)	経口	Wistar ラット 雌雄各 5 匹	>5,000	>5,000	症状及び死亡例なし
光学異性体 <i>R</i> (-)	経口	Wistar ラット 雌雄各 5 匹	>5,000	>5,000	症状及び死亡例なし

表 5 急性毒性試験結果概要

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

日本白色種ウサギを用いた眼及び皮膚刺激性試験が実施された。その結果、 眼粘膜に対しわずかな刺激性が認められたが、皮膚に対する刺激性は認められ なかった。

Hartley モルモットを用いた皮膚感作性試験 (Maximization 法) が実施された結果、皮膚感作性は陰性であった。(参照3)

10. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

Fischer ラット (一群雌雄各 15 匹) を用いた混餌 (原体:0.50.250.1,250.6,250 ppm) 投与による 90 日間亜急性毒性試験が実施された。

各投与群で認められた毒性所見は表 6 に示されている。

本試験において、250 ppm以上投与群の雌雄でRBC減少等が認められたことから、無毒性量は雌雄とも 50 ppm (雄: 3.57 mg/kg 体重/日、雌: 3.99 mg/kg 体重/日)であると考えられた。 (参照 3)

投与群	雄	雌
6,250 ppm	• 食餌効率低下	• 食餌効率低下
	• 正赤芽球数増加	· MCV及び正赤芽球数増加
	・ 肝比重量 ¹ 増加	・ 尿素増加、Glu、TP及びGlob(β)減少
	• 副腎球状带淡明、皮質脂肪性空胞	・ 肝絶対及び比重量増加
		• 副腎束状带細胞肥大
1,250 ppm	· 体重增加抑制	· 体重增加抑制
以上	• 摂餌量減少	· 摂餌量減少
	• 飲水量増加	・ MCHC 減少
	・ Ht、Hb 及び MCHC 減少、MCV 増加	・ Glob (α ₁ 及びα ₂)減少
	・ ALP、尿素及び Cre 増加、Glu、TP 及	・ 尿量増加及び尿比重低下
	び Glob(α2及びβ)減少	・ 副腎絶対及び比重量増加、脾絶対及
	・ 尿量増加及び尿比重低下	び比重量増加
	・ 脾絶対及び比重量増加	• 副腎球状帯淡明、肝細胞肥大、脾洞
	・ 肝細胞肥大、脾洞うっ血	うっ血
250 ppm	・ RBC 減少	• 飲水量増加
以上		・ Ht、Hb 及び RBC 減少
50 ppm	毒性所見なし	毒性所見なし

表 6 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

(2)90日間亜急性毒性試験(マウス)

BDF₁マウス(一群雌雄各 20 匹)を用いた混餌(原体:0.100.500.2,500 ppm) 投与による 90 日間亜急性毒性試験が実施された。

各投与群に認められた毒性所見は表7に示されている。

100 ppm 投与群の雄では腎比重量の増加が認められたが、絶対重量に変化はなく、他の検査において関連する所見が認められなかった。

本試験において、500 ppm 以上投与群の雄で体重増加抑制等、100 ppm 以上投与群の雌で腎絶対及び比重量増加が認められたことから、無毒性量は雄で 100 ppm (雄: 16.4 mg/kg 体重/日)、雌で 100 ppm (22.2 mg/kg 体重/日) 未満であると考えられた。 (参照 3)

衣	/ 90 日间亜急性毒性試験(マリス)で認められた毎性所見
投与群	雄	雌
2,500 ppm	・摂餌量増加	• 食餌効率低下
	・Glu 増加、Alb 減少	・ RBC、Hb、Ht 及び MCHC 減少
	・肝、腎及び脾絶対及び比重量増加	・ Glu 増加
	・脾び漫性黒色化、肝灰色調	・ 肝及び脾絶対及び比重量増加
	・脾ヘモジデリン様色素沈着	・ 脾び漫性黒色化、肝灰色調
	・肝細胞核大小不同、肝細胞脂肪変性	・ 脾ヘモジデリン様色素沈着
		• 肝細胞核大小不同、肝細胞脂肪変性
500 ppm	・体重増加抑制、食餌効率低下	• 摂餌量増加
以上		・ Hb 及び Ht 減少
100 ppm	100 ppm 毒性所見なし	・ 腎絶対及び比重量増加
以上		

表 7 90 日間亜急性毒性試験(マウス)で認められた毒性所見

¹ 体重比重量を比重量という(以下同じ)。

(3) 28 日間亜急性毒性試験(イヌ) <参考データ>

ビーグル犬(一群雌雄各1匹)を用いたカプセル経口(原体:0、125、250、500、1,000 mg/kg 体重/日)投与による28日間亜急性毒性試験が実施された。なお、本試験は、イヌの慢性毒性試験の用量設定のための予備試験として実施された。また、病理組織学的検査は実施していない。

1,000 mg/kg 体重/日投与群の雄において、後肢肢端部腫脹、後肢趾間部の 潰瘍または痂皮、体重減少、ALT及びALP増加等が認められた。同群の雌にお いては体重減少が認められた。

500 mg/kg 体重/日投与群の雌雄においては、検体投与の影響は認められなかった。

250 mg/kg 体重/日投与群の雄においては、趾間部から肢端部の腫脹等の臨床症状に加え、口腔粘膜、眼強膜及び結膜黄色化、体重減少、摂餌量減少、貧血(RBC、Ht、Hb等減少)、肝機能関連酵素(AST、ALT、ALP等)の上昇、腎、脾及び副腎絶対及び比重量増加、肝臓及び皮下織黄色化等が認められ、検体投与の影響と考えられた。同群の雌においては検体投与の影響はみとめられなかった。

125 mg/kg 体重/日投与群の雌雄においては、検体投与の影響は認められなかった。

本試験において、250 mg/kg 体重/日投与群の雄で体重減少、摂餌量減少等、 1,000 mg/kg 体重/日投与群雌で体重減少が認められたことから、無毒性量は 雄で 125 mg/kg 体重/日、雌で 500 mg/kg 体重/日であると考えられた。(参照 3)

11. 慢性毒性試験及び発がん性試験

(1) 1年間慢性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いたカプセル経口 (原体:0,2,20,200 mg/kg 体重/日) 投与による 1 年間慢性毒性試験が実施された。

各投与群に認められた毒性所見は表8に示されている。

投与 49 週後に 200 mg/kg 体重/日投与群の雄 1 例が死亡した。同例の剖検において心嚢水の貯留、病理組織学的検査にて心臓に出血及び心外膜の浮腫が認められたが、他の検体投与例には同様な死亡例は認められないことから、検体投与との関係は明らかではなかった。

剖検時、脾臓の暗調化が 200 mg/kg 体重/日投与群の雄 2 例、雌 3 例及び 20 mg/kg 体重/投与群の雌 1 例に認められ、病理組織学的検査で観察された脾臓うっ血との関連が示唆された。また、剖検時各投与群で認められた腎臓の黒色化は病理組織学的検査で認められた尿細管の色素沈着に相当すると考えられたが、雌の対照群にも認められていること、臨床検査において腎障害が示唆される変化は認められないことから、毒性学的意義は明らかではなかった。

本試験において、200 mg/kg 体重/日投与群の雄及び 20 mg/kg 体重/日以上

投与群の雌で肝比重量増加等が認められたことから、無毒性量は雄で 20 mg/kg 体重/日、雌で 2 mg/kg 体重/日であると考えられた。(参照 3)

表 8 1年間慢性毒性試験(イヌ)で認められた毒性所見

		<u> </u>
投与群	雄	雌
200 mg/kg 体重/日	• 肝比重量増加	· 体重減少、摂餌量減少、Lym
	• 腎尿細管硝子滴沈着	比減少、WBC 及び Neu 比の
		增加、尿中 Bil 增加 (1 例)*
		・ ALT、ALP、T.Bil 及び GGT
		增加 (2 例)**
		• 腎比重量增加、副腎絶対及
		び比重量増加
		· 皮下織黄色化(1 例)*
		• 副腎皮質過形成
		・ 肝うっ血、変性、好酸性化、
		単細胞壊死及び細胞浸潤(1
		例)*
		・ 皮下組織マクロファージ内
		色素沈着(1 例)*
		• 腎尿細管硝子滴沈着
20 mg/kg 体重/日	20 mg/kg 体重/日以下毒性所見	· 肝比重量増加
以上	なし	
2 mg/kg 体重/日		毒性所見なし

^{*:}これらの所見は同じ動物1例に認められた。

【事務局より】

200 mg/kg 体重/日投与群の雄及び 20 mg/kg 体重/日以上投与群の雌で認められた肝比重量増加(波線部分)について、実際何%増加したのかデータを提示してもらいました。 本所見について、毒性所見とみなすべきか否かについてご確認願います。

性	別	雄					
投与量(m	(mg/kg/day) 2 20 200			2	20	200	
肝臓	相対重量			↑ 119		† 124	1 20

Dunnet の多重比較検定 ↑↓: P≦0.05

【吉田委員より】

<u>雌 20mg/kg 群の肝比重量については肝毒性に関連する指標に変化がなく、用量依存性のないことから、毒性とせずにもよろしいのでは思います。</u>

【西川委員より】

毒性とした方がよいと思います。

^{**:2}例中1例は、上記*印と同じ動物に認められた。

(2)2年間慢性毒性/発がん性併合試験(ラット)

Fischer ラット (一群雌雄各 80 匹) を用いた混餌 (原体:0、3、17、90、500 ppm) 投与による 2 年間慢性毒性/発がん性併合試験が実施された。

各投与群に認められた毒性所見は表9に示されている。

病理組織学的検査において、雌の 3 ppm 以上投与群で胸骨硬化症、500 ppm 投与群で大腿骨硬化症が対照群に比べ有意に高い頻度で認められたが、この変化の意義は不明であった。【吉田委員より】もともと用量相関性のない変化なので削除。

腫瘍性病変において、検体投与に関連して発生頻度が増加した病変はなかった。

本試験において、90 ppm 以上投与群の雄で尿蛋白濃度減少等、雌で脾へモジデリン沈着が認められたことから、無毒性量は雌雄とも 17 ppm(雄: 0.62 mg/kg 体重/日、雌: 0.86 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 3)

表 9 2	年間慢性毒性	/発がん性併合試験	(ラット)	で認められた毒性所見
-------	--------	-----------	-------	------------

投与群	雄	雌
500 ppm	· 飲水量低下	· 体重增加抑制、食餌効率低下
	・ PCV、Hb 及び RBC 減少	· 飲水量増加
	・ ALP 及び ALT 増加、T.Chol 減少、	・ PCV、Hb、RBC 及び MCHC 減少
	尿素増加	・ ALP 及び AST 増加、T.Chol 減少、
	• 尿量減少	尿素増加
	・ 慢性腎症減少(投与 52 週後)	· 尿蛋白濃度減少
		· 尿量減少
		• 胸骨骨硬化症
		・ 卵巣グラーフ卵胞嚢胞化
90 ppm 以上	· 尿蛋白濃度減少	・ 脾ヘモジデリン沈着
	・ 小葉中心性肝細胞肥大(投与52週	
	後)	
	• 腎皮質尿細管上皮細胞色素沈着	
17 ppm 以下	毒性所見なし	毒性所見なし

(3)2年間慢性毒性/発がん性併合試験(マウス)

BDF₁マウス(一群雌雄各 70 匹)を用いた混餌(原体:0.5.50.500 ppm) 投与による 2 年間慢性毒性/発がん性併合試験が実施された。

各投与群に認められた毒性所見は表 10、雄マウスの肝臓に認められた血管 内皮腫及び血管肉腫の発生数は表 11 に示されている。

雌雄ともに、削痩等の臨床症状が認められたが、いずれの症状もこの系統のマウスで加齢に伴って観察されるものであり、検体投与に起因した症状ではないと考えられた。

雄の全投与群及び雌の 500 ppm 投与群において体重増加抑制が認められたが、その程度はわずか(対照群に比べ最大 8~12%減少)であり、毒性影響と

は考えられなかった。

検体投与によると考えられる肉眼所見の増加は認められなかった。

腫瘍性病変では、肝臓の血管内皮腫の発生頻度が 500 ppm 投与群の雄で有意に増加したが、用量依存性の増加はなく、悪性腫瘍である血管肉腫の増加も認められなかった。

本試験において、50 ppm 以上投与群の雄で腎尿細管上皮色素沈着等、雌でGlu の増加が認められたことから、無毒性量は雌雄とも 5 ppm (雄: 0.66 mg/kg 体重/日、雌: 0.93 mg/kg 体重/日)であると考えられた。(参照 3)

表 10 2 年間慢性毒性/発がん性併合試験 (マウス) で認められた毒性所見 (非腫瘍性病変)

投与群	雄	雌
500 ppm	・ 腎絶対及び比重量増加	• 摂餌量増加、食餌効率減少
	• 腎尿細管拡張、石灰沈着	TP 減少
		・ 腎絶対及び比重量増加
50 ppm 以上	• 摂餌量増加、食餌効率減少	・ Glu 増加(投与 52 週後)
	TP 減少	
	• 腎尿細管上皮色素沈着	
5 ppm	毒性所見なし	毒性所見なし

表 11 雄マウスの肝臓に認められた血管皮腫及び血管肉腫の発生数

投与群	0	5	50	500
肝:血管内皮腫	2	7	6	10↑
肝:血管肉腫	0	2	0	0

Fisher 直接確率計算法、↑: P<0.05

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)

SD ラット (一群雌雄各 30 匹) を用いた混餌 (原体:0、7.5、75、750 ppm) 投与による 2 世代繁殖試験が実施された。

各投与群に認められた毒性所見は表 12 に示されている。

親動物において、 F_2 世代雄の 75 及び 7.5 ppm 投与群で、脾臓絶対及び比重量減少が認められたが、最高用量群では同様の傾向は認められず、病理組織学的検査においても関連する変化は認められなかったので、検体投与の影響とは考えられなかった。

繁殖能に関して、750 ppm 投与群(P、 F_1)で妊娠期間が軽度延長される傾向が認められた。

本試験において、親動物で 75 ppm 以上投与群の雌雄に腎絶対及び比重量増加等、児動物では 750 ppm 投与群で離乳時に低体重 (F_1) が認められたことから、無毒性量は、親動物の雌雄で 7.5 ppm (P 雄: 0.43 mg/kg 体重/日、P

雌: 0.53 mg/kg 体重/日、 F_1 雄: 0.67 mg/kg 体重/日、 F_1 雌: 0.75 mg/kg 体重/日、 F_2 雄: 0.77 mg/kg 体重/日、 F_2 雌: 0.81 mg/kg 体重/日、见動物の雌雄で 75 ppm (P雄: 4.22 mg/kg 体重/日、P雌: 5.43 mg/kg 体重/日、 F_1 雄: 6.65 mg/kg 体重/日、 F_1 雌: 7.30 mg/kg 体重/日)であると考えられた。繁殖能に対しては、 75 ppm (P雌: 5.43 mg/kg 体重/日、 F_1 雌: 7.30 mg/kg 体重/日)であると考えられた。 繁殖能に対しては、 75 ppm (P雌: 5.43 mg/kg 体重/日、 F_1 雌: 7.30 mg/kg 体重/日)であると考えられた。

	投与	親:P、	児:F ₁	親: _{F1、}	児: \mathbf{F}_2		\mathbf{F}_2
	群	雄	雌	雄	雌	雄	雌
親	750	·脾比重量增	• 体重増加抑	·脾比重量增	• 体重增加抑		・副腎比重量
動	ppm	加	制	加	制		増加
物		・飲水量増加	飲水量増加	・小葉中心性肝	・摂餌量やや		脾ヘモジデ
			・脾絶対及び	細胞グリコ	減少		リン沈着増
			比重量増加	ーゲン減少、	・脾絶対及び		加
			・脾ヘモジデ	胆管過形成、	比重量増加		
			リン沈着増	限局性肝細	• 妊娠期間延		
			加	胞壊死	長		
			• 妊娠期間延	・脾ヘモジデリ	・腎比重量増		
			長	ン沈着増加	加		
			• 腎比重量増				
			加				
	75	・腎絶対及び	・腎絶対及び		・腎絶対及び	•飲水量増加	•飲水量増加
	ppm	比重量增	比重量增	増加	比重量増	・腎絶対及び	・腎絶対及び
	以上	加	加	・腎絶対及び	加	比重量増	比重量増加
			腎石灰沈着	比重量増	・脾ヘモジデ	加・脾へモ	
			増加	加	リン沈着増	ジデリン沈	
					加	着増加	
	7.5	毒性所見なし		毒性所見なし		毒性所見なし	
	ppm						
児	750	・新生児数減	少	毒性所見なし			
動	ppm	+ u -c -)					
物	75	毒性所見なし					
	ppm						
	以下						

表 12 2世代繁殖試験(ラット)で認められた毒性所見

(2)発生毒性試験(ラット)

SD ラット (一群雌 20 匹) の妊娠 $6\sim15$ 日に強制経口 (原体:0、4、16、64 mg/kg 体重/日、溶媒: コーンオイル) 投与する発生毒性試験が実施された。

母動物では、64 mg/kg 体重投与群で体重増加抑制、摂餌量減少及び飲水量増加が、16 mg/kg 体重投与群で、体重増加抑制が認められた。妊娠 20 日の最終と殺において、64 mg/kg 体重投与群では片側または両側の子宮内出血がやや高い頻度で認められたが、有意差は認められなかった。

胎児では、64 mg/kg 体重投与群で胎児体重がわずかに低かった。生存率、性別及び外形、内臓及び骨格異常とも対照群と差はなく、検体投与の影響は認められなかった。

本試験の無毒性量は、母動物で 4 mg/kg 体重/日、胎児で 16 mg/kg 体重/日と考えられた。催奇形性は認められなかった。(参照 3)

(3)発生毒性試験(ウサギ)

NZW ウサギ (一群雌 20 匹) の妊娠 $6\sim19$ 日に強制経口 (原体:0、12、60、300 mg/kg 体重/日、溶媒: コーンオイル) 投与する発生毒性試験が実施された。

母動物では、投与期間中対照群を含め 10 匹が死亡したが、死因はいずれも 検体によるものではなく、妊娠 29 日の剖検でも検体によると考えられる変化 はなかった。また、300 mg/kg 体重/日投与群 1 匹及び 60 mg/kg 体重/日投与群 2 匹で全同腹児の吸収が認められたが、同群の他動物には異常が認められな かったことから、検体投与による影響とは考えられなかった。

胎児では300 mg/kg 体重/日投与群で胎児体重が減少した。同群においては2 匹に異常例(二分脊椎、無頭蓋症)が認められたが、単発的であり、試験実施施設の対照群でも認められていることから、検体投与の影響とは考えられなかった。その他に検体投与に起因する変化は認められなかった。

本試験の無毒性量は、母動物で300 mg/kg 体重/日、胎児で60 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照3)

13. 遺伝毒性試験

クロメプロップの細菌を用いた DNA 修復試験、細菌を用いた復帰突然変異試験、チャイニーズハムスター肺線維芽培養細胞 (CHL) を用いた染色体異常試験及びマウスを用いた小核試験が実施された。

試験結果は表 13 に示されているとおり、CHL を用いた染色体異常試験において、代謝活性化系非存在下の高濃度処理により数的異常がわずかに増加し疑陽性であった。しかし、代謝活性化系で陰性であること、限界用量を超える用量まで試験されたマウスを用いた小核試験において陰性であることを総合的に評価すると、生体にとって問題となるような遺伝毒性はないものと考えられた。(参照 3)

	試験	対象	処理濃度・投与量	結果
in vitro	DNA 修復 試験	Bacillus subtilis (H17、M45 株)	206~3,300 μg/ディスク (-S9) 103~1,650 μg/ディスク (+S9)	陰性
	復帰突然変異試験	Salmonella typhimurium (TA98、TA100、TA1535、 TA1537、TA1538 株) Escherichia coli (WP2uvr4 株)	206~6,600 μg/プレート (+/-S9)	陰性

表 13 遺伝毒性試験概要 (原体)

	染色体異常試験	チャイニーズハムスター肺線	41.3~330 μg/mL(+/-S9)	疑陽性1)
		維芽培養細胞(CHL)		(構造異常陰
				性、倍数性細
				胞増加)
in vivo	小核試験	ICR マウス(骨髄細胞)	120、600、3,000 mg/kg 体	
			重	陰性
			(単回強制経口投与)	

- 注) +/-S9: 代謝活性化系存在下及び非存在下
- 1) 代謝活性化系非存在下 $165~\mu g/プレート:48$ 時間処理(倍数性細胞 5%)、 $330~\mu g/プレート:24$ 時間 処理(倍数性細胞 5%)及び 48 時間処理(倍数性細胞 8%)処理で疑陽性

植物での主要代謝物の一つであり、主要土壌分解物でもある代謝物 B において、細菌を用いた DNA 修復試験、復帰突然変異試験及び CHL を用いた染色体異常試験、ならびにクロメプロップの光学異性体 (S(+)及び R(-))について細菌を用いた DNA 修復試験、復帰突然変異試験が実施された。

表 14 に示されているとおり、代謝物 B については、細菌を用いた復帰突然変異試験では陰性であったが、DNA 修復試験及び CHL を用いた染色体異常試験では陽性であった。代謝物 B はラットでの主要代謝物でもあり、原体の in vivo 小核試験で陰性であったこと、また、適用作物である水稲の作物残留試験において、定量限界未満であったことを考慮すると、代謝物 B に生体において問題となる遺伝毒性はないものと考えられた。

クロメプロップの光学異性体を用いた試験では、すべて陰性であった。(参 照 3)

表 14 遺伝毒性試験概要 (代謝物及び光学異性体)

検体	1	式験	対象	処理濃度・投与量	結果
代		DNA 修復 試験	B. subtilis (H17、M45 株)	219~3,500 μg/ディスク (·S9) 109~1,750 μg/ディスク (+S9)	陽性 1)
謝 物 B	in vitro	復帰突然 変異試験	S. typhimurium (TA98、TA100、TA1535、 TA1537、TA1538 株) E. coli (WP2uvrA 株)	375~12,000 μg/プレート (+/-S9)	陰性
		染色体異 常試験	チャイニーズハムスター肺 線維芽細胞 (CHL)	25~200 μg/mL(-S9) 150~1,200 μg/mL (+S9)	陽性 2)
G(x)		DNA 修復 試験	B. subtilis (H17、M45 株)	109~1,750 μg/ディスクケ (·S9) 54.7~875 μg/ディスク (+S9)	陰性
S(+)	in vitro	復帰突然 変異試験	S. typhimurium (TA98、TA100、TA1535、 TA1537 株) E. coli (WP2 uvrA 株)	109~3,500 μg/プレート (+/-S9)	陰性
R(-)	in vitro	DNA 修復 試験	B. subtilis (H17、M45 株)	139~2,230 μg/ディスク (·S9) 69.5~1,110 μg/ディスク (+S9)	陰性

	復帰突然 変異試験	S. typhimurium (TA98、TA100、TA1535、 TA1537 株) E. coli (WP2 uvrA 株)	139~4,450 μg/7プレート (+/-S9)	陰性
--	-----------	--	-------------------------------	----

注) +/-S9: 代謝活性化系存在下及び非存在下

¹⁾ 代謝活性化系非存在下 438 $\mu g/$ プレート以上で陽性及び代謝活性化系非存在下 219 $\mu g/$ プレート以上で 偽陽性

²⁾ 代謝活性化系存在下 1,200 μ g/プレートで 13%の構造異常

Ⅲ. 食品健康影響評価

参照に挙げた資料を用いて、農薬「クロメプロップ」の食品健康影響評価を

ラットにおける動物体内運命試験の結果、経口投与されたクロメプロップは 低用量投与では速やかに吸収、排泄された。クロメプロップを高用量で単回投 与した時、脂肪組織、骨髄及び赤血球に残留する傾向が認められた。主要代謝物 は糞中では親化合物、尿中ではB、C及びFであった。主要代謝経路として、尿中 での親化合物のアミド結合の加水分解(B、C)、側鎖の酸化及び水酸化等により 生じたFの各種抱合化が考えられた。主要排泄経路は尿中であった。

水稲における植物体内運命試験の結果、根から吸収されクロメプロップの大 部分は根部に留まり、茎葉部への移行は少なかった。主要代謝物はB及びCであ

クロメプロップ及び代謝物 B を分析対象化合物とした作物残留試験の結果、 玄米及び稲わらにおいていずれの化合物も定量限界未満であった。また、魚介 類におけるクロメプロップ及び代謝物 B の最大推定残留値は、それぞれ 0.002 及び 0.239 mg/kg であった。

各種毒性試験結果から、クロメプロップ投与により主に血液(貧血)、肝臓及 び腎臓に影響が認められた。催奇形性及び生体において問題となる遺伝毒性は 認められなかった。マウスを用いた2年間慢性毒性/発がん性併合試験において、 雄の最高投与群で肝臓の血管内皮腫の発生頻度が増加したが、遺伝毒性試験の 結果から、腫瘍の発生機序は遺伝毒性メカニズムとは考え難く、評価に当たり 閾値を設定することが可能であると考えられた。

各種試験結果から、農産物中の暴露評価対象物質をクロメプロップ(親化合 物のみ)、魚介類中の暴露評価対象物質をクロメプロップ及び代謝物 B と設定 した。

各試験の無毒性量は表 15 に示されている。

各試験の無毒性量の最小値は、ラットを用いた2世代繁殖試験の0.43 mg/kg 体重/日であったが、より長期の 2 年間慢性毒性/発がん性併合試験では 0.62 mg/kg 体重/日であり、この差は用量設定の違いによるもであると考えられたこ とから、より長期の試験結果を一日摂取許容量(ADI)の根拠とすることが妥当 と考えられた。したがって、ラットを用いた 2 年間慢性毒性/発がん性併合試験 の無毒性量 0.62 mg/kg 体重/日を根拠として、安全係数 100 で除した 0.0062 mg/kg 体重/日を ADI と設定した。

ADI

(ADI 設定根拠資料)

(動物種)

(期間)

(投与方法)

0.0062 mg/kg 体重/日

慢性毒性/発がん性併合

ラット

2 年間

混餌

(無毒性量) 0.62 mg/kg 体重/日

(安全係数) 100

暴露量については、当評価結果を踏まえて暫定基準値の見直しを行う際に確認することとする。

表 15 各試験における無毒性量等

#1 W. 1#	⇒ <i>V</i> ⊞V	10.6 E / 0 4.4.D	無毒性量(mg/kg 体重/日) ¹⁾
動物種	試験	投与量(mg/kg 体重/日)	農薬抄録
ラット	90 日間	0,50,250,1,250,6,250 ppm	雄:3.57 雌:3.99
	亜急性		11444 DDG >4 1.55
	毒性試験	雄: 0、3.57、17.9、90.7、426	雌雄:RBC 減少等
		雌: 0、3.99、19.9、99.5、494	
	2 年間 慢性毒性	0,3,17,90,500 ppm	雄: 0.62 雌: 0.86
	/発がん性	雄:0、0.11、0.62、3.22、18.3	雄:尿蛋白濃度減少等
	併合試験	雌: 0、0.15、0.86、4.53、25.7	雌:脾ヘモジデリン沈着
			(発がん性は認められない)
	2 世代	0,7.5,75,750 ppm	親動物
	繁殖試験		P 雄: 0.43 F ₁ 雄: 0.67
		P雄:0、0.43、4.22、42.8	F ₂ 雄:0.77
		P雌:0、0.53、5.43、52.6	P雌: 0.53 F1雌: 0.75
		F_1 雄:0、0.67、6.65、69.5	F_2 雌: 0.81
		F_1 雌: $0,0.75,7.30,77.1$	
		F_2 雄:0、0.77、7.09、71.3	児動物
		F2雌:0、0.81、8.00、89.4	P雄: 4.22 F ₁ 雄: 6.65
			P雌: 5.43 F ₁ 雌: 7.30
			繁殖能
			P雌: 5.43 F ₁ 雌: 7.30
			F2 雌:8.00
			親動物:腎絶対及び比重量増加等
			児動物:低体重
	発生毒性 試験	0,4,16,64	母動物:4 胎児:16
	H- (10)		母動物:体重増加抑制等
			胎児:低体重
			(催奇形性は認められない)
マウス	90 日間	0,100,500,2,500 ppm	雄:16.4 雌:-
	亜急性		
	毒性試験	雄: 0、16.4、84.2、439	雄:体重増加抑制等
		雌:0、22.2、114、582	雌:腎絶対及び比重量増加等
	2年間	0,5,50,500 ppm	雄: 0.66 雌: 0.93
	慢性毒性		
	/発がん性	雄:0、0.66、6.58、66.0	雄:腎色素沈着等
	併合試験	雌: 0、0.93、9.59、101	雌:Glu 増加
			(雄で肝血管内皮腫増加)
ウサギ	発生毒性 試験	0,12,60,300	母動物:300 胎児:60
			母動物:毒性所見なし
			胎児:低体重
			(催奇形性は認められない)
イヌ	28 日間 亜急性	0,125,250,500,1,000	雄:125 雌:500
	毒性試験		雄:体重減少、摂餌量減少等
	四 上 門		雌:体重減少
L	I	l .	

1年間		雄:20 雌:2
慢性毒	性	
試験		雌雄:肝比重量増加等
ADI	·	NOAEL: 0.62ADI: 0.0062
ADI		SF: 100
ADI 設定根拠資料		ラット2年間慢性毒性/発がん性併合

NOAEL:無毒性量 SF:安全係数 ADI:一日摂取許容量

^{1):}無毒性量欄には、最小毒性量で認められた主な毒性所見等を記した。

<別紙1:代謝物/分解物略称>

略称	化学名
В	2-(2,4-ジクロロ- <i>m</i> -トリルオキシ)プロピオン酸
С	2-(2,4-ジクロロ-3-ヒドロキシメチルフェノキシ)プロピオン酸
D	2-(2,4-ジクロロ-3-ヒドロキシメチルフェノキシ)プロピオンアニリド
E	p-ヒドロキシ- $[2-(2,4-ジクロロ-m-トリルオキシ)]プロピオンアニリド$
F	p-ヒドロキシアセトアニリド
L	2-(2,4-ジクロロ-5-ヒドロキシ- <i>m</i> -トリルオキシ)プロピオン酸
M	2-(2,4-ジクロロフェノキシ)プロパン酸
N	2,4-ジクロロ-3-メチルフェノール

<別紙2:検査値等略称>

略称 名称 ai 有効成分量 Alb アルブミン ALP アルカリホスファターゼ (=グルタミン酸ピルビン酸トランスアミナーゼ (GPT)) AST アスパラギン酸アミノトランスフェラーゼ (=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)) BCF 生物濃縮係数 Bil ビリルビン Cre クレアチニン C _{max} 最高濃度 GGT γ-グルタミルトランスフェラーゼ (=γ-グルタミルトランスペプチダーゼ (γ-GTP))
Alb アルブミン ALP アルカリホスファターゼ ALT アラニンアミノトランスフェラーゼ (=グルタミン酸ピルビン酸トランスアミナーゼ (GPT)) AST アスパラギン酸アミノトランスフェラーゼ (=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)) BCF 生物濃縮係数 Bil ビリルビン Cre クレアチニン C _{max} 最高濃度 OCT γ-グルタミルトランスフェラーゼ
ALP アルカリホスファターゼ ALT アラニンアミノトランスフェラーゼ (=グルタミン酸ピルビン酸トランスアミナーゼ (GPT)) AST アスパラギン酸アミノトランスフェラーゼ (=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)) BCF 生物濃縮係数 Bil ビリルビン Cre クレアチニン Cmax 最高濃度 OCT アグルタミルトランスフェラーゼ
ALT アラニンアミノトランスフェラーゼ (=グルタミン酸ピルビン酸トランスアミナーゼ (GPT)) AST アスパラギン酸アミノトランスフェラーゼ (=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)) BCF 生物濃縮係数 Bil ビリルビン Cre クレアチニン Cmax 最高濃度 OCT γ-グルタミルトランスフェラーゼ
ALT (=グルタミン酸ピルビン酸トランスアミナーゼ (GPT)) AST アスパラギン酸アミノトランスフェラーゼ (=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)) BCF 生物濃縮係数 Bil ビリルビン Cre クレアチニン C _{max} 最高濃度 OCT γ-グルタミルトランスフェラーゼ
AST (=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)) BCF 生物濃縮係数 Bil ビリルビン Cre クレアチニン C _{max} 最高濃度 OCT γ-グルタミルトランスフェラーゼ
Bil ビリルビン Cre クレアチニン C _{max} 最高濃度 ロー・ア・グルタミルトランスフェラーゼ
Cre クレアチニン C _{max} 最高濃度 CCT γ-グルタミルトランスフェラーゼ
C _{max} 最高濃度 CCT γ-グルタミルトランスフェラーゼ
CCT γ-グルタミルトランスフェラーゼ
$GGT \qquad (=\gamma - \not/ U \wedge \beta \leq U \wedge \beta + D \wedge \beta$
Glob グロブリン
Glu グルコース (血糖)
Hb へモグロビン(血色素量)
Ht ヘマトクリット値
LC ₅₀ 半数致死濃度
LD ₅₀ 半数致死量
Lym リンパ球
MCHC 平均赤血球血色素濃度
MCV 平均赤血球容積
Neu 好中球数
PCV 血中血球容積
PEC 環境中予測濃度
PHI 最終使用から収穫までの日数
RBC 赤血球数
T _{1/2} 消失半減期
TAR 総投与(処理)放射能
T.Bil 総ビリルビン
T.Chol 総コレステロール
T _{max} 最高濃度到達時間
TP 総蛋白質
TRR 総残留放射能
WBC 白血球数

<参照>

- 1. 食品、添加物等の規格基準(昭和34年厚生省告示第370号)の一部を改正する件(平成17年11月29日付、厚生労働省告示第499号)
- 2. 食品健康影響評価について

(URL; http://www.fsc.go.jp/hyouka/hy/hy-uke-clomeprop_190306.pdf)

- 3. 農薬抄録クロメプロップ、平成 20 年 4 月 21 日改訂:バイエルクロップサイエンス株式会社
- 4. 第 181 回食品安全委員会

(URL; http://www.fsc.go.jp/iinkai/i-dai181/index.html)

- 5. 第5回食品安全委員会農薬専門調査会確認評価第三部会 (URL; http://www.fsc.go.jp/senmon/nouyaku/kakunin3 dai5/index.html)
- 6. 第9回食品安全委員会農薬専門調査会確認評価第三部会 (URL; http://www.fsc.go.jp/senmon/nouyaku/kakunin3_dai9/index.html)
- 7. 食品健康影響評価について

(URL; http://www.fsc.go.jp/hyouka/hy/hy-uke-clomeprop_201007.pdf)

- 8. クロメプロップの魚介類における最大推定残留値に係る資料
- 9. 第257回食品安全委員会

(URL; http://www.fsc.go.jp/iinkai/i-dai257/index.html)

- 10. クロメプロップの食品健康影響評価に係る追加資料の提出について(回答): バイエルクロップサイエンス株式会社、2008年、未公表
- 11. 第 17 回食品安全委員会農薬専門調査会確認評価第二部会

(URL; http://www.fsc.go.jp/senmon/nouyaku/kakunin2_dai17/index.html)

12. 第 49 回食品安全委員会農薬専門調査会幹事会

(URL; http://www.fsc.go.jp/senmon/nouvaku/kanjikai dai49/index.html)