

府 食 第 249 号 平成 21年3月17日

食品安全委員会 委員長 見上 彪 殿

> 農薬専門調査会 座 長 鈴木 勝士

農薬に係る食品健康影響評価に関する審議結果について

平成 20 年 12 月 9 日付け厚生労働省発食安第 1209002 号をもって厚生労働大臣から食品 安全委員会に意見を求められたピラクロストロビンに係る食品健康影響評価について、当 専門調査会において審議を行った結果は別添のとおりですので報告します。

農薬評価書

ピラクロストロビン

(第2版)

2009年3月 食品安全委員会農薬専門調査会

目 次

		只
0	審議の経緯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
0	e 3100 e 1 — e 1 e 1 e 1 e 1 e 1 e 1 e 1 e 1 e	
	食品安全委員会農薬専門調査会専門委員名簿 · · · · · · · · · · · · · · · · · · ·	
0	要約 · · · · · · · · · · · · · · · · · · ·	6
Ι	. 評価対象農薬の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	1. 用途	
	2. 有効成分の一般名・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3. 化学名 · · · · · · · · · · · · · · · · · · ·	
	4. 分子式 · · · · · · · · · · · · · · · · · · ·	
	5. 分子量 · · · · · · · · · · · · · · · · · · ·	
	6. 構造式	
	7. 開発の経緯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · 7
П	. 安全性に係る試験の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	1. 動物体内運命試験 · · · · · · · · · · · · · · · · · · ·	
	(1)吸収・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(2)分布·····	
	(3)代謝物同定・定量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(4)排泄······	
	2. 植物体内運命試験 · · · · · · · · · · · · · · · · · · ·	
	(1)ぶどう・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(2)ばれいしょ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(3)小麦(移行性)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(4)小麦·····	
	(5) はくさい・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
	3. 土壌中運命試験 · · · · · · · · · · · · · · · · · · ·	
	(1)好気的土壌中運命試験①・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(2)好気的土壌中運命試験②・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(3)土壌表面光分解試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(4)土壌吸着試験(ピラクロストロビン)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(5)土壌吸脱着試験(分解物 M01 及び M02) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(6)土壌溶脱性試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	4. 水中運命試験 · · · · · · · · · · · · · · · · · · ·	
	(1)加水分解試験······	
	(2)水中光分解試験(緩衝液)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(3)水中光分解試験(自然水)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
	(4)水中光解試験(水/底質系における自然条件下)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20

(5)水中光分解試験(精製水、河川水)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 20
5. 土壌残留試験 · · · · · · · · · · · · · · · · · · ·	· 20
6.作物残留試験 · · · · · · · · · · · · · · · · · · ·	
7. 一般薬理試験 · · · · · · · · · · · · · · · · · · ·	· 22
8. 急性毒性 · · · · · · · · · · · · · · · · · ·	· 23
(1)急性毒性試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 23
(2)急性神経毒性試験······	· 24
9. 眼・皮膚に対する刺激性及び皮膚感作性試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 24
10.亜急性毒性試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 24
(1)90 日間亜急性毒性試験 (ラット) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 24
(2)90 日間亜急性毒性試験(マウス) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 25
(3)90日間亜急性毒性試験(イヌ) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 26
(4)90日間亜急性神経毒性試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 27
11.慢性毒性試験及び発がん性試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 28
(1)1年間慢性毒性試験(イヌ) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 28
(2)2年間慢性毒性試験(ラット) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 28
(3)2 年間発がん性試験(ラット) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 29
(4)18 カ月間発がん性試験(マウス) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 30
1 2. 生殖発生毒性試験 · · · · · · · · · · · · · · · · · · ·	· 31
(1)2世代繁殖試験(ラット) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 31
(2)発生毒性試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 31
(3)発生毒性試験(ウサギ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 32
1 3. 遺伝毒性試験 · · · · · · · · · · · · · · · · · · ·	. 32
1 4 . その他の試験 · · · · · · · · · · · · · · · · · · ·	. 33
(1)肝過酸化脂質測定試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 33
(2) <i>in vitro</i> 溶血試験 ····································	· 34
(3)血清及び尿中鉄分析試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 34
(4)ピラクロストロビン及びビタミン B_{12} 同時投与試験(ラット) $\cdots\cdots$. 35
(5)BAS505F及び鉄の同時消化管外投与試験(ラット) · · · · · · · · · · · · · · · ·	. 35
(6) BAS505F 投与による十二指腸粘膜鉄吸収及び輸送への影響試験(ラット)	36
Ⅲ. 食品健康影響評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 37
▪別紙1:代謝物/分解物略称······	
▪別紙 2:検査値等略称⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	
▪別紙3:作物残留試験成績・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
▪ 参照 · · · · · · · · · · · · · · · · · ·	· 46

<審議の経緯>

一第1版関係一

- 2003年 11月 6日 農林水産省より厚生労働省へ農薬登録申請に係る連絡及 び基準設定依頼(新規:りんご、なし及びはくさい)
- 2003年 11月 17日 厚生労働大臣より残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第 1117003 号)、関係書類の接受(参照 1~65)
- 2003年 11月 27日 第 21 回食品安全委員会(要請事項説明) (参照 66)
- 2004年 1月 14日 第5回農薬専門調査会(参照 67)
- 2004年 5月 28日 追加資料受理(参照 68)
- 2004年 6月 9日 第12回農薬専門調査会 (参照69)
- 2005年 3月 29日 追加資料受理 (参照 70、71)
- 2005年 7月 6日 第32回農薬専門調査会 (参照72)
- 2005年 8月 18日 第 107 回食品安全委員会 (報告)
- 2005年 8月 18日 より 9月 14日 国民からの御意見・情報の募集
- 2005年 9月 21日 農薬専門調査会座長より食品安全委員会委員長へ報告
- 2005年 9月 22日 第 112 回食品安全委員会(報告)(同日付け厚生労働大臣へ通知) (参照 73)
- 2006年 8月 25日 残留農薬基準告示 (参照 74)
- 2006年 9月 25日 初回農薬登録

一第2版関係一

- 2008年 10月 24日 農林水産省より厚生労働省へ農薬登録申請に係る連絡及 び基準設定依頼(適用拡大:かき、うめ及びすもも)
- 2008年 12月 9日 厚生労働大臣より残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第 1209002 号)、関係書類の接受(参照 75~79)
- 2008年 12月 11日 第 266 回食品安全委員会(要請事項説明) (参照 80)
- 2009年 2月 24日 第 48 回農薬専門調査会幹事会 (参照 81)
- 2009年 3月 17日 農薬専門調査会座長より食品安全委員会委員長へ報告

く食品安全委員会委員名簿>

(2006年6月30日まで) (2006年12月20日まで) (2006年12月21日から)

寺田雅昭(委員長) 寺田雅昭(委員長)

寺尾允男(委員長代理) 見上 彪(委員長代理)

小泉直子 小泉直子 長尾 拓 坂本元子 中村靖彦 野村一正 本間清一 畑江敬子

見上 彪 本間清一

見上 彪(委員長)

小泉直子(委員長代理*)

長尾 拓 野村一正 畑江敬子 廣瀬雅雄** 本間清一

*:2007年2月1日から **: 2007年4月1日から

<食品安全委員会農薬専門調査会専門委員名簿>

(2006年3月31日まで)

鈴木勝士(座長) 小澤正吾 出川雅邦 廣瀬雅雄 (座長代理) 高木篤也 長尾哲二 林 真 石井康雄 武田明治 江馬 眞 津田修治* 平塚 明 太田敏博 津田洋幸 吉田 緑

*:2005年10月1日から

(2007年3月31日まで)

鈴木勝士 (座長) 三枝順三 根岸友惠 廣瀬雅雄 (座長代理) 佐々木有 林 真 赤池昭紀 高木篤也 平塚 明 石井康雄 玉井郁巳 藤本成明 泉 啓介 田村廣人 細川正清 上路雅子 津田修治 松本清司 臼井健二 津田洋幸 柳井徳磨 江馬 眞 出川雅邦 山崎浩史 長尾哲二 大澤貫寿 山手丈至 太田敏博 中澤憲一 與語靖洋 大谷 浩 納屋聖人 吉田 緑 小澤正吾 成瀬一郎 若栗 忍

(2008年3月31日まで)

小林裕子

鈴木勝士 (座長) 佐々木有 根岸友惠 林 真(座長代理*) 代田眞理子**** 平塚 明 高木篤也 藤本成明 赤池昭紀

布柴達男

石井康雄 玉井郁巳 細川正清 泉 啓介 田村廣人 松本清司 上路雅子 津田修治 柳井徳磨 臼井健二 津田洋幸 山崎浩史 江馬 眞 出川雅邦 山手丈至 長尾哲二 與語靖洋 大澤貫寿 太田敏博 中濹憲一 吉田 緑 大谷 浩 納屋聖人 若栗 忍 成瀬一郎*** *:2007年4月11日から 小澤正吾 小林裕子

西川秋佳** **: 2007年4月25日から 布柴達男 **: 2007年6月30日まで

若栗 忍

****:2007年7月1日から

(2008年4月1日から)

三枝順三

川合是彰

鈴木勝士 (座長) 佐々木有 根本信雄 林 真(座長代理) 代田眞理子 平塚 明 高木篤也 相磯成敏 藤本成明 赤池昭紀 玉井郁巳 細川正清 石井康雄 田村廣人 堀本政夫 泉 啓介 津田修治 松本清司 今井田克己 津田洋幸 本間正充 長尾哲二 上路雅子 柳井徳磨 中澤憲一* 臼井健二 山崎浩史

 太田敏博
 永田清
 山手丈至

 大谷浩
 納屋聖人
 與語靖洋

 小澤正吾
 西川秋佳
 吉田緑

布柴達男

小林裕子 根岸友惠 *:2009年1月19日まで

要約

ストロビルリン系殺菌剤である「ピラクロストロビン」(CAS.No 175013-18-0) について、各種試験成績を用いて食品健康影響評価を実施した。

評価に供した試験成績は、動物体内運命(ラット)、植物体内運命(ぶどう、ばれいしょ、小麦及びはくさい)、土壌中運命、水中運命、土壌残留、作物残留、急性毒性(ラット及びマウス)、亜急性毒性(ラット、マウス及びイヌ)、慢性毒性(ラット及びイヌ)、発がん性(ラット及びマウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性試験等である。

各種毒性試験結果から、ピラクロストロビン投与による影響は主に血液及び十二指腸に認められた。神経毒性、発がん性、繁殖能に対する影響、催奇形性及び遺伝毒性は認められなかった。

各試験で得られた無毒性量の最小値は、ラットを用いた 2 年間慢性毒性試験及び 2 年間発がん性試験の 3.4 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.034 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

I. 評価対象農薬の概要

1. 用途

殺菌剤

2. 有効成分の一般名

和名:ピラクロストロビン

英名: pyraclostrobin (ISO名)

3. 化学名

IUPAC

和名:メチル N-{2-[1-(4-クロロフェニル)-1H-ピラゾール-3-

イルオキシメチル]フェニル}(N-メトキシ)カルバマート

英名: methyl N-{2-[1-(4-chlorophenyl)-1H-pyrazol-3-

yloxymethyl]phenyl}(N-methoxy) carbamate

CAS(No.175013-18-0)

和名:メチル[2-[[[1-(4-クロロフェニル)-1H-ピラゾール-3-イル]オキシ]

メチル]フェニル]メトキシカルバマート

英名: methyl[2-[[[1-(4-chlorophenyl)-1*H*-pyrazol-3-yl]oxy]

methyl]phenyl]methoxycarbamate

4. 分子式

C₁₉H₁₈ClN₃O₄

5. 分子量

387.8

6. 構造式

7. 開発の経緯

ピラクロストロビンは 1993 年に BASF 社により開発されたストロビルリン系殺菌剤であり、ミトコンドリア内のチトクローム電子伝達系阻害による呼吸阻害により、殺菌活性を示す。

諸外国ではスイス、ドイツ、イギリス、米国、フランス等で登録されている。

ピラクロストロビンは、2006 年 9 月に初回登録され、今回 BASF アグロ株式会社より農薬取締法に基づく農薬登録申請(適用拡大:かき、うめ及びすもも)がなされている。

Ⅱ. 安全性に係る試験の概要

各種運命試験(II.1~4)は、ピラクロストロビンのトリル環部分の炭素を均一に ¹⁴C で標識したもの([tol-¹⁴C]ピラクロストロビン)及びクロロフェニル基の炭素を均一に ¹⁴C で標識したもの([chl-¹⁴C]ピラクロストロビン)を用いて実施された。放射能濃度及び代謝物濃度は特に断りがない場合はピラクロストロビンに換算した。代謝物/分解物略称及び検査値等略称は別紙 1 及び 2 に示されている。

1. 動物体内運命試験

(1) 吸収

①吸収率

胆汁中排泄試験 [1.(4)②] で得られた胆汁中排泄率及び排泄試験 [1.(4)①] で得られた尿中排泄率の合計より、吸収率は 5 mg/kg 体重(以下、[1.] において「低用量」という。)投与群で $47.1\sim50.3\%$ 、50 mg/kg 体重(以下、[1.] において「高用量」という。)投与群で $45.3\sim51.3\%$ と推定された。(参照 2)

②血中濃度推移

Wistar ラット(一群雌雄各 4 匹)に、[tol-14C]ピラクロストロビンを低用量または高用量で単回経口投与し、血中濃度推移について検討された。

血漿中放射能濃度推移は表1に示されている。(参照2)

投与量(mg/kg 体重)		5	50		
性別	雄	雌	雄	雌	
T _{max} (時間)	8.0	0.5	8.0	0.5	
C_{max} (µg/g)	0.46	0.54	2.04	2.62	
T _{1/2} (時間)	37.4	31.6	20.7	19.7	

表 1 血漿中放射能濃度推移

(2)分布

Wistar ラット (一群雌雄各 12 匹) に、 $[tol^{-14}C]$ ピラクロストロビンを、低用量または高用量で単回経口投与し、体内分布試験が実施された。なお、投与 120 時間後の試料については、排泄試験[1.(4)①]で得られた組織が用いられた。

主要組織における残留放射能濃度は表2に示されている。

各組織とも消失は速やかであり、投与 120 時間後の組織内濃度は、低用量群では $0.1\,\mu g/g$ 以下、高用量群では $1.0\,\mu g/g$ 以下であった。 (参照 2)

表 2	主要組織における残留放射能濃度	$(\mu g/g)$
<u> </u>		\M6/6/

投与量 (mg/kg 体重)	性別	T _{max} 付近*	投与 120 時間後
5	雄	胃(10.3)、腸管(7.65)、肝臓(2.58)、甲状腺(1.09)、 腎臓(1.07)、血漿(0.84)	すべての組織で
9	雌	腸管(7.35)、胃(4.76)、肝臓(2.02)、腎臓(0.73)、 血漿(0.50)	0.1 以下
雄		胃(207)、腸管(19.7)、肝臓(5.2)、甲状腺(4.7)、腎臓(1.80)、脂肪(1.51)、肺(1.44)、副腎(1.42)、血漿(1.21)	すべての組織で
50	雌	胃(337)、腸管(41.6)、肝臟(9.5)、腎臟(3.3)、 脂肪(2.6)、卵巣(2.5)、副腎(2.2)、血漿(2.1)	1.0以下

注)*:低用量群:投与8時間後、高用量群:投与24時間後(雌における2回目のピーク時)

(3) 代謝物同定・定量

Wistar ラット(一群雌雄各 4~10 匹)に、 $[tol^{-14}C]$ ピラクロストロビンを低用量または高用量で単回経口投与あるいは反復経口投与(非標識体を 14 日間高用量反復投与後、15 日目に $[tol^{-14}C]$ ピラクロストロビンを低用量単回投与)して得られた尿及び糞、 $[chl^{-14}C]$ ピラクロストロビンを高用量で単回経口投与して得られた尿及び糞、 $[tol^{-14}C]$ ピラクロストロビンを高用量で単回経口投与して得られた尿及び糞、胆管カニューレを挿入した Wistar ラット(一群雌雄各 4~8 匹)に $[tol^{-14}C]$ ピラクロストロビンを低用量で単回経口投与して得られた胆汁、 $[tol^{-14}C]$ ピラクロストロビンまたは $[tol^{-14}C]$ ピラクロストロビンを低用量または高用量で単回経口投与して得られた血漿、肝臓及び腎臓を試料として、代謝物同定・定量試験が実施された。

尿、糞、胆汁、血漿及び各組織中の代謝物は表3に示されている。

代謝物は抱合体も含め全部で 33 種類が同定された。尿中では未変化体は検出されなかった。

ピラクロストロビンのラットにおける主要代謝経路は、トリル環カーバメート側鎖のN-脱メトキシ化と、それに続くピラゾール環またはクロロフェニル基の水酸化、あるいはエーテル結合の開裂と、それに続く開裂化合物の酸化であると考えられた。また、これらの代謝経路及び水酸基のグルクロン酸または硫酸抱合化により、多くの代謝物が生成するものと考えられた。(参照3)

表 3 尿、糞、胆汁、血漿及び各組織中の代謝物(%TAR)

標識体 投与法	投与量 (mg/kg 体重)	性別	試料	親化合物	代謝物		
[tol-14C]				_	M22(1.4), M24(1.3),		
ピラクロ	5	المال	尿		M06+M18+M19(1.1), M25(1.0),		
ストロビン		雄			M40+M48(0.3), M51(0.15)		
単回経口投与			糞	8.4*	M08(36.4)、M45(8.1)、M44(2.4)		

標識体 投与法	投与量 (mg/kg 体重)	性別	試料	親化合物	代謝物	
3/2 7 [2]	(Mg. 11g 1 12)	雌	尿	_	M06+M18+M19(2.3), M24(1.23), M22(1.1), M25(0.54), M40+M48(0.17), M51(0.17)	
			糞	6.7*	M08(27.5), M45(5.3), M44(1.0)	
		雄	尿	_	M24(1.1), M06+M18+M19(1.1), M22(0.77), M25(0.75), M51(0.35), M40+M48(0.13)	
			糞	5.8*	M08(31.4), M45(3.3), M44(1.4)	
	50	雌	尿	_	M24(1.2), M06+M18+M19(0.96), M22(0.79), M51(0.44), M40+M48(0.31), M25(0.21)	
			糞	3.1*	M08(47.9)、M45(6.8)、M44(2.2)	
[tol-14C]	50/5**		雄	尿	_	M24(2.7), M22(1.9), M06+M18+M19(1.2), M25(0.83), M51(0.38), M40+M48(0.23)
ピラクロ			糞	7.4*	M08(32.2), M45(6.4), M44(1.5)	
ストロビン 反復経口投与		雌	尿	_	M24(2.8), M06+M18+M19(1.4), M22(1.2), M25(0.58), M51(0.18), M40+M48(0.06)	
			糞	5.5*	M08(39.7)、M45(8.2)、M44(1.8)	
[chl-14C]		雄	尿	_	M03+M05(3.7)、M04+M52(1.1)、 M06+M08+M13+M18(0.83)	
ピラクロ			糞	5.7*	M08(43.8), M45(4.2), M44(2.9)	
ストロビン単回経口投与	50		尿	_	M04+M52(1.2), M03+M05(1.2), M06+M08+M13+M18(0.59)	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		地田	糞	5.7*	M08(54.8)、M45(4.1)、M44(1.8)、 M21(0.54)	
[tol-14C] ピラクロ ストロビン	5	雄	胆汁	_	M46(21.7), M06+M31(5.6), M30(2.9), M22(2.3), M34(1.7), M29(0.9), M15(0.6), M18+M37(0.4)	
単回経口投与		雌		_	M46(21.2), M06+M31(5.0), M29(1.9), M34(1.4), M30(1.0), M22(0.7), M15(0.6)	
	50	雄		_	M46(19.8), M06+M31(2.6), M30(2.4), M22(2.4), M15(2.0), M35(1.3), M34(0.9), M18+M37(0.8), M29(0.7), M19(0.3)	

標識体	投与量	性	試料	親化合物	代謝物
投与法	(mg/kg 体重)	別			M46(25.6), M30(2.5), M06+M31(2.4),
		雌		_	M15(1.2), M22(1.1), M29(0.5)
			肝臓	0.38	M06(0.17), M46(0.15)
		雄			M06(0.17), M46(0.19)
		松 臣	腎臓	0.04	MOC M17 M40() 22 b 3 c0 01)
	5		血漿	<0.01	M06、M15、M46(いずれも<0.01)
		11 //.	肝臓	0.23	M46(0.15), M06(0.12)
[tol-14C]		雌	腎臓	0.03	_
ピラクロ			血漿	<0.01	M06、M15、M46(いずれも<0.01)
ストロビン			肝臓	0.35	M46(0.18), M06(0.10)
単回経口投与		雄	腎臟	0.02	_
	50		血漿	< 0.01	M06、M15、M46(いずれも<0.01)
	30	雌	肝臓	0.12	M46(0.13)、M06(0.08)
			腎臓	0.02	_
			血漿	< 0.01	M06、M15、M46(いずれも<0.01)
			肝臓	0.16	M06(0.08)、M46(0.07)
		雄	腎臟	0.02	-
	_		血漿	_	M06(0.01)、M46(0.01)
	5		肝臓	0.07	M46(0.13)、M06(0.06)
[chl-14C]		雌	腎臓	0.02	_
ピラクロ			血漿	_	M06(0.02), M46(0.02)
ストロビン			肝臓	0.18	M46(0.12)、M06(0.09)
単回経口投与		雄	腎臓	0.01	_
	E 0		血漿	_	M46(0.02),M06(<0.01)
	50		肝臓	0.10	M46(0.10)、M06(0.06)
		雌	腎臓	<0.01	_
			血漿	_	M06、M46(いずれも<0.01)

注) -:検出されず

*:親化合物と M07 の合計

**: 非標識体を高用量で14日間反復経口投与後、15日目に標識体を低用量単回経口投与した。

(4) 排泄

①尿及び糞中排泄

Wistar ラット (一群雌雄各 4 匹) に、 $[tol^{-14}C]$ ピラクロストロビンを低用量または高用量で単回経口投与あるいは反復経口投与(非標識体を 14 日間高用量反復投与後、15 日目に $[tol^{-14}C]$ ピラクロストロビンを低用量単回投与)し、また、 $[chl^{-14}C]$

ピラクロストロビンを高用量で単回経口投与して、排泄試験が実施された。 投与後120時間の尿及び糞中排泄率は、表4に示されている。

いずれの投与群も、標識体投与後 48 時間に、尿及び糞中に総投与放射能(TAR)の $82.5\sim103\%$ (総排泄量の $90.8\sim98.9\%$)が排泄された。主要排泄経路は糞中であり、呼気中排泄は認められなかった。

反復投与群では、単回経口投与時と同様の排泄パターンであったことから、反復 投与による動物体内への蓄積はないことが示唆された。(参照2)

1 ==	識体		[+0]-1	[chl-14C]ピラクロ						
际	叫平		[101-	···()] L / /	ロストロ			ストロビン		
投	与法		単回経口					単回経口		
投与量(mg/kg体重)		5		50		50/5*		50		
1/2	生別	雄	雌	雄	雌	雄	雌	雄	雌	
投与後	尿	12.6	11.3	14.5	10.8	13.8	12.3	16.0	115	
120 時 糞		92.0	83.7	81.3	89.9	92.9	93.7	74.3	89.0	
間計		105	95.0	95.8	101	107	106	90.3	101	

表 4 尿及び糞中排泄率 (%TAR)

②胆汁中排泄

胆管カニューレを挿入した Wistar ラット(一群雌雄各 4 匹)に、 $[tol^{-14}C]$ ピラクロストロビンを低用量または高用量で単回経口投与し、胆汁中排泄試験が実施された。

投与後48時間の胆汁中排泄率は表5に示されている。(参照3)

投与量(mg/kg 体重)		5	50		
性別	雄	雌	雄	雌	
胆汁中排泄率	36.8	37.7	34.5	35.8	

表 5 投与後 48 時間の胆汁中排泄率 (%TAR)

2. 植物体内運命試験

(1) ぶどう

 $[tol^{-14}C]$ ピラクロストロビンまたは $[chl^{-14}C]$ ピラクロストロビンを、ぶどう(品種: Mueller-Thurgau)の生育期間中の $5\sim8$ 月に、 $16\sim19$ 日間隔で6回、計1,500g ai/ha で果実周辺に散布し、最終散布日の40日後に採取した果実及び葉を試料として、植物体内運命試験が実施された。

ぶどう試料中放射能分布及び代謝物は表6に示されている。

注)*: 非標識体を高用量で14日間反復経口投与後、15日目に[tol-14C] ピラクロストロビンを 低用量単回経口投与した。

ぶどうにおける主要代謝経路は、トリル環カーバメート側鎖の N-脱メトキシ化と、それに続くトリル環のメトキシ化、ピラゾール環へのグルコシル化、次いでトリル部位からの開裂、シラビオース抱合体の形成であると考えられた。 (参照 4、67)

表。 かこり既得中級別能の中級的										
標識体	ž	[tol-14C]ピラク	ロストロビン	[chl-14C]ピラクロストロビン						
試料		果実	葉	果実	葉					
総残留	cr/l- cr	1 50	40.2	0.05	40.7					
放射能	mg/kg	1.56	40.3	0.95	49.7					
抽出画分	mg/kg	1.31	28.9	0.84	28.3					
親佔物	%TRR*	55.7		61.8						
M07	%TRR*	11.0		16.7						
M54	%TRR*	2.9		1.6						
M55	%TRR*	_		4.0						
M56	M56 %TRR*			1.7						
未抽出残渣 mg/kg		0.25	12.4	0.12	11.7					

表 6 ぶどう試料中放射能分布及び代謝物

(2) ばれいしょ

 $[tol^{-14}C]$ ピラクロストロビンまたは $[chl^{-14}C]$ ピラクロストロビンを、ばれいしょ(品種: quarta)に主茎伸長期から $6\sim10$ 日間隔で 6 回、各回 300 g ai/ha で植物体に散布後、3 回目散布 7 日後(未成熟期)及び最終散布 7 日後(成熟期)に採取した茎葉、塊茎及び根部を試料として、植物体内運命試験が実施された。

ばれいしょ試料中放射能分布は表7に示されている。成熟期の塊茎の放射能濃度が 0.04~0.05 mg/kg であったことから、ばれいしょに散布されたピラクロストロビンはばれいしょの葉に残留し、塊茎にほとんど移行しないと考えられた。

標識体	[tol-14C]ピラクロスト	・ロビン	[chl-14C]ピラクロストロビン						
試料	茎葉	塊茎	根部	茎葉	塊茎	根部				
未成熟期	12.7	0.01	0.21	24.0	0.01	0.45				
成熟期	58.3	0.05	0.68	68.8	0.04	0.99				

表7 ばれいしょ試料中放射能分布 (mg/kg)

茎葉から抽出された放射性物質のうち、親化合物は試料採取時期にかかわらず $55.1\sim65.2\%$ TRR であった。主要代謝物はM07で、未成熟期で $16.1\sim16.2\%$ TRR、成熟期で $20.8\sim21.4\%$ TRR 存在した。その他に、 $[tol^{-14}C]$ ピラクロストロビン散布

注) -:検出されず 斜線:分析せず

^{*:}果実における総残留放射能(TRR、抽出物及び未抽出残渣の合計)を 100%としたときの存在比率

区ではM54 及びM68 (0.6~1.8%TRR)、 $[chl^{-14}C]$ ピラクロストロビン散布区ではM04、M54、M68 及びM79 (0.1~6.2%TRR) が検出された。

塊茎から抽出された放射性物質のうち、親化合物は、 $[tol^{-14}C]$ ピラクロストロビン散布区では未成熟期で 2.5% TRR、成熟期には検出されなかったが、 $[chl^{-14}C]$ ピラクロストロビン散布区では未成熟期及び成熟期でそれぞれ 21.0 及び 29.4% TRR 存在した。主要代謝物は $[tol^{-14}C]$ ピラクロストロビン散布区では M72(未成熟期及び成熟期でそれぞれ 10.0 及び 29.2% TRR)、 $[chl^{-14}C]$ ピラクロストロビン散布区では M07(未成熟期及び成熟期でそれぞれ 10.0 及び 10.00 及び 10.00 と 10.00 と

ばれいしょにおける主要代謝経路は、トリル環カーバメート側鎖の N-脱メトキシ化と、それに続くトリル環のメトキシ化、あるいはクロロフェニル基またはピラゾール環のグルコシル化、エーテル結合の開裂と、それに続くグルコシル化またはシキミ酸経路を経由したトリプトファン生成であると考えられた。 (参照 5)

(3) 小麦(移行性)

[tol-14C]ピラクロストロビンを、小麦(品種: Eta)の第2葉が展開し、第1葉(止め葉)が第2葉の葉鞘部に不完全に巻いた段階(第1期散布群)及び展開前の止め葉幼鞘部に穂がある段階(第2期散布群)に、それぞれ250gai/haで散布後、第1期散布群は散布11日後に採取した止め葉、第2葉及び第3葉を、第2期散布群は散布15日後に採取した地の葉及び第2葉を試料として、小麦における移行性試験が実施された。

散布部(第1期散布群は第2及び第3葉、第2期散布群は第1及び第2葉)から無散布部(第1期散布群は第1葉、第2期散布群は穂)への移行は、第1期散布群で $0.37\sim0.95\%$ 、第2期散布群で $1.4\sim1.5\%$ であり、散布後に新たに展開した部位に対する移行性は極めて小さいことが確認された。(参照 6)

(4) 小麦

[tol-14C]ピラクロストロビンまたは[chl-14C]ピラクロストロビンを、小麦(品種: Eta)の節間伸長期(第2節間が認識できる時期)及び開花始期(1回目散布の24~25日後)の2回、各回300gai/haで散布し、2回目散布31及び41日後に採取した植物体(1回目採取試料は全体を青刈り試料として、2回目採取試料は穀粒、もみ殻、麦わらに分けた)を試料として、植物体内運命試験が実施された。

小麦試料中放射能分布は表8に示されている。青刈りから麦わらへの残留放射能 濃度の増加は、成熟を伴う水分損失によるものと推定された。麦わら、穀粒、もみ 殻における残留放射能から、小麦に散布されたピラクロストロビンは、茎、葉ある いは包穎から穀粒に移行しないと考えられた。

青刈り試料及び麦わらから抽出された放射性物質のうち、親化合物は 52.9~ 58.3% TRR、主要代謝物は M07 で 12.0~16.0% TRR 検出された。このほか、メチル化物あるいはグルコース抱合体として M34、M54、M68、M70 及び M71 が少量 (5% TRR 未満) 検出された。また、微量のピラクロストロビンの開裂化合物 M04、

ピラクロストロビンの構造異性体である M76 が検出された。

穀粒中では、親化合物と主要代謝物 M07 の他、ピラクロストロビンのエーテル結合が開裂した M24([tol-¹4C]ピラクロストロビン散布区の穀粒中 6.7%TRR)及び M04([chl-¹4C]ピラクロストロビン処理区穀粒中 1.4%TRR)、M24 がさらに代謝されたトリプトファン(M72、[tol-¹4C]ピラクロストロビン散布区の穀粒中 23%TRR)が存在した。

小麦における主要代謝経路は、青刈り及び麦わらでは、トリル環カーバメート側鎖の N・脱メトキシ化と、それに続くトリル環のメトキシ化、あるいはクロロフェニル基またはピラゾール環のグルコシル化であり、また、穀粒では、エーテル結合の開裂と、それに続くシキミ酸経路を経由したトリプトファン生成であると考えられた。 (参照 7)

標識	体	[tol-14C]ピラクロストロビン				[chl- ¹⁴ C]ピラクロストロビン				
採取時期		1回目	2回目			1回目	2回目			
試料		青刈り	麦わら 穀粒 もみ殻		青刈り	麦わら	穀粒	もみ殻		
総残留 放射能	mg/kg	8.4	47.5	0.45	34.5	7.42	50.5	0.08	26.3	
抽出画分	mg/kg	5.72	34.7	0.23		5.55	31.8	0.07		
親化合物	%TRR*	52.9	58.3	8.1		57.0	57.2	36.1		
M07	%TRR*	13.1	16.0	3.5		12.0	14.1	10.5		
未抽出残渣	mg/kg	1.08	5.8	0.22		0.97	5.82	0.03		

表 8 小麦試料中放射能分布及び主要代謝物

(5) はくさい

[tol-14C]ピラクロストロビンまたは[chl-14C]ピラクロストロビンをはくさい(品種: 新京都 3 号)の収穫 17、10 及び 3 日前に 3 回、各回 130 g ai/ha で散布後、最終散布 3 日後に採取した結球部(可食部)及び外葉部を試料として、植物体内運命試験が実施された。

はくさい試料中放射能分布及び主要代謝物は、表9に示されている。

はくさいにおける主要代謝経路は、トリル環カーバメート側鎖のN脱メトキシ化であると考えられた。 (参照8)

注) 斜線:分析せず

^{*:} 試料における総残留放射能(TRR、抽出物及び未抽出残渣の合計)を100%としたときの存在比率

表 9 はくさい試料中放射能分布及び主要代謝物

標識体	Z	[tol-14C]ピラク	'ロストロビン	[chl-14C]ピラクロストロビン		
試料		外葉部	結球部	外葉部	結球部	
総残留放射能	mg/kg	3.72	1.20	2.75	1.12	
抽出画分	mg/kg	4.02	1.29	2.93	0.99	
親化合物	%TRR*	82.5	85.1	82.9	74.2	
M07	%TRR*	11.9	10.6	8.5	5.6	
未抽出残渣	mg/kg	0.15	0.04	0.10	0.03	

注) *: 試料における総残留放射能(TRR、抽出物及び未抽出残渣の合計)を 100%としたときの存在比率

3. 土壌中運命試験

(1) 好気的土壌中運命試験①

 $[tol^{-14}C]$ ピラクロストロビンまたは $[chl^{-14}C]$ ピラクロストロビンを壌質砂土(ドイツ) に乾土あたり 0.33 mg ai/kg の用量で添加後、360 日間、20°C、暗条件でインキュベートする土壌中運命試験が実施された。

抽出可能放射能は処理 360 日後に総処理放射能量(TAR)の $23.2\sim25.5$ %に減少し、結合性放射能は $59.2\sim65.4$ %TAR に達した。 $^{14}CO_2$ は試験終了時までに $8.0\sim10.9$ %TAR 発生した。

土壌中の親化合物は、試験終了時に $4.3\sim4.5\%$ TAR に減少した。分解物として、 M07 から生成するアニリン化合物の 2 量体である、アゾキシ化合物 M01 及びアゾ 化合物 M02 が存在した。 M01 は試験開始 180 日後、シス体とトランス体の合量で最大 $11.6\sim15.9\%$ TAR、 M02 は試験開始 $33\sim91$ 日の間に最大 $5.8\sim6.8\%$ TAR 生成した。

ピラクロストロビン、分解物 M01 及び M02 の好気的土壌における推定半減期は、表 10 に示されている。

ピラクロストロビンは、土壌中でトリル環カーバメート側鎖のN脱メトキシ化、それに続くアミド分解を経て、ジアゾあるいはジアゾキシ2量化が起こると考えられた。 (参照9、10)

表 10 ピラクロストロビン、分解物 MO1 及び MO2 の好気的土壌における推定半減期(日)

標識体	[tol- ¹⁴ C]ピラクロストロビン	[chl- ¹⁴ C]ピラクロストロビン
親化合物	12	14
分解物 M01	129	166
M02	112	159

(2) 好気的土壌中運命試験②

4種類の海外土壌 [壌質砂土 (米国、ドイツ: 2種類)、壌土 (カナダ)] に、 $[tol^{-14}C]$ ピラクロストロビンを乾土あたり 0.33 mg/kg(250 g ai/ha 相当量)添加後、土壌水分を最大容水量(MWC)の 20 または 40%(滅菌、非滅菌)に調整し、120 日間、5、20 または 30°C、暗所条件下でインキュベートする、土壌中運命試験が実施された。

滅菌土壌及び低温(5°C)条件下ではほとんど分解が認められなかった。これは土壌微生物の不在または不活性によるものと考えられた。20°C、MWC40%の標準状態で、ピラクロストロビンの推定半減期は $38\sim101$ 日と算出された。高温(30°C)条件下では分解がやや促進されたが、分解物の量は 20°C条件より少なかった。土壌水分含量が少ない条件下における分解はやや遅く、これは土壌微生物にとって生息環境が適当でないためと考えられた。分解物としてすべての供試土壌から 2 量体M01 及び M02 が 10%TAR を超えて検出された。M01 及び M02 の推定半減期は $70\sim131$ 及び 38 日と算出された。(参照 11)

(3)土壤表面光分解試験

[tol-¹⁴C]ピラクロストロビンを、壌質砂土(ドイツ、40%MWC)及び砂壌土(ドイツ、80%MWC)に乾土あたり 1.65 mg/kg(250 g ai/ha 相当)となるように添加し、また、[chl-¹⁴C]ピラクロストロビンを砂壌土(ドイツ、40%MWC)に同じ量で添加した後、 22 ± 1 ℃でキセノン光(光強度:30 W/m²、測定波長: $290\sim1,200$ nm)を 15 日間連続照射し、土壌表面光分解試験が実施された。

抽出可能放射能残留量は経時的に減少し、照射開始 15 日後では、40%MWC 土壌で 77.8~80.7%TAR、80%MWC 土壌で 54.8%TAR となった。

15 日後の土壌から抽出された成分のうち、ピラクロストロビンは 40%MWC 土壌の光照射区で 63.6~74.4%TAR、暗所で 63.0~74.8%TAR、80%MWC 土壌の光照射区で 29.2%TAR、暗所で 38.7%TAR であった。主要分解物は M07 で、40%MWC 土壌の光照射区で 4.1~8.0%TAR、暗所で 1~2%TAR、80%MWC 土壌の光照射区で 6.1%TAR、暗所で 0.7%TAR 検出された。その他の同定された分解物として M01及び M02 が光照射区の 40%MWC 土壌で 0.29~0.46及び 0.34~0.38%TAR、80%MW 土壌で 5.2及び 4.8%TAR 検出された。 M01及び M02は暗所での生成が多く、それぞれ 40%MWC 土壌で 4.3~8.5及び 2.6~4.7%TAR、80%MWC 土壌で 15.5及び 8.3%TAR であった。

以上の結果より、M07 は化学的反応により、M01 及び M02 は微生物により生成することが示唆された。ピラクロストロビンの分解速度及び M07 の生成については、光照射区及び暗対照区との間に大きな差は認められず、ピラクロストロビンの土壌表層での分解に、光は明らかな影響を及ぼさないと考えられた。一方、土壌水分含有量が高くなるとピラクロストロビンの分解が促進されると考えられた。(参照 12)

(4) 土壌吸着試験(ピラクロストロビン)

4種類の国内土壌 [軽埴土(茨城、高知)、重埴土(茨城)及び壌質砂土(宮崎)] を用いて、ピラクロストロビンの土壌吸着試験が実施された。

Freundlich の吸着係数 K^{ads} は $51\sim405$ 、有機炭素含有率により補正した吸着係数 Koc は $3,400\sim22,800$ であった。(参照 13)

(5) 土壌吸脱着試験(分解物 MO1 及び MO2)

6種類の海外土壌 [砂土/壌質砂土 (ドイツ)、砂壌土 (ドイツ)、壌質砂土 (ドイツ、米国)、壌土 (米国)及び砂質埴壌土 (カナダ)]を用いて、ピラクロストロビンの分解物 M01及び M02の土壌吸脱着試験が実施された。

M01 は、Freundlich の吸着係数 K^{ads} は $79\sim915$ 、有機炭素含有率により補正した吸着係数 Koc は $3,160\sim183,000$ であった。脱着係数 K^{des} は $600\sim2,400$ 、有機炭素含有率により補正した脱着係数 K^{des} oc は $34,000\sim600,000$ であった。

M02 は、Freundlich の吸着係数 K^{ads} は $98\sim840$ 、有機炭素含有率により補正した吸着係数 Koc は $3,920\sim152,000$ であった。脱着係数 K^{des} は $1,110\sim13,000$ 、有機炭素含有率により補正した脱着係数 K^{des} は $83,000\sim307,000$ であった。

M01 及び M02 は水溶解度がきわめて低く吸着性が強いため、容器壁面への吸着が起こると考えられることから、計算された K^{ads} 値は実測値よりも M01 で $25\sim40\%$ 、M02 で $40\sim60\%$ 低いと考えられた。(参照 14、15)

(6)土壤溶脱性試験

4 種類の土壌(砂土、壌質砂土 2 種類及び砂壌土)に[chl-14C]ピラクロストロビンを処理し、土壌溶脱性試験が実施された。その結果、ピラクロストロビンは上位分画にのみ検出され、下位分画及び浸出液中には検出されなかったことから、土壌中において浸透移行性はないものと考えられた。

また、[chl-14C]ピラクロストロビンを添加した土壌(砂土)を、好気条件下に30日間エージングし、土壌浸透移行性試験を行った。ピラクロストロビン及びピラクロストロビン分解物は上位分画にのみ検出され、下位分画及び浸出液中には検出されなかったことから、土壌中において浸透移行性はないものと考えられた。(参照16、17)

4. 水中運命試験

(1) 加水分解試験

 $[tol^{-14}C]$ ピラクロストロビンまたは $[chl^{-14}C]$ ピラクロストロビンを pH 5、7 及び 9 の各緩衝液に濃度 0.5 mg/L になるように加えた後、25℃で 30 日間、暗条件下でインキュベートして、加水分解試験が実施された。

30日後に抽出された放射性物質のうち、親化合物が $78.4\sim97.1\%$ TAR存在した。 分解物M07が試験終了時に $3.3\sim5.6\%$ TAR検出されたが、試験期間中存在量はほぼ一定であり、加水分解によって生成されたものではないと考えられた。pH9では、

加水分解に起因すると思われる分解物 M01 及び M02 が確認されたが、pH5 及び 7 では確認されなかった。そのため、ピラクロストロビンは加水分解に対し安定であると考えられ、推定半減期は算出されなかった。

また、 $[tol^{-14}C]$ ピラクロストロビンまたは $[chl^{-14}C]$ ピラクロストロビンを pH 4、 90°Cで 20 分間還流、pH 5、100°Cで 60 分間沸騰及び pH 6、120°Cで 20 分間殺菌 (いずれも添加濃度は 0.5mg/L) する加水分解試験が実施された。いずれの場合も ピラクロストロビンの分解は認められず、安定であった。

ピラクロストロビンは、pH9の水溶液中でトリル環カーバメート側鎖のN脱メトキシ化と、それに続くジアゾあるいはジアゾキシ2量化が起こると考えられた。 (参照 18、19)

(2) 水中光分解試験(緩衝液)

は 0.06 日(1.4 時間) と算出された。

 $[tol^{-14}C]$ ピラクロストロビンまたは $[chl^{-14}C]$ ピラクロストロビンを、pH 5 の滅菌 酢酸緩衝液に 0.5 mg/L になるように加え、 22 ± 1 °Cでキセノン光(光強度: 30 W/m²、測定波長: $290\sim800$ nm)を 25 日間連続照射する水中光分解試験が実施された。 親化合物は、照射開始後 1 日程度で消失した。ピラクロストロビンの推定半減期

いずれの試験区(光照射区)でも、 $^{14}CO_2$ が経時的に増加し、試験終了時までに $[tol^{-14}C]$ ピラクロストロビン及び $[chl^{-14}C]$ ピラクロストロビン添加区でそれぞれ 3.7 及び 21.9% TAR 生成した。

[tol-¹4C] ピラクロストロビン添加区では、照射開始 3 時間後から分解物が認められ、M60、M58、M62 及び M76 がそれぞれ最大 44.5%TAR (21 日後)、20.3%TAR (1 日後)、16.8%TAR (6 日後)及び 14.8%TAR (6 時間後)、[chl-¹4C] ピラクロストロビン添加区で M78、M58 及び M76 がそれぞれ最大 26.6 (1 日後)、23.4 (1 日後)及び 20.7%TAR (3 時間後)存在した。 (参照 20)

(3) 水中光分解試験(自然水)

[tol-14C] ピラクロストロビンまたは[chl-14C] ピラクロストロビンを、滅菌自然水(池水、ドイツ、pH 7.9~8.0)に 0.5 mg/L となるように加えた後、 22 ± 1 ℃でキセノン光(光強度:30 W/m²、測定波長: $290\sim1,200$ nm)を 15 日間連続照射する水中光分解試験が実施された。

ピラクロストロビンの推定半減期は0.13~0.16日と算出された。

 $^{14}\text{CO}_2$ は経時的に増加し、試験終了時までに $4.2\sim6.9\%$ TAR 生成した。ピラクロストロビンは照射開始後 15 日で $2.0\sim8.6\%$ TAR に減少した。10%TAR を超えて生成した分解物は、M58 の 12.0%TAR(0.25 日後)、M60 の 35.7%TAR(10 日後)、M62 の 14.4%TAR(10 日後)、M76 の 25.0%TAR(0.25 時間後)及び M78 の 20.9%TAR(0.375 日後)であった。(参照 21)

(4) 水中光解試験(水/底質系における自然条件下)

 $[tol^{-14}C]$ ピラクロストロビンまたは $[chl^{-14}C]$ ピラクロストロビンを、池水/砂土(ドイツ、池水 pH 8.6) の水/底質系に水相中 $0.16\sim0.17$ mg/L となるように加え、62日間実環境条件(温度 $13\sim21^{\circ}C$)で水中光分解試験が実施された。

水相中の放射能は経時的に減少し、試験終了時に $31.4 \sim 46.2\%$ TAR となり、底質相中の放射能は、試験終了時に $45.7 \sim 47.0\%$ TAR であった。

ピラクロストロビンは試験終了時に水相及び底質相(抽出性放射能)中で 0.9%TAR 以下に減少した。10%TAR を超える分解物は 4 種類同定された。そのうち 3 種類は水相中の M60、M62 及び M76 であり、それぞれ 11.4(21 日後)、15.7(62 日後)及び $10.8\sim11.4\%$ TAR($10\sim14$ 日後)存在した。また、底質中から M07 が $16\sim17\%$ TAR(30 日後)検出された。

ピラクロストロビンの推定半減期は、水相中で5日、底質相で4日と算出された。 ピラクロストロビンは水/底質試験系で、①水相において光により急速に分解して 多数の分解物を生成し、②水相に添加したピラクロストロビンとその分解物は急速 に底質に取り込まれると考えられた。ピラクロストロビンの水中光分解経路として、 クロロフェニル基の脱離と、それに続くトリル環カーバメート側鎖の N・脱メトキシ 化、あるいはピラゾール環の酸化が起こると考えられる。また、未変化体が底質へ 移行した場合、トリル環カーバメート側鎖の N・脱メトキシ化が起こると考えられた。 (参照 22)

(5) 水中光分解試験 (精製水、河川水)

[tol-14C] ピラクロストロビンまたは[chl-14C] ピラクロストロビンを滅菌精製水または自然水 (河川水、神奈川、pH 7.4) に濃度 0.5 mg/L になるように加え、 $25\pm1^{\circ}$ C でキセノン光(光強度: 600 W/m^2 、測定波長: $290\sim800 \text{ nm}$)を 96 時間連続照射する水中光分解試験が実施された。

ピラクロストロビンの残存濃度は 96 時間後に精製水、河川水ともに 0.14 mg/L であった。推定半減期は精製水及び河川水でそれぞれ 59 及び 56 時間、東京、春の自然太陽光下に換算するとそれぞれ 15 及び 14 日と算出された。 (参照 23)

5. 土壌残留試験

洪積土・埴壌土(福島)及び火山灰土・埴壌土(長野)を用いて、ピラクロストロビン、分解物 M01 及び M02 を分析対象化合物とした土壌残留試験(容器内及び圃場)が実施された。

推定半減期は表 11 に示されている。(参照 24)

表 11 土壤残留試験成績

			推定半減期(日)		
試験	濃度*	土壌	親化合物	親化合物+	
			秋10日初	分解物 M01 及び M02	
		洪積土・埴壌土	30	35	
容器内	0.38	火山灰土・埴壌土	40	50	
試験	mg/kg	洪積土・埴壌土	37		
		火山灰土・埴壌土	59		
圃場	400	洪積土・埴壌土	28		
試験	g ai/ha	火山灰土・埴壌土	100		

注) -: 測定せず *: 容器内試験では純品、圃場試験ではドライフロアブルを使用

6. 作物残留試験

野菜及び果実を用いて、ピラクロストロビン及び代謝物 M07 を分析対象化合物と した作物残留試験が実施された。

結果は別紙 3 に示されている。ピラクロストロビンの可食部における最高値は、最終散布 45 日後に収穫したみかん(果皮)の 1.68 mg/kg であった。代謝物 M07 の可食部における最大値は、最終散布 7 日後に収穫したりんご(果実)の 0.059 mg/kg であった。

別紙3の作物残留試験に基づき、ピラクロストロビン(親化合物のみ)を暴露評価対象化合物として農産物より摂取される推定摂取量が表12に示されている。(別紙4参照)。

なお、本推定摂取量の算定は、申請された使用方法からピラクロストロビンが最大 の残留を示す使用条件で、今回申請のあった作物(かき、うめ及びすもも)を含むす べての適用作物に使用され、加工・調理による残留農薬の増減が全くないとの仮定の 下に行った。

表 12 食品中より摂取されるピラクロストロビンの推定摂取量

	国民平均	小児(1~6歳)	妊婦	高齢者(65 歳以上)
	(体重:53.3 kg)	(体重:15.8 kg)	(体重:55.6 kg)	(体重:54.2 kg)
摂取量 (μg/人/日)	44.0	24.3	32.1	47.3

7. 一般薬理試験

マウス及びラットを用いた一般薬理試験が実施された。結果は表 13 に示されている。 (参照 27)

表 13 一般薬理試験概要

	农 TO 用X未在的两个的女									
	試験の種類	動物種	動物数 匹/群	投与量 mg/kg 体重 (投与経路)	最大 無作用量 (mg/kg 体重)	最小 作用量 (mg/kg 体重)	結果の概要			
	一般状態	ICR マウス	雄3 雌3	0、320、 800、2,000、 5,000 (経口)	2,000	5,000	5,000 mg/kg 体重投与 群の雄で自発運動、握 力及び筋緊張の低下、 下痢、雌 1 例死亡			
中枢神経系	(Irwin 法)	SD ラット	雄 5	0、320、 800、2,000、 5,000 (経口)	800	2,000	5,000 mg/kg 体重投与 群で流涎、下痢及びよ ろめき歩行。 2,000 mg/kg 体重以上投与 群で体重増加抑制			
茶	へキソハ゛ルヒ゛ タール 睡眠	ICR マウス	雄8	0、128、320、 800、2,000、 5,000 (経口)	800	2,000	睡眠時間の延長			
	体温	SD ラット	雄 5	0、320、800、 2,000、5,000 (経口)	5,000	_	投与による影響 なし			
循環器系	血圧・心拍数	SD ラット	雄 5	0、800、 2,000、5,000 (経口)	5,000	_	投与による影響 なし (2,000 及び 5,000 mg/kg 体重投与群で1 例ずつ死亡)			
自律神経系	瞳孔径	SD ラット	雄 5	0、320、800、 2,000、5,000 (経口)	5000	_	投与による影響 なし			
消化器	炭末輸送能	ICR マウス	雄 8	0、20.5、 51.2、128、 320、800、 2,000、5,000 (経口)	5,000	_	投与による影響 なし (炭末投与前に一晩 絶食した 320、800、 2,000 及 び 5,000 mg/kg 体重投与群で それぞれ 3、7、5 及び 4 例死亡)			
骨格筋	握力	SD ラット	雄 5	0、320、800、 2,000、5,000 (経口)	5,000	_	投与による影響 なし			

	試験の種類	動物種	動物数 匹/群	投与量 mg/kg 体重 (投与経路)	最大 無作用量 (mg/kg 体重)	最小 作用量 (mg/kg 体重)	結果の概要
腎機能	腎機能	SD ラット	雄 5	0、51.2、128、 320、800、 2,000、5,000 (経口)	320	800	5,000 mg/kg 体重投与 群で、採尿時に 3 例死 亡 800 mg/kg 体重以上 投与群で尿量減少、尿 中ナトリウム、カリウ ム及びクロール排泄 量の減少。

注) 検体は、原体を1%Tween80水溶液に懸濁して用いた

-:最小毒性量は設定できなかった

8. 急性毒性

(1)急性毒性試験

ピラクロストロビン原体のラット及びマウスを用いた急性毒性試験が実施された。結果は表 14 に示されている。 (参照 $28\sim33$)

表 14 急性毒性試験概要 (原体)

ATT WITH THOUSAND (WITH)								
投与経路	動物種	LD ₅₀ (mg/kg 体重)		│ - 観察された症状				
1久子/庄/百	到7万年	雄 雌		既宗で407こ近初				
	Wistar ラット 雌雄各 5 匹	>5,000	>5,000	一般状態の悪化、不活発、呼吸困難、鎮静、うずくまり姿勢、立毛、下痢、被毛の汚れ 死亡例なし				
経口	ICR マウス 雌雄各 5 匹	>5,000 >5,000		体重増加抑制、自発運動低下、肛門周囲部被毛 汚れ、削痩、円背位、鎮静、眼瞼下垂、軟便 雄:死亡例なし、雌:5,000 mg/kg 体重投与群 で死亡例				
経皮	Wistar ラット 雌雄各 5 匹	>2,000	>2,000	症状及び死亡例なし				
吸入		LC_{50} (mg/L)					
	Wistar ラット 雌雄各 5 匹	0.31^	~1.07	呼吸の不整、亢進及び間欠性、血様鼻汁、閉眼、 無気力、逃避、立毛、被毛汚れ 雌雄:1.07 mg/L 以上投与群全例死亡				
	Wistar ラット 雌雄各 5 匹 4.07~7		~7.3	眼瞼閉鎖、呼吸逼迫、あえぎ呼吸、呼吸音、鎮静、うずくまり姿勢、立毛及び被毛の汚れ 雌雄:1.96 mg/L 以上投与群で死亡例				

		呼吸亢進、立毛およびうずくまり姿勢、逃避行
Wistar ラッ		動
雌雄各5匹	0.58	雄:0.65 mg/L 以上、雌:0.52 mg/L 以上投与
		群で死亡例

(2) 急性神経毒性試験

Wistar ラット(一群雌雄各 10 匹)を用いた強制経口(原体: 0、100、300 及び 1,000 mg/kg 体重) 投与による急性神経毒性試験が実施された。

いずれの投与群においても機能観察総合評価(FOB)、運動量、神経系の病理組織学的検査において、検体投与の影響は認められなかった。

本試験における神経毒性の無毒性量は、雌雄とも本試験の最高用量 1,000 mg/kg 体重/日であると考えられた。 (参照 34)

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼刺激性試験及び皮膚刺激性試験が実施された。その結果、眼に対しては刺激性は認められなかったが、皮膚に対する刺激性が認められた。

Hartley モルモットを用いた皮膚感作性試験 (Maximization 法) が実施された結果、皮膚感作性は認められなかった。 (参照 $35\sim37$)

10. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

Wistar ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、50、150、500、1,000 及び 1,500 ppm: 平均検体摂取量は表 15 参照) 投与による 90 日間亜急性毒性試験が実施された。

表 15 90 日間亜急性毒性試験 (ラット) の平均検体摂取量

投与群		50 ppm	150 ppm	500 ppm	1,000 ppm	1,500 ppm
平均検体摂取量	雄	3.5	10.7	34.7	68.8	106
(mg/kg 体重/日)	雌	4.2	12.6	40.8	79.7	119

各投与群で認められた毒性所見は表16に示されている。

本試験において、500 ppm 以上投与群の雄で体重増加抑制等が、雌で MCV 及び MCH の増加等が認められたので、無毒性量は雌雄とも 150 ppm (雄: 10.7 mg/kg 体重/日、雌: 12.6 mg/kg 体重/日)であると考えられた。(参照 38、67、69)

表 16 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌		
1,500 ppm	・赤血球 ChE 増加	• 体重增加抑制		
	•副腎比重量 ¹ 増加	・網状赤血球数増加、Ht 減少		
	• 十二指腸壁肥厚	・T.Bil 増加		
	・脾変色(黒色化)	・卵巣比重量増加		
	• 十二指腸粘膜過形成	• 十二指腸壁肥厚		
		・脾変色(黒色化)		
		• 十二指腸粘膜過形成		
		• 肝細胞肥大		
1,000 ppm	・MCV、網状赤血球数増加、PT 延	・WBC 増加、RBC、Hb、MCHC		
以上	長	減少		
	・Glob、Glu、TG 減少、T.Bil 増加	・Glob、クロール減少		
	・腎、精巣、脾及び脳比重量増加	・脾髄外造血亢進		
	・脾組織球症	・脾組織球症		
	・肝細胞肥大			
500 ppm 以上	・体重増加抑制、摂餌量減少	• 摂餌量減少		
	・MCHC 減少	・MCV、MCH 増加		
	・Alb、クロール増加、T.Chol 減少	・肝、腎及び脾比重量増加		
	• 副腎絶対重量減少	・副腎絶対重量減少		
150 ppm 以下	毒性所見なし	毒性所見なし		

(2) 90 日間亜急性毒性試験 (マウス)

B6C3F1 マウス(一群雌雄各 10 匹)を用いた混餌(原体:0、50、150、500、1,000 及び 1,500 ppm:平均検体摂取量は表 17 参照)投与による 90 日間亜急性毒性試験が実施された。

表 17 90 日間亜急性毒性試験(マウス)の平均検体摂取量

投与群		50 ppm	150 ppm	500 ppm	1,000 ppm	1,500 ppm
平均検体摂取量	雄	9.2	30.4	119	274	476
(mg/kg 体重/日)	雌	12.9	40.4	162	374	635

各投与群で認められた毒性所見は表 18 に示されている。

本試験において、150 ppm 以上の投与群の雄で体重増加抑制等が、雌で胸腺萎縮等が認められたので、無毒性量は雌雄とも50 ppm(雄:9.2 mg/kg 体重/日、雌:12.9 mg/kg 体重/日)であると考えられた。(参照39)

¹ 体重比重量を比重量という(以下同じ)

表 18 90 日間亜急性毒性試験(マウス)で認められた毒性所見

投与群	雄	雌
1,500 ppm	・PLT 増加、Hb 減少	・PLT 増加
	・T.Bil、Alb、カリウム減少	
	・胃びらん/潰瘍	
	・腸間膜リンパ節アポトーシス小体増加	
1,000 ppm	・WBC、MCH 減少	・Hb 減少
以上	・TP、カルシウム、Glob 減少、ALP 増	・TP、Cre、カルシウム減少
	加	・卵巣比重量減少
	・脾絶対重量減少	
	・胸腺萎縮	
500 ppm	・MCV 減少	・体重増加抑制
以上	・クロール増加	・MCH、MCHC 減少
	・精巣及び副腎比重量増加	・Glob 減少、T.Chol、クロール増加
	• 十二指腸壁肥厚	• 十二指腸壁肥厚
	• 十二指腸粘膜過形成	・胃びらん/潰瘍
		・十二指腸粘膜過形成
		・腸間膜リンパ節アポトーシス小体
150 ppm	・体重増加抑制	・TG 減少、Ure 増加
以上	・Ht 減少	・胸腺萎縮
	・TG 減少、Ure 増加	
	• 腎絶対重量減少	
50 ppm	毒性所見なし	毒性所見なし

(3)90日間亜急性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 5 匹) を用いた混餌 (原体:0、100、200 及び 450 ppm: 平均検体摂取量は表 19 参照) 投与による 90 日間亜急性毒性試験が実施された。

表 19 90 日間亜急性毒性試験(イヌ)の平均検体摂取量

投与群		100 ppm	200 ppm	450 ppm
平均検体摂取量 雄		2.8	5.8	12.9
(mg/kg 体重/日)	雌	3.0	6.2	13.6

各投与群で認められた毒性所見は表 20 に示されている。

本試験において、450 ppm 投与群の雌雄で十二指腸粘膜肥厚等が認められたので、 無毒性量は雌雄とも 200 ppm (雄:5.8 mg/kg 体重/日、雌:6.2 mg/kg 体重/日)で あると考えられた。(参照 40、67)

表 20 90 日間亜急性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌
450 ppm	・嘔吐、下痢	・嘔吐、下痢
	• 十二指腸粘膜肥厚	• 体重増加抑制、摂餌量減少
		・PLT 増加
		・TP 増加
		• 十二指腸粘膜肥厚
200 ppm 以下	毒性所見なし	毒性所見なし

(4) 90 日間亜急性神経毒性試験 (ラット)

Wistar ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、50、250、750 (雄) 及び1,500 (雌) ppm: 平均検体摂取量は表21 参照) 投与による90 日間亜急性神経毒性試験が実施された。

表 21 90 日間亜急性神経毒性試験 (ラット) の平均検体摂取量

投与群		50 ppm	250 ppm	750 ppm	1,500 ppm
平均検体摂取量	雄	3.5	16.9	49.9	
(mg/kg 体重/日)	雌	4.0	20.4		112

各投与群で認められた毒性所見は表 22 に示されている。いずれの投与群でも、 FOB、自発運動量、神経病理組織学的検査において検体投与の影響は認められなかった。

本試験において、250 ppm 以上の投与群の雄及び 1,500 ppm 投与群の雌で摂餌量及び飲水量の減少等が認められたので、無毒性量は雄で 50 ppm(3.5 mg/kg 体重/日)、雌で 250 ppm(20.4 mg/kg 体重/日)であると考えられた。神経毒性は認められなかった。(参照 41)

表 22 90 日間亜急性神経毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌		
1,500 ppm		体重増加抑制、摂餌量、飲水量減		
		少		
		• 前肢握力低下		
750 ppm	• 体重増加抑制			
250 ppm 以上	・摂餌量、飲水量減少	250 ppm 以下毒性所見なし		
50 ppm	毒性所見なし			

11. 慢性毒性試験及び発がん性試験

(1)1年間慢性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 5 匹) を用いた混餌 (原体: 0、100、200 及び 400 ppm: 平均検体摂取量は表 23 参照) 投与による 1 年間慢性毒性試験が実施された。

 投与群
 100 ppm
 200 ppm
 400 ppm

 平均検体摂取量
 雄
 2.7
 5.4
 10.8

 (mg/kg 体重/日)
 雌
 2.7
 5.4
 11.2

表 23 1年間慢性毒性試験(イヌ)の平均検体摂取量

400 ppm 投与群の雌雄で下痢、嘔吐、PLT 増加、TP 及び T.Chol 減少が、同群の雄で WBC(多形核好中球及びリンパ球)増加及び Alb 減少が、雌で体重増加抑制、摂餌量減少及び Glob 減少が認められた。

本試験において、400 ppm 投与群の雄で WBC (多形核好中球、リンパ球) 増加等が、雌で体重増加抑制等が認められたので、無毒性量は雌雄とも 200 ppm (雄: 5.4 mg/kg 体重/日、雌: 5.4 mg/kg 体重/日) であると考えられた。 (参照 42)

(2)2年間慢性毒性試験(ラット)

Wistar ラット (一群雌雄各 20 匹) を用いた混餌 (原体: 0、25、75 及び 200 ppm: 平均検体摂取量は表 24 参照) 投与による 2 年間慢性毒性試験が実施された。

投与群	25 ppm	75 ppm	200 ppm			
平均検体摂取量 雄		1.1	3.4	9.0		
(mg/kg 体重/日)	雌	1.5	4.6	12.3		

表 24 2 年間慢性毒性試験 (ラット) の平均検体摂取量

死亡率に検体投与の影響は認められなかった。

200 ppm 投与群の雌雄で体重増加抑制が、同群の雄で精巣上体無精子症が認められた。腫瘍性病変は認められなかった。

本試験において、200 ppm 投与群の雌雄で体重増加抑制等が認められたことから、無毒性量は雌雄とも 75 ppm(雄:3.4 mg/kg 体重/日、雌:4.6 mg/kg 体重/日)であると考えられた。(参照 43)

(3)2年間発がん性試験(ラット)

Wistar ラット (一群雌雄各 50 匹) を用いた混餌 (原体: 0、25、75 及び 200 ppm: 平均検体摂取量は表 25 参照) 投与による 2 年間発がん性試験が実施された。

表 25 2 年間発がん性試験 (ラット) の平均検体摂取量

投与群	25 ppm	75 ppm	200 ppm	
平均検体摂取量	雄	1.2	3.4	9.2
(mg/kg 体重/日)	雌	1.5	4.7	12.6

死亡率に検体投与の影響は認められなかった。200 ppm 投与群の雌雄で体重増加抑制が、同群の雄で摂餌量減少が認められた。

雄における肝細胞壊死、変異肝細胞巣、肝細胞腺腫及び癌の発生頻度が表 26 に示されている。200 ppm 投与群で、肝細胞壊死及び肝細胞腺腫が有意に増加したが、肝細胞腺腫の発生頻度(22%)が同系統雄ラットにおける肝細胞腺腫の背景データ(0~30%)の範囲内であることから、本変化は検体投与の影響によるものとは考えられなかった。

また、雌における乳腺嚢胞、過形成及び乳腺上皮由来腫瘍の発生頻度が表 27 に示されている。 $200 \, \mathrm{ppm}$ 投与群で、乳腺腺癌の発生頻度が有意に増加したが、その発生頻度(16%)が同系統雌ラットにおける背景的データ($0\sim25\%$)の範囲内であることから、投与の影響とは考えられなかった。

本試験において、200 ppm 投与群の雌雄で体重増加抑制等が認められたので、無毒性量は雌雄とも 75 ppm(雄: 3.4 mg/kg 体重/日、雌: 4.7 mg/kg 体重/日)であると考えられる。発がん性は認められなかった。 (参照 44、67)

表 26 雄における肝細胞腺腫及び癌の発生頻度

性別	雄				
投与群	0 ppm	$25~\mathrm{ppm}$	75 ppm	200 ppm	
検査動物数	50	50	50	50	
肝細胞腺腫	4	7	5	11*	
肝細胞癌	4	3	5	3	
肝細胞腺腫/癌	8	10	10	14	

Fisher の直接確率計算法、*: p<0.05、**: p<0.01

表 27 雌における乳腺上皮由来腫瘍の発生頻度

性別	雌				
投与群(ppm)	0 ppm	$25~\mathrm{ppm}$	75 ppm	200 ppm	
検査動物数	50	50	50	50	
腺腫	0	0	2	1	
嚢腺腫	0	1	0	1	
線維腺腫	10	10	8	10	
腺癌	2	6	2	8*	
腺腫/のう腺腫/線維腺腫/腺癌	12	17	12	20	

Fisher の直接確率計算法、*: p<0.05

(4) 18 カ月間発がん性試験(マウス)

B6C3F1マウス(一群雌雄各 50 匹)を用いた混餌 [原体:0、10、30、120 及び 180(雌のみ) ppm: 平均検体摂取量は表 28 参照] 投与による 18 カ月間発がん性 試験が実施された。

表 28 18 カ月間発がん性試験(マウス)投与量一覧

投与群	10 ppm	30 ppm	120 ppm	180 ppm	
平均検体摂取量	雄	1.4	4.1	17.2	
(mg/kg 体重/日)	雌	1.6	4.8	20.5	32.8

各投与群で認められた毒性所見は表 29 に示されている。死亡率に、検体投与の 影響は認められなかった。また、検体投与に関連して発生頻度の増加した腫瘍性病 変は、認められなかった。

本試験において、120 ppm 投与群の雄及び 180 ppm 投与群の雌で体重増加抑制等が認められたので、無毒性量は雄で 30 ppm (4.1 mg/kg 体重/日)、雌で <math>120 ppm (20.5 mg/kg 体重/日) であると考えられた。発がん性は認められなかった。(参照 45)

表 29 18 カ月間発がん性試験(マウス)で認められた毒性所見

投与群	雄	雌
180 ppm		• 体重増加抑制
120 ppm 以上	・体重増加抑制	120 ppm 以下毒性所見なし
30 ppm 以下	毒性所見なし	

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)

Wistar ラット (一群雌雄各 25 匹) を用いた混餌 (原体: 0、25、75 及び 300 ppm: 平均検体摂取量は表 30 参照) 投与による 2 世代繁殖試験が実施された。

投与群			$25~\mathrm{ppm}$	75 ppm	300 ppm	
	P世代	雄	2.5	7.4	29.0	
平均検体摂取量	I ET	雌	2.6	7.8	30.4	
(mg/kg 体重/日)	17. ###	雄	2.8	8.6	35.0	
	F ₁ 世代		3.0	9.0	36.0	

表 30 2世代繁殖試験(ラット)の平均検体摂取量

親動物及び児動物における各投与群で認められた毒性所見は表 31 に示されている。

本試験において、親動物では、300 ppm 投与群の雌雄で体重増加抑制等が、児動物では 300 ppm 投与群の雌雄で低体重等が認められたので、無毒性量は親動物及び児動物の雌雄とも 75 ppm(P 雄: 7.4 mg/kg 体重/日、P 雌: 7.8 mg/kg 体重/日、 F_1 雄: 8.6 mg/kg 体重/日、 F_1 雌: 9.0 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。(参照 46、67、69)

	投与群	親 : P、児 : F1		親 : F1、児 : F2	
	1又一十	雄	雌	雄	雌
親動物	300 ppm	・体重増加抑制、摂	• 体重增加抑制、摂	• 体重增加抑制、摂	• 体重增加抑制、摂
		餌量減少	餌量減少	餌量減少	餌量減少
					• 膣開口遅延
	75 ppm 以下	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし
児動物	300 ppm	・低体重	・低体重	・低体重	・低体重
		・胸腺及び脾絶対重	・胸腺及び脾絶対重	・胸腺及び脾絶対重	• 脾絶対重量減少
		量減少	量減少	量減少	
120	75 ppm 以下	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし

表 31 2世代繁殖試験 (ラット) で認められた毒性所見

(2)発生毒性試験(ラット)

Wistar ラット(一群雌 25 匹)の妊娠 6~19 日に強制経口(原体:0、10、25 及び 50 mg/kg 体重/日、溶媒:0.5%Tylose CB 30.000)投与して、発生毒性試験が実施された。

母動物では、50 mg/kg 体重/日投与群で体重増加抑制が、25 mg/kg 体重/日以上投与群で妊娠子宮を除いた補正体重増加抑制及び摂餌量減少が認められた。

胎児では、50 mg/kg 体重/日以上投与群で内臓変異(腎盂拡張)、骨格変異及び 化骨遅延(頚肋、胸骨分節骨化不全)の発生増加が認められた。

本試験における無毒性量は、母動物で 10 mg/kg 体重/日、胎児では 25 mg/kg 体重/日であると考えられた。 (参照 47)

(3)発生毒性試験(ウサギ)

ヒマラヤンウサギ (一群雌 25 匹) の妊娠 $7\sim28$ 日に強制経口 (原体:0、5、10 及び 20 mg/kg 体重/日、溶媒:0.5%TyloseCB30.000) 投与して、発生毒性試験が実施された。

母動物では、10 mg/kg 体重/日以上投与群で全胚吸収母体、体重増加抑制、摂餌量減少、妊娠子宮重量減少が認められた。

胎児では、20 mg/kg 体重/日投与群で着床後胚死亡率の増加及び生存胎児数の減少が、10 mg/kg 体重/日で着床後胚死亡率増加傾向が認められた。

本試験における無毒性量は、母動物及び胎児で 5 mg/kg 体重/日であると考えられた。 催奇形性は認められなかった。 (参照 48、63)

13. 遺伝毒性試験

ピラクロストロビンの細菌を用いた復帰突然変異試験、チャイニーズハムスター 卵巣由来細胞(CHO)を用いた HGPRT 遺伝子突然変異試験、チャイニーズハムスター肺由来細胞(V79)を用いた染色体異常試験、ラット肝初代培養細胞を用いた $in\ vitro$ 不定期 DNA 合成(UDS)試験、マウスを用いた小核試験が実施された。 結果は表 32 に示されている。試験結果はすべて陰性であったので、ピラクロストロビンに遺伝毒性はないものと考えられた。(参照 $49\sim53$)

試験 対象 処理濃度·投与量 結果 20~5,000 μg/7° V-\ 復帰突然変異 Salmonella typhimurium in vitro 試験 (+/-S9)(TA98, TA100, 陰性 TA1535、TA1537株) Escherichia coli (WP2uvrA 株) チャイニーズハムスター HGPRT 遺伝子 $10.625 \sim 20.0 \, \mu \text{g/mL}$ 突然変異試験 卵巢由来細胞 (CHO) (+/-S9)陰性 $23.0 \sim 8.0 \, \mu \text{g/mL} \, (-\text{S9})$ $31.25 \sim 20.0 \, \mu \text{g/mL}$ (+/-S9)染色体異常試 チャイニーズハムスター $(1)6.25\sim25.0 \,\mu \text{g/mL}$ 験 肺由来細胞(V79) (+/-S9)陰性

表 32 遺伝毒性試験結果概要(原体)

			②3.13~12.5 μg/mL	
			(+S9)	
			$0.005{\sim}0.05~\mu \mathrm{g/mL}$	
			(-S9)	
	UDS 試験	ラット初代培養肝細胞	①0.01~1.0 μg/mL	陰性
			20.004~0.5 μg/mL	
in vivo	小核試験	NMRI マウス(骨髄細胞)	75、150、300 mg/kg 体重	陰性
		(一群雌雄各5匹)	(単回経口投与)	

注) +/-S9: 代謝活性化存在下及び非存在下

ピラクロストロビン代謝物である M01、M02、M60、M62 及び M76 の細菌を用いた復帰突然変異試験が実施された。結果は表 33 に示されており、いずれも陰性であったので、これらの代謝物に遺伝毒性はないものと考えられた。

(参照 54~58)

表 33 遺伝毒性試験結果概要 (代謝物)

ナナ 年今 北元 斤斤	434€	斗		⟨土 田
被験物質	試験	対象		結果
 代謝物 M01			①20~5,000 μg/7° ν-}	
1 (101) (8) (101)	復帰突然変異	S. typhimurium 《TA100、TA98、	(+/-S9)	
 代謝物 M02			②4~2,500 μg/7° ν-ト	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			(+S9)	
 代謝物 M60			20~5,000 μg/7° ν-ト	
(國) 40 WIOO			(+/-S9)	陰性
	試験	TA1535、TA1537株)	①20~5,000 μg/プレート	会江
/₽割+//m MCO	物 M62	E.coli (WP2uvrA 株)	(+/-S9)	
1 (成) 40 MOZ			②4~2,500 μg/7° ν-ト	
			(+/-S9)	
代謝物 M76			22~5,500 μg/プレート	
1 (時177) 1/17/0			(+/-S9)	

注) +/-S9: 代謝活性系存在下及び非存在下

14. その他の試験

(1) 肝過酸化脂質測定試験 (ラット)

ラットを用いた 2 年間発がん性試験[11.(3)]において、200 ppm 投与群の雄で肝細胞壊死及び腺腫の原因として、肝臓に酸化ストレス的影響があるか検証するため、Wistar ラット(一群雄 10 匹)に 14 または 28 日間混餌(原体:0、75 及び 200 ppm: 平均検体摂取量は表 34 参照)投与して、肝過酸化脂質測定試験が実施された。

表 34 肝過酸化脂質測定試験 (ラット) の平均検体摂取量

投与群	75 ppm	200 ppm	
平均検体摂取量	14 日間	5.3	13.4
(mg/kg 体重/日)	28 日間	5.1	13.6

14 日間投与群では 200 ppm 投与群で、28 日間投与群では 75 ppm 以上投与群で 過酸化脂質の減少が認められた。

ピラクロストロビン投与は肝臓に対して酸化的ストレスを及ぼさないと考えられた。(参照 59)

(2) in vitro溶血試験

ラットを用いた 90 日間亜急性毒性試験[10.(1)]において、検体投与群で貧血が認められたが、ピラクロストロビンに直接的溶血作用がないことを確認するため、ウサギ赤血球をピラクロストロビン存在下(0.001~0.1%W/V)で 2 時間インキュベートする、*in vitro*溶血試験が実施された。

比較的高い濃度(0.1%W/V)のピラクロストロビンと赤血球との懸濁液を2時間 攪拌した後でも溶血が認められなかったことから、ピラクロストロビンには直接的 な溶血作用はないと考えられた。(参照60)

(3) 血清及び尿中鉄分析試験(ラット)

ラットを用いた 90 日間亜急性毒性試験[10. (1)]において、1,500 ppm 投与群で十二指腸粘膜壁肥厚が認められた。そのメカニズムを検討するために、Wistar ラット (一群雌雄各 10 匹) に 14 日間混餌 (原体: 0、50、500 及び 1,500ppm: 平均 検体摂取量は表 35 参照) 投与し、血清及び尿中鉄分析試験が実施された。

表 35 血清及び尿中鉄分析試験 (ラット) の平均検体摂取量

投与群		50 ppm	500 ppm	1,500 ppm
平均検体摂取量	雄	3.8	33.9	73.9
(mg/kg 体重/日)	雌	4.1	37.4	78.3

500 ppm 以上投与群の雌雄で、血清中鉄濃度減少が認められた。血清中トランスフェリン及び尿中鉄排泄量については、いずれの投与群においても検体投与の影響は認められなかった。

ラットを用いた 90 日間亜急性毒性試験[10.(1)]における 500 ppm 以上投与群の雌雄で認められた十二指腸肥厚及び粘膜過形成に一致して、血清鉄濃度の減少が認められたことから、十二指腸肥厚及び粘膜過形成はピラクロストロビン投与により持続性血清鉄欠乏が生じ、鉄吸収要求の亢進した結果もたらされたと考えられた。

本試験において、500 ppm 以上投与群の雌雄で血清中鉄濃度減少が認められたこ

とから、血清中鉄濃度の減少に関する無毒性量は 50 ppm(雄: 3.8 mg/kg 体重/日、雌: 4.1 mg/kg 体重/日)であると考えられた。(参照 61)

(4) ピラクロストロビン及びビタミンB₁,同時投与試験(ラット)

ピラクロストロビン投与による影響(貧血、血清中鉄濃度減少等)が、ビタミン B_{12} 投与によって抑制されるか検討するため、Wistar ラット(一群雄 12 匹)に 28 日間混餌 [原体: 0 及び 1,500 ppm(0 及 98mg/kg 体重/日に相当)] 投与と同時に ビタミン B_{12} を皮下 (0 及び 10 μ g/個体、1 日 1 回投与) 投与する試験が実施された。

ビタミン B_{12} 投与の有無にかかわらず、ピラクロストロビン投与群で体重及び摂餌量の減少、RBC、Hb、MCV、MCHC 及び血清鉄濃度の減少、PLT 増加ならびに十二指腸比重量の増加が認められた。また、前胃及び腺胃の pH にピラクロストロビン投与の影響は認められなかった。

ピラクロストロビンに起因する貧血、血清鉄濃度の減少及び十二指腸重量増加は、ビタミン B_{12} を投与しても抑制されなかったことから、これらの変化はビタミン B_{12} または pH の変化による鉄吸収への影響が原因ではないと考えられた。 (参照 62)

(5) BAS505F²及び鉄の同時消化管外投与試験(ラット)

BAS505F 投与によって誘発された十二指腸重量増加が鉄の投与によって抑制されるか検討するため、Wistar ラット(一群雌雄各 10 匹)を用いて、BAS505F14日間(雄)または7日間(雌)混餌[原体:0、500(雌のみ)及び4,500 ppm(雌雄):平均検体摂取量は表36参照]投与及び鉄錯体(Fe³+)の筋肉内³投与併用による、BAS505F及び鉄の同時消化管外投与試験が実施された。

我 00 DN00001 及 0 数	, U J H J F				*1X4X <u>=</u>	
投与群	投与群 500 ppm		500 ppm	4,500 ppm	4,500 ppm	
127. 4. E.I			+ Fe ³⁺	1,000 ppin	+ Fe ³⁺	
平均検体摂取量	雄			207	171	
(BAS505F:mg/kg体重/日)	雌	37.7	17.7	191	84.9	

表 36 BAS505F 及び鉄の同時消化管外投与試験 (ラット) の平均検体摂取量

BAS505F のみの投与群では、いずれも血清中鉄濃度の低下が、鉄錯体の同時投与群では、混餌投与開始7日後に雌雄とも血清中鉄濃度の上昇が認められた。十二指腸の絶対重量増加及び細胞増殖の増加(PCNA染色で確認)には高い相関性が認められた。また、4,500 ppm 投与群では鉄錯体の同時投与により、細胞増殖の増加率及びび漫性過形成の程度が低くなる傾向が認められた。(参照62、67、69、70)

dimoxystrobin : (E)-2-(methoxyimino)-N-methyl-2-[α -(2,5-xylyloxy)- σ -tolyl]acetamide

雌:混餌投与開始2日前~混餌投与開始6日後まで、50 mg/kg 体重/日を1日2回

² ピラクロストロビンの類似化合物である

³ 雄:混餌投与開始 0、7、11 及び 13 日後に 100 mg/kg 体重/日を 1 日 1 回

(6) BAS505F 投与による十二指腸粘膜鉄吸収及び輸送への影響試験 (ラット)

BAS505F 投与により、貧血と同時に十二指腸粘膜肥厚/過形成が認められた。この貧血の機序を検討するため、Wistar ラット (一群雌 5 匹) に BAS505F を混餌 (原体:0及び4,500 ppm) 投与し、投与開始24、96及び168時間後に摘出した十二指腸の粘膜の一部を反転し、59Fe 存在下(4 mM)で培養して、十二指腸粘膜鉄吸収及び輸送への影響試験が実施された。

BAS505F を 96 及び 168 時間投与した個体の十二指腸では、59Fe 吸収の減少が認められた。オートラジオグラフィーの観察では、対照群で 59Fe が絨毛全域に分布していたのに対し、投与群では絨毛上部にのみ分布した。この結果より、ストロビルリン系薬物投与により、十二指腸における吸収は量的にも吸収面積においても低下すると考えられた。

また、BAS505F を 96 時間混餌投与した個体から摘出した十二指腸に ⁵⁹Fe を注入したところ、20 分後には、粘膜内保持量、粘膜輸送量及び全粘膜吸収量が減少したことから、ストロビルリン系薬物投与により、十二指腸粘膜から体内への ⁵⁹Fe 輸送が抑制されたと考えられる。

本試験の結果から、ストロビルリン系化合物は、十二指腸における鉄吸収/体内輸送の両面を抑制することで血清中鉄濃度の減少をもたらし、この吸収抑制が十二指腸粘膜上皮に対する鉄吸収要求亢進のネガティブフィードバックとなって、吸収面積の拡張を図るため粘膜上皮細胞が増生し、結果的に粘膜肥厚/過形成が生じたと考えられた。(参照 63)

Ⅲ. 食品健康影響評価

参照に挙げた資料を用いて農薬「ピラクロストロビン」の食品健康影響評価を実施した。

ラットを用いた動物体内運命試験の結果、ピラクロストロビンの血漿中 T_{max} は 0.5 ~8 時間であった。投与後 48 時間で 80% TAR 異常が主に糞中を介して排泄された。組織中の濃度は、胃、腸管、肝臓及び腎臓中において比較的高濃度に分布したが、臓器中の放射能は急速に消失した。糞中から検出された主要代謝物は M08 であった。主要代謝経路はトリルカーバメート側鎖の N 脱メトキシ化とそれに続く開裂化合物の酸化であった。

ぶどう、ばれいしょ、小麦及びはくさいを用いた植物体内運命試験が実施された。主要成分は親化合物であり、主要代謝物はM07及びM72であった。また、小麦において、ピラクロストロビン散布後に展開した部位に対しての移行性は極めて小さかった。主要代謝経路は、トリル環カーバメート側鎖のN-脱メトキシ化であった。

野菜及び果実を用いて、ピラクロストロビン及び代謝物 M07 を分析対象化合物とした作物残留試験が実施された。可食部におけるピラクロストロビンの最高値は、最終散布 45 日後に収穫したみかん(果皮)の 1.68 mg/kg であった。代謝物 M07 は多くの作物で検出限界以下か検出されても微量であった。

各種毒性試験結果から、ピラクロストロビン投与による影響は、主に血液及び十二 指腸に認められた。

ストロビルリン系化合物の十二指腸への影響の共通のメカニズムとして、これらの化合物は食餌中の Fe³+とキレート結合し、十二指腸粘膜の鉄捕捉タンパクによる捕捉を妨げ、同時に上皮細胞での吸収メタルトランスポータと体内への輸送機構を阻害し、血清鉄濃度を低下させるとともに、幹細胞における Fe²+のエンドソームからの汲み出しを抑制し、強い鉄吸収要求を持続させ、粘膜面積の拡大と細胞増殖活性亢進をもたらすと考えられた。ただし、ストロビルリン系化合物には変異原性がなく、十二指腸に対する本毒性には閾値があり、投与を中止すれば完全に回復することが確認されている。

したがって、マウス、ラットにおいて発生した十二指腸壁肥厚及び粘膜過形成は、ピラクロストロビン投与により血清鉄の著しい減少が起こり、十二指腸粘膜上皮における鉄吸収要求が亢進される結果、吸収面積の拡張を図るため粘膜上皮細胞が増生して発生したものと考えられた。また、ピラクロストロビンの鉄イオンに対するキレート作用は認められなかったが、代謝物 M07 は弱いキレート作用を示した。

ラットで認められた赤血球項目及び病理組織学的検査項目の所見から溶血性貧血が 疑われたが、ピラクロストロビン投与により血清鉄が減少したことから鉄欠乏性貧血が 示唆されること、マウスで溶血性を示唆する所見が認められず低色素性小球性貧血が認 められたこと、ウサギ赤血球を用いた *in vitro* 溶血性試験において溶血作用が認められ なかったことから、総合的に判断した結果、ピラクロストロビンによる貧血は低色素性 貧血と考えられた。

神経毒性、発がん性、繁殖能に対する影響及び遺伝毒性は認められなかった。

発生毒性試験において、ラットでは、内臓変異及び骨格変異の増加が認められたが、 奇形の増加は認められなかった。 ウサギでは胎児に影響は認められなかった。 これら のことから、ピラクロストロビンに催奇形性はないと考えられた。

各種試験結果から、農産物中の暴露評価対象物質をピラクロストロビン (親化合物のみ) と設定した。

各試験における無毒性量及び最小毒性量は表37に示されている。

表 37 各試験における無毒性量及び最小毒性量

	1	T	の無再性重及い取り	·
動物種	試験	無毒性量 (mg/kg 体重/日)	最小毒性量 (mg/kg体重/日)	備考
ラット	90 日間 亜急性毒性 試験	雄:10.7 雌:12.6	雄:34.7 雌:40.8	雄:体重増加抑制等 雌:MCV及びMCH増加等
	90 日間 亜急性神経 毒性試験	雄: 3.5 雌: 20.4	雄:16.9 雌:112	雌雄:摂餌量及び飲水量減少 等 (神経毒性は認められない)
	2 年間 慢性毒性 試験	雄: 3.4 雌: 4.6	雄: 9.0 雌: 12.3	雌雄:体重増加抑制等
	2 年間 発がん性 試験	雄:3.4 雌:4.7	雄:9.2 雌:12.6	雌雄:体重増加抑制等 (発がん性は認められない)
	2世代繁殖試験	親動物及び児動物 P雄:7.4 P雌:7.8 F ₁ 雄:8.6 F ₁ 雌:9.0	親動物 P雄: 29.0 P雌: 30.4 F ₁ 雄: 35.0 F ₁ 雌: 36.0	親動物 雌雄:体重増加抑制等 児動物:低体重等 (繁殖能に対する影響は認め られない)
	発生毒性 試験	母動物:10 胎児:25	母動物:25 胎児:50	母動物:補正体重増加抑制等 胎児:腎盂拡張、頚肋及び胸 骨分節化骨不全発生増加
マウス	90 日間 亜急性毒性 試験	雄:9.2 雌:12.9	雄:30.4 雌:40.4	雄:体重増加抑制等 雌:胸腺萎縮等
	18 カ月間 発がん性 試験	雄:4.1 雌:20.5	雄:17.2 雌:32.8	雌雄: 体重増加抑制等 (発がん性は認められない)

動物種	試験	無毒性量 (mg/kg 体重/日)	最小毒性量 (mg/kg 体重/日)	備考		
ウサギ	発生毒性	母動物及び胎児:5	母動物及び胎児:	母動物:体重増加抑制等		
	試験		10	胎児:着床後胚死亡率増加		
				傾向		
				(催奇形性は認められない)		
イヌ	90 日間	雄:5.8	雄:12.9	雌雄:十二指腸粘膜肥厚等		
	亜急性毒性	雌:6.2	雌:13.6			
	試験					
	1年間	雌雄:5.4	雄:10.8	雄:WBC(多形核好中球、リ		
慢性毒性			雌:11.2	ンパ球)増加等		
	試験			雌:体重増加抑制等		

-:最小毒性量または無毒性量は設定できなかった。

備考:最小毒性量で認められた所見の概要を示す。

食品安全委員会農薬専門調査会は、各試験で得られた無毒性量の最小値がラットを用いた2年間慢性毒性試験及び2年間発がん性試験の3.4 mg/kg 体重/日であったことから、これを根拠として、安全係数100で除した0.034 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

ADI 0.034 mg/kg 体重/日

(ADI 設定根拠資料①) 慢性毒性試験

(動物種)ラット(期間)2年間(投与方法)混餌投与

(ADI 設定根拠資料②) 発がん性試験

(動物種) ラット(期間) 2年間(投与方法) 混餌投与

(無毒性量) 3.4 mg/kg 体重/日

(安全係数) 100

<別紙1:代謝物/分解物略称>

略称	化学名					
M01	N,N-bis-[2-[1-(4-chlorophenyl)-1 H -pyrazol-3-yloxy-methyl]-phenyl]-diazene					
1,101	N-oxide					
M02	N, N ² bis-[2-[1-(4-chlorophenyl)-1 H -pyrazol-3-yloxy-methyl]-phenyl]-diazene					
M03、	1-(4-chlorophenyl)-1 <i>H</i> -pyrazol-3-yl glucopyranosiduronic acid					
M79						
M04	1-(4-chlorophenyl)-1 <i>H</i> -pyrazol-3-ol					
M05	1-(4-chlorophenyl)-1 <i>H</i> -pyrazol-3-yl hydrogensulphate					
M06	1-(4-chlorophenyl)-3-({2-[(methoxycarbonyl)amino]benzyl}oxy)-1 <i>H</i> -pyrazol					
	-4-yl glucopyranosiduronic acid					
M07	methyl N -(2-{[1-(4-chlorophenyl)-1 H -pyrazol-3-yl]oxymethyl}phenyl)					
	carbamate					
M08	methyl N -(2-{[1-(4-chlorophenyl)-4-hydroxy-1 H -pyrazol-3-yl]oxymethyl}					
	phenyl)carbamate					
M13	$1-(4-chlorophenyl)-5-hydroxy-3-(\{2-[(methoxycarbonyl)amino]benzyl\}oxy)-1 H-1-(4-chlorophenyl)-5-hydroxy-3-(\{2-[(methoxycarbonyl)amino]benzyl\}oxy)-1 H-1-(4-chlorophenyl)-5-hydroxy-3-(\{2-[(methoxycarbonyl)amino]benzyl\}oxy)-1 H-1-(4-chlorophenyl)-1-(4-chlorophe$					
	pyrazol-4-yl glucopyranosiduronic acid					
	$1-(4-chlorophenyl)-4-hydroxy-3-({2-[(methoxycarbonyl)amino]benzyl}oxy)-1H-$					
	pyrazol-5-yl glucopyranosiduronic acid					
M15	1-(4-chlorophenyl)-4-hydroxy-3-({2-[hydroxy(methoxycarbonyl)amino]					
	benzyl}oxy)-1 <i>H</i> -pyrazol-5-yl glucopyranosiduronic acid					
M18	hydroxylated methyl N - $(2-{[1-(4-chlorophenyl)-1}H-pyrazol-3-yl]oxymethyl}$					
M39	-?-hydroxyphenyl)carbamate					
M19	hydroxylated methyl N - $(2-{[1-(4-chlorophenyl)-1}H-pyrazol-3-yl]oxymethyl}$					
	-?-(sulfoxy)phenyl)carbamate					
	$M(\Omega_{\bullet})$ [1.(4.ahlananhanal)-1. H_{\bullet} [2] and H_{\bullet}					
	sulfooxylated methyl N - $(2-{[1-(4-chlorophenyl)-1}H-pyrazol-3-yl]oxymethyl} -?-hydroxyphenyl)carbamate$					
M21	hydroxylated 1-(4-chlorophenyl)-1 <i>H</i> -pyrazol-3-ol					
M22	2-[methoxy(methoxycarbonyl)=amino]benzyl glucopyranosiduronic acid					
M24	2-[methoxy(methoxycarbonyl)=amino]benzoic acid					
M25	2-[(methoxycarbonyl)amino]benzyl glucopyranosiduronic acid					
M29	methyl N-(2-{[1-[4-chloro-?-(glucopyranuronosyl-oxy)phenyl]-?-					
11123	(glucopyranuronosyloxy)-1 <i>H</i> -pyrazol-3-yl]oxymethyl}phenyl) <i>N</i> -methoxy					
	carbamate					
M30	1-(4-chlorophenyl)-3-({2-[methoxy(methoxycarbonyl)amino]benzyl}oxy)-1 <i>H</i> -					
1,100	pyrazol-4-yl]cysteine					
M31	methyl $\mathcal{N}(2{\cdot}[1{\cdot}[4{\cdot}chloro{\cdot}?{\cdot}(glucopyranuronosyl{\cdot}oxy)phenyl]{\cdot}1H{\cdot}$					
2,101	pyrazol-3-yl]oxymethyl}phenyl) N-methoxy carbamate					

M32	methyl N -(2-{[1-(4-chlorophenyl)-1 H -pyrazol-3-yl]oxymethyl}-?-
M71	(glucopyranuronosyl-oxy)phenyl) carbamate
M34	methyl N -(2-{[1-(4-chlorophenyl)-1 H -pyrazol-3-yl]oxymethyl}-?-
	hydroxyphenyl)carbamate
M35	hydroxylated methyl N -(2-{[1-(4-chlorophenyl)-1 H -pyrazol-3-yl]oxymethyl}
	phenyl) N-methoxy carbamate
M37	hydroxylated methyl N -{2-{[1-(4-chlorophenyl)-1 H -pyrazol-3-yl]oxymethyl}
	-?-(glucopyranuronosyl-oxy)-phenyl) N-methoxy carbamate
M40	methyl ?-hydroxy-2-(hydroxymethyl)=phenyl carbamate
M44	$\label{eq:methyl-2-def} methyl 2-(\{[1-(4-chloro-3-hydroxyphenyl)-1$H-pyrazol-3-yl]oxy\} methyl)-4-$
	hydroxyphenyl)carbamate
M45	methyl 2-({[1-(4-chloro-3-hydroxyphenyl)-1 <i>H</i> -pyrazol-3-yl]oxy}methyl)=
	phenylcarbamate
M46	1-(4-chlorophenyl)-3-({2-[(methoxycarbonyl)amino]benzyl}oxy)-1 <i>H</i> -purazol
	-4-yl glucopyranosiduronic acid
M48	methyl?-hydroxy-2-(sulfooxymethyl)phenylcarbamate
	methyl 2-(hydroxymethyl)-?-sulfooxy phenylcarbamate
M51	2-[(methoxycarbonyl)amino]benzoic acic
M52	glucopyranuronosyloxylated methyl N -(2-{[1-(4-chlorophenyl)-1 H -pyrazol-3-
	yl]oxymethyl}-?-hydroxyphenyl)carbamate
M54	$methyl N-(2-\{[1-(4-chlorophenyl)-1 H-pyrazol-3-yl]oxymethyl\}-?-$
	methoxyphenyl)carbamate
M55	1-(4-chlorophenyl)-1 <i>H</i> -pyrazol-3-yl $4-O$ -(6-deoxy-mannopyranosyl)-xylo-
	glucopyranoside
M56	methyl 2-({[1-(4-chlorophenyl)-4-(glucopyranosyloxy)-1 <i>H</i> -pyrazol-3-yl]
	oxy}methyl-?-methoxyphenylcarbamate
M58	methyl 2-{[3-hydroxy-1-(4-hydroxyphenyl)-1 <i>H</i> -pyrazol-4-yl]methyl}
	phenylcarbamate
M60	methyl N -[2-(1 H -pyrazol-3-yl-oxymethyl)phenyl] N -methoxy carbamate
M62	methyl N -[2-(1 H -pyrazol-3-yl-oxymethyl)phenyl]carbamate
M68	glucopyranosyloxylated methyl N -(2-{[1-(4-chlorophenyl)-1 H -pyrazol-3-yl]
	oxymethyl $\}$ phenyl $)$ N -methoxy carbamate
M70	glucopyranosyloxylated methyl 2-($\{[1-(4-chlorophenyl)-1H-pyrazol-3-yl]\}$
	oxy}methyl)phenyl -carbamate
M72	L-tryptophan
M76	methyl N -{2-[2-(4-chrolophenyl)-5-oxo-2,5-dihydro-pyrazol-1-ylmethyl]
	-phenyl} N-methoxy carbamate
M78	1-(4-hydroxyphenyl)-1 <i>H</i> -pyrazol-3-ol

<別紙2:検査値等略称>

略称	名称
ai	有効成分量
Alb	アルブミン
ALP	アルカリホスファターゼ
ChE	コリンエステラーゼ
C_{max}	最高濃度
CMC	カルボキシメチルセルロース
Cre	クレアチニン
DMSO	ジメチルスルホキシド
FOB	機能観察総合検査
Glob	グロブリン
Glu	グルコース(血糖)
Hb	ヘモグロビン(血色素量)
Ht	ヘマトクリット値
LC_{50}	半数致死濃度
LD_{50}	半数致死量
MCH	平均赤血球血色素量
MCHC	平均赤血球血色素濃度
MCV	平均赤血球容積
MWC	最大容水量
PCNA	増殖性細胞核抗原
PHI	最終使用から収穫までの日数
PLT	血小板数
PT	プロトロンビン時間
RBC	赤血球数
$T_{1/2}$	消失半減期
TAR	総投与(処理)放射能
T.Bil	総ビリルビン
T.Chol	総コレステロール
TG	トリグリセリド
T_{max}	最高濃度到達時間
TP	総蛋白質
TRR	総残留放射能
Ure	尿素
WBC	白血球数

<別紙3:作物残留試験成績>

、別就 3:作物残留		双利 /				74 FT /	′ a \	1	
作物名	試験	使用量	回数	PHI	0 1	残留值(
(分析部位)	圃場	(g ai/ha)	(回)	(日)		マトロビン	代謝物	勿M07	
実施年度	数	(8 ======)	· · · · · ·		最高値	平均値	最高値	平均値	
はくさい				3	1.64	0.680	0.053	0.020	
(茎葉)	4	133^{WP}	3	7	1.44	0.695	0.053	0.020	
2000、2001年度				14	1.13	0.384	0.041	0.014	
なす				1	0.12	0.08			
(果実)	2	$134^{ m WDG}$	3	3	0.05	0.05*			
2007年度				7	< 0.05	< 0.05			
きゅうり				1	0.073	0.089	< 0.005	< 0.005	
(果実)	2	$133 \sim 152^{WP}$	3	7	0.019	0.014	< 0.005	< 0.005	
1999年度				14	0.007	0.006*	< 0.005	< 0.005	
かぼちゃ		WD	_	1	0.058	0.045	< 0.005	< 0.005	
(果実)	2	100^{WP}	3	7	0.017	0.015	< 0.005	< 0.005	
2000年度				14	0.020	0.013	< 0.005	< 0.005	
すいか		www.c	_	1	< 0.05	< 0.05			
(果実)	2	$134^{ m WDG}$	3	3	< 0.05	< 0.05			
2007年度				7	< 0.05	< 0.05			
みかん		150~	_	45	0.006	0.005*			
(果肉)	4	$238^{ m WDG}$	3	58-60	0.007	0.005*			
2007年度				72-75	0.007	0.005*	/		
みかん		150~	0	45	1.68	0.93			
(果皮)	4	238^{WDG}	3	58-60	1.26	0.72			
2007年度				72-75	1.21	0.79	/		
なつみかん	0	170~	0	14	0.37	0.25			
(果実全体)	2	$204^{ m WDG}$	3	21	0.37	0.21			
2006年度				28	0.22	0.18			
かぼす	1	o o o WDC	3	14	0.09	0.09			
(果実)	1	$238^{ m WDG}$		28	0.09	0.09			
2006年度				42	0.09	0.09	/		
すだち(思索へ体)	1	O1 OWDG	0	14	<0.05	<0.05			
(果実全体)	1	$218^{ m WDG}$	3	21	0.05	0.05			
2007年度				28	<0.05	<0.05	0.017	0.014	
りんご (思宝)	o	$417{\sim}400^{ ext{WP}}$	9	$1 \\ 7$	0.258	$0.222 \\ 0.179$	0.017	0.014	
(果実) 2000年度	2	417~400"1	3	$\frac{7}{21}$	0.209		0.023 0.024	0.017	
<u>2000年度</u> りんご					0.079	0.046 0.228		0.017	
(果実)	2	$417 \sim 400^{\text{SE}}$	3	$1 \\ 7$	$0.357 \\ 0.285$	0.228 0.168	$0.046 \\ 0.059$	$0.028 \\ 0.034$	
2000年度	4	417 40055	J	$\frac{7}{14}$	0.285 0.212	0.168	0.059 0.052	0.034 0.029	
2000年度 なし					0.212	0.114 0.538	0.032	0.029 0.017	
(果実)	2	200^{WP}	3	1 7	0.860	0.304	0.022 0.023	0.017	
2000年度	4	<u> </u>	J	$\frac{7}{21}$	0.398 0.174	0.304	0.023	0.018	
2000年度 なし				1	0.174	0.071	0.020	0.011*	
(果実)	2	109~146 ^{SE}	3	$\frac{1}{7}$	0.305 0.207	0.242 0.158	0.012 0.017	0.010"	
2000年度	4	109 - 140	J	14	0.207 0.277	0.138 0.172		0.012	
2000 十戊				14	0.211	0.172	0.014	0.009	

作物名	試験	佑 田昌	同粉	DIII		残留值(mg/kg)		
(分析部位)	圃場	使用量	回数	PHI	ピ ラクロン	ピラクロストロビン		代謝物M07	
実施年度	数	(g ai/ha)	(回)	(日)	最高値	平均値	最高値	平均値	
7 7				1	< 0.005	< 0.005	< 0.005	< 0.005	
もも (果肉)			0	7	< 0.005	< 0.005	< 0.005	< 0.005	
			2	14	< 0.005	< 0.005	< 0.005	< 0.005	
2002年度	2	$137^{ m SE}$		21	< 0.005	< 0.005	< 0.005	< 0.005	
t t	<u> </u>	137~2		1	4.22	2.27	0.08	0.06*	
(果皮)			2	7	3.11	2.03	0.17	0.10*	
2002年度			2	14	1.41	0.81	0.11	0.08*	
2002年及				21	1.47	0.67	0.09	0.07*	
ネクタリン		136~		1	0.39	0.28	< 0.05	< 0.05	
(果実)	2	170 ^{WDG}	2	7	0.34	0.26	< 0.05	< 0.05	
2004年度		170"50		14	0.24	0.13	< 0.05	< 0.05	
すもも				7	< 0.005	< 0.005			
	2	136 ^{WDG}	0	14	< 0.005	< 0.005			
(果実) 2007年度			2	21	< 0.005	< 0.005			
2007年度				28	< 0.005	< 0.005			
	1	$170^{ m WDG}$	2	7	0.37	0.31			
				21	0.18	0.14			
うめ				28	0.09	0.07			
(果実)	1	238 ^{WDG}	2	7	0.55	0.48			
2006年度				14	0.30	0.30			
				21	0.19	0.17			
				28	0.13	0.10			
おうとう				1	0.904	0.625	0.051	0.040	
(果実)	2	182^{SE}	3	3	0.700	0.518	0.039	0.034	
2000年度				7	0.490	0.412	0.037	0.031	
ぶどう (小粒種)				7	1.01	0.824	0.012	0.011	
(果実)	2	200~233WP	3	14	0.92	0.850	0.014	0.012	
2000年度				21	1.20	1.01	0.016	0.014	
ぶどう (小粒種)				14	0.779	0.769	0.015	0.015	
(果実)	1	200^{WP}	3	21	0.798	0.782	0.014	0.014	
2001年度				26	0.540	0.534	0.009	0.009	
ぶどう (大粒種)				7	0.373	0.262	0.005	0.005*	
(果実)	2	$200{\sim}267^{ m WP}$	3	14	0.308	0.265	< 0.005	< 0.005	
2000年度	_	200 - 201		21	0.325	0.243	< 0.005	< 0.005	
				1	0.22	0.15	< 0.05	< 0.05	
かき				7	0.16	0.13	< 0.05	< 0.05	
(果実)	2	$102^{ m WDG}$	2	14	0.15	0.12	< 0.05	< 0.05	
2003年度				$\frac{11}{21}$	0.14	0.10	< 0.05	< 0.05	
<u> </u>	<u> </u>	<u> </u>	ļ		0.11	0.10	.0.00	.0.00	

- 注)WP:水和剤、SE:SE剤、WDG:WDG剤(ドライフロアブル剤)
 - ・一部に定量限界未満を含むデータの平均を計算する場合は、定量限界値を検出したものとして計算し、*を付した。
 - ・すべてのデータが定量限界未満の場合は定量限界値に<を付して記載した。
 - ・代謝物 M07 の残留値は、ピラクロストロビンに換算して記載した。換算係数は ピラクロストロビン/代謝物 M07=1.08

<別紙4:推定摂取量>

11= H/m &7	残留値	国民平均		小児(1~6 歳)		妊婦		高齢者 (65 歳以上)	
作物名	(mg/kg)	ff	摂取量	ff	摂取量	ff	摂取量	ff	摂取量
		(g/人/日)	(μg/人/日)	(g/人/日)	(μg/人/日)	(g/人/日)	(μg/人/日)	(g/人/日)	(μg/人/日)
はくさい	0.695	29.4	20.4	10.3	7.16	21.9	15.2	31.7	22.0
なす	0.08	4.0	0.32	0.9	0.07	3.3	0.26	5.7	0.46
きゅうり	0.089	16.3	1.45	8.2	0.73	10.1	0.90	16.6	1.48
かぼちゃ	0.045	9.4	0.42	5.8	0.26	6.9	0.31	11.5	0.52
みかん	0.005	41.6	0.21	35.4	0.18	45.8	0.23	42.6	0.21
なつみかん	0.25	0.1	0.03	0.1	0.03	0.1	0.03	0.1	0.03
その他の	0.09	0.4	0.04	0.1	0.01	0.1	0.01	0.6	0.05
かんきつ	0.00	0.1	0.01	0.1	0.01	0.1	0.01	0.0	0.00
りんご	0.228	35.3	8.05	36.2	8.25	30.0	6.84	35.6	8.12
日本なし	0.538	5.1	2.74	4.4	2.37	5.3	2.85	5.1	2.74
ネクタリン	0.28	0.1	0.03	0.1	0.03	0.1	0.03	0.1	0.03
うめ	0.48	1.1	0.53	0.3	0.14	1.4	0.67	1.6	0.77
おうとう	0.625	0.1	0.06	0.1	0.06	0.1	0.06	0.1	0.06
ぶどう	0.85	5.8	4.93	4.4	3.74	1.6	1.36	3.8	3.23
かき	0.15	31.4	4.71	8	1.20	21.5	3.23	49.6	7.44
みかんの皮	0.93	0.1	0.09	0.1	0.09	0.1	0.09	0.1	0.09
合計			44.0		24.3		32.1		47.3

- 注)・残留値は、申請されている使用時期・回数のうち各試験区の平均残留置の最大値を用いた
 - 「ff」: 平成10~12年の国民栄養調査(参照82~84)の結果に基づく農産物摂取量(g/人/日)
 - ・「摂取量」: 残留値から求めたピラクロストロビンの推定摂取量(µg/人/日)
 - 「その他のかんきつ」は、かぼす、すだちのうち残留値の高いかぼすの値を用いた
 - ・すいか、もも及びすももについては、すべての時期で定量限界未満 (<0.005 または<0.05) であったことから、推定摂取量の合計には含まれていない

<参照>

- 1 農薬抄録ピラクロストロビン(殺虫剤): BASF アグロ(株)、2005 年、一部公表 (URL: http://www.acis.famic.go.jp/syouroku/pyraclostrobin/index.htm)
- 2 14 C-標識ピラクロストロビンのラットにおける生体内動態試験(GLP 対応): BASF 毒性研究所(独)、1998 年、未公表
- 3 ¹⁴C-標識ピラクロストロビンのラットにおける生体内代謝試験(GLP 対応): BASF 毒性研究所(独)、1999 年、未公表
- 4 ピラクロストロビンのぶどうにおける代謝試験 (GLP 対応): BASF 農業研究所(独)、1998年、未公表
- 5 ピラクロストロビンの馬鈴薯における代謝試験 (GLP 対応): BASF 農業研究所 (独)、1999 年、未公表
- 6 ピラクロストロビンの小麦における移行性試験 (GLP 対応): BASF 農業研究所 (独)、1998 年、未公表
- 7 ピラクロストロビンの小麦における代謝試験(GLP対応): BASF 農業研究所(独)、1999 年、未公表
- 8 ピラクロストロビンのハクサイにおける代謝試験 (GLP 対応): 財団法人 残留農薬研究所、 2000 年、未公表
- 9 トリル環-¹⁴C-標識ピラクロストロビンの土壌中の代謝(GLP 対応):BASF 農業研究所(独)、 1998 年、未公表
- 10 クロロフェニル環-14C-標識ピラクロストロビンの土壌中の代謝(GLP 対応): BASF 農業研究所(独)、1999 年、未公表
- 11 4種類の土壌中における分解挙動(GLP 対応): BASF 農業研究所(独)、1999 年、未公表
- 12 ピラクロストロビンの土壌表層における光分解 (GLP 対応): BASF 農業研究所 (独)、1999 年、未公表
- 13 ピラクロストロビンの土壌吸着試験: (株) 日曹分析センター小田原事業所、2000 年、未 公表
- 14 ピラクロストロビン代謝物 M01 の土壌吸着/脱着試験 (GLP 対応): BASF 農業研究所 (独) 、 1999 年、未公表
- 15 ピラクロストロビン代謝物 M02 の土壌吸着/脱着試験 (GLP 対応): BASF 農業研究所 (独) 、 1999 年、未公表
- 16 ピラクロストロビンの 4 土壌における浸透移行性(カラムリーチング試験)(GLP 対応): BASF 農業研究所(独)、1998 年、未公表
- 17 ピラクロストロビンの土壌における浸透移行性(30 日間成熟後のカラムリーチング試験) (GLP 対応):BASF 農業研究所(独)、1998 年、未公表
- 18 ピラクロストロビンの 50° C及び 25° Cにおける加水分解運命試験(GLP 対応):BASF 農業研究所(独)、1998 年、未公表
- 19 ピラクロストロビンの 90°C、100°C及び 120°Cにおける加水分解運命試験(GLP 対応): BASF 農業研究所(独)、1999 年、未公表

- 20 ピラクロストロビンの水中光分解運命(緩衝液中)(GLP対応): BASF 農業研究所(独)、 1999 年、未公表
- 21 ピラクロストロビンの水中光分解運命試験(自然水中)(GLP 対応):BASF 農業研究所(独)、 2002 年、未公表
- 22 ピラクロストロビンの水/底質系における自然条件下での光分解運命試験(GLP 対応):BASF 農業研究所(独)、1999 年、未公表
- 23 ピラクロストロビンの水中光分解 (GLP 対応): (株) 日曹分析センター小田原事業所、2000 年、未公表
- 24 ピラクロストロビンの土壌残留試験成績: (財) 日曹分析センター、2002年、未公表
- 25 ピラクロストロビンの作物残留試験成績: (財) 日本食品分析センター、2001年、未公表
- 26 ピラクロストロビンの作物残留試験成績: (財) 日曹分析センター、2001年、未公表
- 27 ピラクロストロビンの生体機能影響試験: 財団法人残留農薬研究所、2000年、未公表
- 28 ピラクロストロビンのラットにおける急性経口毒性試験 (GLP 対応) : BASF 毒性研究所(独)、 1998 年、未公表
- 29 ピラクロストロビンのマウスにおける急性経口毒性試験(GLP対応): (財)残留農薬研究 所、2000年、未公表
- 30 ピラクロストロビンのラットにおける急性経皮毒性試験(GLP 対応):BASF 毒性研究所(独)、 1998 年、未公表
- 31 ピラクロストロビンのラットにおける液体エアロゾルによる急性吸入毒性試験(GLP 対応): BASF 毒性研究所(独)、1997 年、未公表
- 32 ピラクロストロビンのラットにおける液体エアロゾルによる急性吸入毒性試験(GLP 対応): BASF 毒性研究所(独)、2000年、未公表
- 33 ピラクロストロビンのラットにおける液体エアゾールによる急性吸入毒性試験(GLP 対応): BASF 毒性研究所(独)、2002 年、未公表
- 34 ピラクロストロビンの Wistar ラットにおける急性経口神経毒性試験(GLP 対応):BASF 毒性研究所(独)、1999 年、未公表
- 35 ピラクロストロビンのウサギを用いた皮膚一次刺激性試験(GLP対応): BASF 毒性研究所 (独)、1998 年、未公表
- 36 ピラクロストロビンのウサギを用いた眼粘膜一次刺激性試験(GLP 対応): BASF 毒性研究所(独)、1998 年、未公表
- 37 ピラクロストロビンのモルモットを用いた皮膚感作性試験(GLP 対応): BASF 毒性研究所 (独)、1998 年、未公表
- 38 ピラクロストロビンのラットを用いた飼料混餌投与による 90 日間 (13 週間) 経口亜急性毒性試験 (GLP 対応): BASF 毒性研究所(独)、1999 年、未公表
- 39 ピラクロストロビンのマウスを用いた飼料混入投与による 90 日間 (13 週間) 経口亜急性毒性試験 (GLP 対応): BASF 毒性研究所(独)、1998 年、未公表
- 40 ピラクロストロビンのイヌを用いた飼料混入投与による 90 日間亜急性経口毒性試験 (GLP 対応): BASF 毒性研究所(独)、1999 年、未公表
- 41 ピラクロストロビンの Wistar ラットにおける亜急性経口神経毒性試験 (GLP 対応):BASF

- 毒性研究所(独)、1999年、未公表
- 42 ピラクロストロビンのイヌを用いた飼料混入投与による慢性毒性試験(GLP対応): BASF 毒性研究所(独)、1999年、未公表
- 43 ピラクロストロビンの Wistar ラットにおける 24 ヶ月間経口慢性毒性試験(GLP 対応): BASF 毒性研究所(独)、1999 年、未公表
- 44 ピラクロストロビンの Wistar ラットにおける 24 ヶ月間経口発がん性試験(GLP 対応): BASF 毒性研究所(独)、1999 年、未公表
- 45 ピラクロストロビンの B6C3F1 マウスにおける 18 $_{\it F}$ 月間経口発がん性試験(GLP 対応): BASF 毒性研究所(独)、1999 年、未公表
- 46 ピラクロストロビンのラットを用いた繁殖毒性試験 (GLP 対応): BASF 毒性研究所 (独)、1999 年、未公表
- 47 ピラクロストロビンのラットを用いた催奇形性試験 (GLP 対応): BASF 毒性研究所(独)、1999 年、未公表
- 48 ピラクロストロビンのウサギを用いた催奇形性試験 (GLP 対応): BASF 毒性研究所 (独)、 1999 年、未公表
- 49 ピラクロストロビンの細菌を用いた復帰変異試験(GLP 対応): BASF 毒性研究所(独)、1997 年、未公表
- 50 ピラクロストロビンのチャイニーズハムスター卵巣細胞 (CHO) を用いた *in vitro* 遺伝子突 然変異試験 (HPRT 遺伝子突然変異試験) (GLP 対応): BASF 毒性研究所(独)、1998 年、未公表
- 51 ピラクロストロビンのチャイニーズハムスターV79 細胞を用いた *in vitro* 染色体異常誘発性 試験(GLP 対応): BASF 毒性研究所(独)、1999 年、未公表
- 52 ピラクロストロビンのラット初代培養肝細胞を用いた *in vitro* 不定期 DNA 合成試験 (GLP 対応): BASF 毒性研究所(独)、1998 年、未公表
- 53 ピラクロストロビンのマウス骨髄における小核試験 (GLP 対応): BASF 毒性研究所 (独)、 1998 年、未公表
- 54 代謝物 M01 (Reg.No.364 380) の細菌を用いた復帰変異試験 (GLP 対応) : BASF 毒性研究所(独)、1999 年、未公表
- 55 代謝物 M02(Reg.No.369 315)の細菌を用いた復帰変異試験(GLP 対応): BASF 毒性研究所(独)、1999 年、未公表
- 56 代謝物 M60 (Reg.No.418 847) の細菌を用いた復帰変異試験 (GLP 対応) : BASF 毒性研究所(独)、1999 年、未公表
- 57 代謝物 M62 (Reg.No.412 785) の細菌を用いた復帰変異試験 (GLP 対応) : BASF 毒性研究所(独)、1999 年、未公表
- 58 代謝物 M76 (Reg. No. 413 038) の細菌を用いた復帰変異試験(GLP 対応): BASF 毒性研究所(独)、2000 年、未公表
- 59 ラットにおけるメカニズム試験(酸化ストレス的影響): BASF 毒性研究所(独)、2003 年、未公表
- 60 in vitro 溶血試験 (スクリーニング試験) : BASF 毒性研究所 (独) 、2003 年、未公表

- 61 ラットにおけるメカニズム試験(血清及び尿中鉄分析): BASF 毒性研究所(独)、2003 年、未公表
- 62 ラットに対する BAS500F の混餌投与及びビタミン B_{12} 同時皮下投与試験: BASF 毒性研究所(独)、2003 年、未公表
- 63 Wistar 系ラットに対する BAS505F の混餌投与及び鉄の同時消化管外投与試験 (GLP 対応): BASF 毒性研究所(独)、2002 年、未公表
- 64 BAS505F: 混餌投与による Wistar 系雌ラットにおける粘膜鉄輸送への影響試験 (GLP 対応): BASF 毒性研究所(独)、2003 年、未公表
- 65 食品健康影響評価について

(URL: http://www.fsc.go.jp/hyouka/hy/hy-uke-bunsyo-43.pdf)

66 第 21 回食品安全委員会

(URL: http://www.fsc.go.jp/iinkai/i-dai21/index.html)

67 第5回食品安全委員会農薬専門調査会

(URL: http://www.fsc.go.jp/senmon/nouyaku/n-dai5/index.html)

- 68 ピラクロストロビンの安全性評価資料の追加提出について: BASF アグロ株式会社、2004 年、未公表
- 69 第 12 回食品安全委員会農薬専門調査会

(URL: http://www.fsc.go.jp/senmon/ nouyaku/n-dai12/index.html)

- 70 ピラクロストロビン安全性評価資料の追加提出について: BASF アグロ株式会社、2004年、 未公表
- 71 ストロビルリン系化合物(ピラクロストロビン、オリサストロビン)の十二指腸肥厚/過形成の総合考察:BASFアグロ株式会社、2004年、未公表
- 72 第 32 回食品安全委員会農薬専門調査会

(URL: http://www.fsc.go.jp/ senmon/nouyaku/ n-dai32/index.html)

73 第 112 回食品安全委員会

(URL: http://www.fsc.go.jp/iinkai/i-dai112/index.html)

- 74 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 18 年 8 月 25 日付、厚生労働省告示第 473 号)
- 75 農薬抄録ピラクロストロビン(殺菌剤)(平成 20 年 9 月 30 日改訂): BASF アグロ株式会社、2008 年、一部公表予定
- 76 ピラクロストロビンの作物残留試験成績: (財) 日本食品分析センター、2003~2007 年、未 公表
- 77 ピラクロストロビンの作物残留試験成績: (財) 日曹分析センター、2003~2007年、未公表
- 78 ピラクロストロビンの作物残留試験成績:BASFアグロ株式会社、2006~2007年、未公表
- 79 食品健康影響評価について

(URL: http://www.fsc.go.jp/hyouka/hy/hy-uke-pyraclostrobin_201209.pdf)

80 第 266 回食品安全委員会

(URL: http://www.fsc.go.jp/iinkai/i-dai266/index.html)

81 第 48 回食品安全委員会農薬専門調査会幹事会

(URL: http://www.fsc.go.jp/senmon/nouyaku/kanjikai_dai48/index.html)

- 82 国民栄養の現状 平成 10 年国民栄養調査結果 : 健康・栄養情報研究会編、2000 年
- 83 国民栄養の現状-平成 11 年国民栄養調査結果-:健康・栄養情報研究会編、2001 年
- 84 国民栄養の現状 平成 12 年国民栄養調査結果 : 健康・栄養情報研究会編、2002 年