農薬専門調査会における審議状況について

1. 審議状況

厚生労働大臣から食品安全委員会に求められたプリミスルフロンメチルに係る食品健康影響評価(平成 19 年 12 月 18 日付け厚生労働省発食安第 1218009 号) については、平成 20 年 9 月 3 日に開催された第 19 回農薬専門調査会確認評価第一部会、平成 21 年 1 月 21 日に開催された第 47 回農薬専門調査会幹事会において審議され、審議結果(案)がとりまとめられた。

また、審議結果(案)については、幅広く国民に意見・情報を募った後に、食品安全委員会に報告することとなった。

2. プリミスルフロンメチルに係る食品健康影響評価についての意見・ 情報の募集について

上記品目に関する「審議結果(案)」を食品安全委員会ホームページ 等に公開し、意見・情報を募集する。

1)募集期間

平成21年2月5日(木)開催の食品安全委員会(第272回会合)終 了後、平成21年3月6日(金)までの30日間。

2) 受付体制

電子メール (ホームページ上)、ファックス及び郵送

3) 意見・情報提供等への対応

いただいた意見・情報等をとりまとめ、農薬専門調査会の座長の指示のもと、必要に応じて専門調査会を開催し、審議結果をとりまとめ、 食品安全委員会に報告する。 (案)

農薬評価書

プリミスルフロンメチル

2009年2月 食品安全委員会農薬専門調査会

目 次

		貝
0	審議の経緯	. 3
0	食品安全委員会委員名簿	. 3
0	食品安全委員会農薬専門調査会専門委員名簿	. 3
0	要約	. 5
	評価対象農薬の概要	
1	1. 用途	
2	2. 有効成分の一般名	
3	3. 化学名	
4	4. 分子式	
5	5. 分子量	
6	5. 構造式	
7	7. 開発の経緯	. 6
		_
	安全性に係る試験の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1	1. 動物体内運命試験	
	(1)動物体内運命試(ラット)	
	(2)動物体内運命試験(ニワトリ)	
	(3)動物体内運命試験(ヤギ)	
	2. 植物体内運命試験	
3	3. 土壌中運命試験	
	(1)好気的土壌中運命試験	9
	(2) 好気的及び嫌気的土壌中運命試験	9
	(3)土壌中光分解試験	9
	(4)土壌吸着試験	9
	(5)土壌溶脱試験	. 10
4	4. 水中運命試験	10
	(1)加水分解試験	. 10
	(2)水中光分解試験	. 11
	(3) 好気的水中運命試験	. 11
5	5. 土壌残留試験	12
6	5. 作物残留試験	12
7	7. 家畜残留試験	12
	(1)乳牛	. 12
	(2) ニワトリ	. 12
8	3. 一般薬理試験	

	9. 急性毒性試験	13
	10. 眼・皮膚に対する刺激性及び皮膚感作性試験	13
	1 1. 亜急性毒性試験	13
	(1)90日間亜急性毒性試験(ラット)	. 13
	(2) 90日間亜急性毒性試験(イヌ)	. 14
	(3)21日間亜急性経皮毒性試験(ウサギ)	. 15
	12.慢性毒性試験及び発がん性試験	15
	(1)1年間慢性毒性試験(イヌ)	. 15
	(2)2年間慢性毒性/発がん性併合試験(ラット)	. 15
	(3)18 カ月間発がん性試験(マウス)①	. 16
	(4)18 カ月間発がん性試験(マウス)②	. 17
	1 3 . 生殖発生毒性試験	17
	(1)2世代繁殖試験(ラット)	. 17
	(2)発生毒性試験(ラット)①	. 18
	(3)発生毒性試験(ラット)②	. 18
	(4)発生毒性試験(ウサギ)	. 18
	1 4 . 遺伝毒性試験	19
Ш	食品健康影響評価	20
•	別紙1:代謝物/分解物略称	23
•	別紙 2: 検査値等略称	24
	参照	25

<審議の経緯>

2005年 11月 29日 残留農薬基準告示 (参照 1)

2007年 12月 18日 厚生労働大臣より残留基準設定に係る食品健康影

響評価について要請(厚生労働省発食安第1218009

号)、関係書類の接受(参照2~5)

2007年 12月 20日 第 220 回食品安全委員会(要請事項説明)(参照 6)

2008年 9月 3日 第19回農薬専門調査会確認評価第一部会(参照7)

2009 年 1月 21日 第 47 回農薬専門調査会幹事会 (参照 8)

2009 年 2 月 5 日 第 272 回食品安全委員会 (報告)

く食品安全委員会委員名簿>

見上 彪(委員長)

小泉直子 (委員長代理)

長尾 拓

野村一正

畑江敬子

廣瀬雅雄

本間清一

< 食品安全委員会農薬専門調査会専門委員名簿>

(2008年3月31日まで)

鈴木勝士 (座長) 三枝順三 布柴達男 佐々木有 林 真(座長代理) 根岸友惠 平塚 明 赤池昭紀 代田眞理子 石井康雄 高木篤也 藤本成明 泉 啓介 玉井郁巳 細川正清 上路雅子 田村廣人 松本清司 臼井健二 津田修治 柳井徳磨 江馬 眞 津田洋幸 山崎浩史 大澤貫寿 出川雅邦 山手丈至 長尾哲二 太田敏博 與語靖洋

大谷 浩 中澤憲一 吉田 緑 小澤正吾 納屋聖人 若栗 忍 小林裕子 西川秋佳

(2008年4月1日から)

小林裕子

鈴木勝士 (座長) 佐々木有 根本信雄 林 真(座長代理) 平塚 明 代田眞理子 相磯成敏 高木篤也 藤本成明 赤池昭紀 玉井郁巳 細川正清 石井康雄 田村廣人 堀本政夫 泉 啓介 津田修治 松本清司 今井田克己 津田洋幸 本間正充 長尾哲二 上路雅子 柳井徳磨 臼井健二 中澤憲一* 山崎浩史 永田 清 太田敏博 山手丈至 大谷 浩 納屋聖人 與語靖洋 小澤正吾 西川秋佳 吉田 緑 若栗 忍 川合是彰 布柴達男

根岸友惠

*:2009年1月19日まで

要約

スルホニルウレア系除草剤である「プリミスルフロンメチル」(CAS No.86209-51-0) について、各種資料(米国及びカナダ)を用いて食品健康影響評価を実施した。

評価に供した試験成績は、動物体内運命(ラット、ニワトリ及びヤギ)、植物体内運命(とうもろこし)、土壌中運命、水中運命、土壌残留、作物残留、急性毒性(ラット及びウサギ)、亜急性毒性(ラット、イヌ及びウサギ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性試験等である。

試験結果から、プリミスルフロンメチル投与による影響は主に切歯、骨、肝臓、腎臓、精巣(ラット及びマウス)及び甲状腺(イヌ)に認められた。催奇形性及び遺伝毒性は認められなかった。発がん性試験では、雌雄マウスで肝細胞腫瘍の発生頻度増加が認められたが、発生機序は遺伝毒性メカニズムとは考え難く、評価にあたり閾値を設定することが可能であると考えられた。

各試験で得られた無毒性量の最小値は、ウサギを用いた発生毒性試験の 10 mg/kg 体重/日であったので、これを根拠として、安全係数 100 で除した 0.1 mg/kg 体重/日を一日摂取許容量 (ADI) と設定した。

I. 評価対象農薬の概要

1. 用途

除草剤

2. 有効成分の一般名

和名:プリミスルフロンメチル

英名: primisulfuron-methyl (ISO名)

3. 化学名

IUPAC

和名:メチル2-[4,6-ビス(ジフルオロメトキシ)ピリミジン-2-

イルカルバモイルスルファモイル]ベンゾエート

英名: methyl 2-[4,6-bis(difluoromethoxy)pyrimidin-2-

ylcarbamoylsulfamoyl]benzoate

CAS (No. 86209-51-0)

和名:メチル 2-[[[[[4,6-ビス(ジフルオロメトキシ)-2-ピリミジニル]

アミノ]カルボニル]アミノ]スルフォニル]ベンゾエート

英名: methyl 2-[[[[[4,6-bis(difluoromethoxy)-2-pyrimidinyl]

amino]carbonyl]amino]sulfonyl]benzoate

4. 分子式

5. 分子量

 $C_{15}H_{12}F_4N_4O_7S$

468.3

6. 構造式

$$OCHF_2$$
 $OCHF_2$
 $OCHF_2$
 $OCHF_2$
 $OCHF_2$
 $OCHF_2$
 $OCHF_2$
 $OCHF_2$
 $OCHF_2$
 $OCHF_2$
 $OCHF_2$

7. 開発の経緯

プリミスルフロンメチルは、チバガイギーAG(現シンジェンタ AG)により開発されたスルホニルウレア系除草剤である。飼料用とうもろこしにおいて、イネ科雑草及び広葉雑草の防除に使用される。作用機序は、分枝鎖アミノ酸生合成に関与する、植物に特有のアセトラクテート合成酵素(ALS)の働きを阻害することにより、植物の生育を阻止する。国内での登録はなく、ポジティブリスト制度導入に伴う暫定基準値が設定されている。

Ⅱ. 安全性に係る試験の概要

米国資料 (2002年) 及びカナダ資料 (2001年) を基に、毒性に関する主な科学的知見を整理した。(参照 $2\sim4$)

各種運命試験(II.1~4)は、プリミスルフロンメチルのピリミジン環の2位の炭素を 14 C で標識したもの($[pyr^{-14}C]$ プリミスルフロンメチル)、フェニル基の炭素を均一に 14 C で標識したもの($[phe^{-14}C]$ プリミスルフロンメチル)、分解物 C、D、F 及び G のフェニル基の炭素を均一に 14 C で標識したもの($[phe^{-14}C]$ 分解物 C、 $[phe^{-14}C]$ 分解物 D、 $[phe^{-14}C]$ 分解物 F 及び $[phe^{-14}C]$ 分解物 F 及び $[phe^{-14}C]$ 分解物 F とのピリミジン環の炭素を 14 C で標識したもの($[pyr^{-14}C]$ 分解物 F とのピリミジンスの炭素を 14 C で標識したもの($[pyr^{-14}C]$ 分解物 F とのピリミスルフロンメチルに換算した。代謝物/分解物略称及び検査値等略称は別紙 F といっといる。

1. 動物体内運命試験

(1)動物体内運命試(ラット)

SD ラット (一群雌雄各 5 匹) に $[pyr^{-14}C]$ プリミスルフロンメチルまたは $[phe^{-14}C]$ プリミスルフロンメチルを、(0.5 mg/kg) 体重 (以下、(1.(1))] において「低用量」という。)または (0.5 mg/kg) 体重 (以下、(1.(1))] において「高用量」という。)で単回経口投与、②低用量の非標識体を (0.5 mg/kg) 体を単回経口投与、③低用量で単回静脈内投与、④の、100、500、1,000、5,000 または (0.5 mg/kg) の用量で (0.5 mg/kg) を (0.5 mg/kg) 体を (0.5 mg/kg) 体重 (0.5 mg/kg) 化 (0.5 mg/kg) 体重 (0.5 mg/kg) 化 (0.5 mg/kg) 化

経口及び静脈内投与後の尿中排泄量から、腸管吸収率は低用量群で 94 ~103%、高用量群で 23~32%と推定された。

尿及び糞中における放射能の回収率は、投与後 2 日で $71\sim95\%$ 、投与後 7 日で $88.5\sim102\%$ であった。低用量群では、尿中排泄率は雄で総投与放射能(TAR)の $23\sim31\%$ 、雌で $35\sim77\%$ TAR、糞中排泄率は雄で $46\sim67\%$ TAR、雌で $13\sim48\%$ TAR であり、雄では糞中排泄が、雌では尿中排泄が優位であった。高用量群では雌雄とも $83\sim93\%$ TAR が糞中に排泄された。

組織中の残留放射能は肝臓で最も多く、100 ppm の混餌投与群の標識体投与 2 日後の雄で $6\sim7\%$ TAR、雌で $2\sim3\%$ TAR 検出されたが、投与 7 日後には 0.2% TAR 未満(<2.2 μ g/g)に減少した。投与 7 日後における組織中の総残留放射能は 0.5% TAR であった。

糞尿中から親化合物及び 11 種類の代謝物が検出された。プリミスルフロンメチルは、高用量群よりも低用量群、雌よりも雄においてより広範に

代謝を受けた。主要代謝経路は、ピリミジン環の水酸化による B の生成とそれに続くピリミジン環の異性化、スルホニルウレア部位の開裂による C (糞中) 及び D (尿中) の生成、さらに、ピリミジン環の代謝による未同定代謝物の生成であると考えられた。尿中の親化合物は、雄では尿中放射能の $30.2\sim39.7\%$ 、雌では $60.0\sim85.4\%$ 検出された。この差は、雌では未変化の親化合物の腎排泄が優位であるのに対して、雄では代謝物の胆汁を介した排泄が主な経路であることに起因すると考えられた。(参照 2)

(2)動物体内運命試験(ニワトリ)

 $[pyr^{-14}C]$ プリミスルフロンメチルまたは $[phe^{-14}C]$ プリミスルフロンメチルを、3.0 mg/kg 体重/日(飼料中濃度 50 ppm に相当)の用量で産卵鶏に 1 日 1 回、8 日間連続経口投与して動物体内運命試験が実施された。

総残留放射能(TRR)の大部分(>86%)が排泄物中に認められた。排泄物中の主要成分は親化合物及びその水酸化体(代謝物 B)であった。組織中残留放射能は 0.2% TAR 未満であり、残留放射能濃度は、肝臓(1.9 μg/g)、腎臓(0.4 μg/g)、血液(0.2 μg/g)及び脂肪(0.05 μg/g)で比較的高かった。卵に移行した放射能は 0.04% TAR 未満であった。(参照 4)

(3)動物体内運命試験(ヤギ)

[pyr-14C]プリミスルフロンメチルまたは [phe-14C]プリミスルフロンメチルを、3.0 mg/kg 体重/日(飼料中濃度 5 ppm に相当)の用量で泌乳ヤギに 1 日 1 回、10 日間連続経口投与して動物体内運命試験が実施された。

投与放射能の大部分が尿中(78%TAR)及び糞中(19%TAR)に排泄された。尿、糞、肝臓及び乳汁中の主要成分は親化合物であった。 $[phe^{-14}C]$ プリミスルフロンメチル投与群の尿、糞及び肝臓から代謝物 D が検出された。乳汁中の残留放射能は 0.22%TAR で、2 日以内に定常状態(~ 0.03 $\mu g/g$)に達した。(参照 4)

2. 植物体内運命試験

草丈 $45~\rm cm$ の飼料用とうもろこしに、水和剤に調製した $[\rm pyr^{-14}C]$ プリミスルフロンメチルまたは $[\rm phe^{-14}C]$ プリミスルフロンメチルを $160~\rm g$ ai/ha (推奨用量の約 $5.3~\rm em$) の用量で処理し、処理 20、38、 $66~\rm em$ 200 日後に植物体試料を採取して植物体内運命試験が実施された。

各試料の各部における残留放射能濃度は、標識位置及び試料採取時期にかかわらず低く、成熟期の茎で $0.017\sim0.072~mg/kg$ 、穀粒及び穂軸で $0.004\sim0.008~mg/kg$ であった。植物体全体で 0.08~mg/kg 未満であり、茎葉サイレージ及び青刈り茎葉飼料で $0.014\sim0.056~mg/kg$ であった。

主要代謝経路は、フェニル基及びピリミジン環の水酸化及び抱合化、スルホニルウレア部位の開裂であると考えられた。(参照 4)

3. 土壤中運命試験

(1) 好気的土壌中運命試験

[phe-14C]プリミスルフロンメチルまたは[pyr-14C]プリミスルフロンメチルを、乾土あたり 3.6 または 10.2 mg ai/kg の用量で砂壌土に処理し、1 年間インキュベートして好気的土壌中運命試験が実施された。

プリミスルフロンメチルの推定半減期は $31\sim62$ 日であった。主要分解物は、E(88.6%TAR)、D(23.1%TAR)、F(14.6%TAR) 及び $^{14}CO_2$ (11.7%TAR) であり、その他に少量の分解物として G(6.7%TAR) 及び C(3.9%TAR) が検出された。試験終了時点で、フェニル基標識放射能の 49.5%及びピリミジン環標識放射能の 7.4%が非抽出性であった。(参照 4)

(2) 好気的及び嫌気的土壌中運命試験

[phe- 14 C]プリミスルフロンメチルまたは[pyr- 14 C]プリミスルフロンメチルを、乾土あたり 3.6 または 10.2 mg ai/kg の用量で砂壌土に処理し、はじめの 30 日間は好気的条件下で、その後 60 日間は嫌気的条件下でインキュベートして嫌気的土壌中運命試験が実施された。

プリミスルフロンメチルの推定半減期は $50\sim88$ 日であった。主要分解物は、E(17.1%TAR) 及び D(32.2%TAR) であり、その他に少量の分解物として C(9.0%TAR)、G(5.7%TAR) 及び $^{14}CO_2(0.2\%TAR)$ が検出された。試験終了時点で、フェニル基標識放射能の 6.5%及びピリミジン環標識放射能の 11.8%が非抽出性であった。(参照 4)

(3)土壤中光分解試験

[phe- 14 C]プリミスルフロンメチルまたは[pyr- 14 C]プリミスルフロンメチルを、10.6 または 11.0 kg ai/ha の用量で酸性の砂壌土に処理し、土壌中光分解試験が実施された。

結果は両標識体で同様であり、推定半減期は $[phe^{-14}C]$ プリミスルフロンメチル及び $[pyr^{-14}C]$ プリミスルフロンメチルで 24.1 及び 24.2 日であった。なお、暗条件対照区では 24.1 及び 26.0 日であった。

主要分解物は、C (43.9%TAR) 及び E (37.9%TAR) であり、 $^{14}CO_2$ が 3.1%TAR 検出された。光分解はプリミスルフロンメチルの主要分解経路ではないと考えられた。(参照 4)

(4)土壤吸着試験

 $[pyr^{-14}C]$ プリミスルフロンメチル、 $[phe^{-14}C]$ 分解物 C、 $[phe^{-14}C]$ 分解

物 D、 $[pyr^{-14}C]$ 分解物 E、 $[phe^{-14}C]$ 分解物 F 及び $[phe^{-14}C]$ 分解物 G のそれぞれについて、4 種類の米国土壌(砂土:pH 6.5、埴土:pH 5.9、砂壌土:pH 7.5 及び壌土:pH 6.7)を用いて土壌吸着試験が実施された。

親化合物及び5種類の分解物における吸着係数 K^{ads} は $0\sim2.1$ 、有機炭素含有率により補正した吸着係数Kocは $0\sim74.5$ であった。プリミスルフロンメチル及び分解物の土壌への吸着性は低く、脱着性及び移動性が高いと考えられた。(参照4)

(5)土壤溶脱試験

4 種類の米国土壌(砂土、砂壌土、埴壌土及び埴土)を充填した長さ 30 cm の土壌カラムにプリミスルフロンメチルを添加し、土壌溶脱試験 が実施された。

いずれの土壌においても、3 日間のリーチング期間終了後には溶出液中に $50\sim100\%$ TAR が検出された。処理した放射能はカラム全体に分布していたが、同定は行われなかった。

砂壌土を充填した 30 cm の土壌カラムに、プリミスルフロンメチルを土壌あたり $8.5\sim8.9$ mg ai/kg の用量で添加し、25℃で 30 日間前処理を行ったエイジドリーチング試験では、3 日間の試験の終了時点で溶出液中に $83.1\sim85.6\%$ TAR が検出され、その主要成分は親化合物($81.2\sim78.5\%$ TAR)であった。砂壌土のような吸着性の低い土壌では地下浸透性が高いと考えられた。(参照 4)

4. 水中運命試験

(1)加水分解試験

pH 5、7及び9の各滅菌緩衝液に、 $[phe^{-14}C]$ プリミスルフロンメチルまたは $[pyr^{-14}C]$ プリミスルフロンメチルを添加し、暗条件下、25℃でインキュベートして加水分解試験が実施された。

各pHの滅菌緩衝液における加水分解による推定半減期は表1に示されている。

主要分解物は C (46.8% TAR) 及び E (43.4% TAR) であった。 pH9 の 緩衝液中では、プリミスルフロンメチルは加水分解を受けなかった。(参照4)

表 1 加水分解による推定半減期

	[phe-14C]プリミスルフロンメチル	[pyr-14C]プリミスルフロンメチル
pH 5の滅菌緩衝液	25 日	26 日
pH 7の滅菌緩衝液	560 日	990 日

(2) 水中光分解試験

pH 5、7及び9の各滅菌緩衝液に、 $[phe^{-14}C]$ プリミスルフロンメチルを $5\sim6.7$ mg/Lとなるように添加、またはpH9の滅菌緩衝液に、 $[pyr^{-14}C]$ プリミスルフロンメチルを6.18 mg/L となるように添加し、自然太陽光に30日間暴露して水中光分解試験が実施された。

プリミスルフロンメチルの推定半減期は、pH5で 20.6 日、pH7で 248日であった。pH9では算出できなかった。いずれのpHにおいても、対照区と処理区の分解率は同様であったことから、本試験でみられた分解は主として加水分解に起因するものと考えられた。

主要分解物は C (54.6% TAR) 及び D (10.2% TAR) であり、その他に 少量の分解物として E (2.0% TAR) 及び F (0.7% TAR) が検出された。 (参照 4)

(3) 好気的水中運命試験

自然水(池水または河川水)/底質系に、 $[phe^{-14}C]$ プリミスルフロンメチルまたは $[pyr^{-14}C]$ プリミスルフロンメチルを 100~g ai/ha の用量で添加し、20°C で 273~日間インキュベートして好気的水中運命試験が実施された。

自然水/底質系における推定半減期は表 2 に、分解物は表 3 に示されている。(参照 4)

	試験系	[pyr-14C]プリミスルフロンメチル	[phe-14C]プリミスルフロンメチル
ì	池水/底質	39 日/94 日	15 日/20 日
ì	可川水/底質	43 日/47 日	50 日/57 日

表 2 自然水/底質系における推定半減期

表 3 自然水/底質系における分解物

試験系	分解物(%TAR)	
池水	F(52.4~54.1), ¹⁴ CO ₂ (18.1~48.4), H(16.5), G(9.2), E(4.8), D(4.0),	
他水	I(0.9)、未知物質(11.1~12.7)	
池底質	H(37.1)、F(13.4~17.0)、G(3.1)、D(2.6)、E(1.8)、C(1.0)、未知物	
他広貝	質(4.2~6.8)	
河川水	$F(32.0\sim44.0)$, $^{14}CO_2(15.0\sim41.0)$, $H(25.2)$, $I(4.0)$, $E(3.9)$, $D(2.4)$,	
刊力	G(2.2)、未知物質(6.7~12.8)	
河川底質	H(33.0)、E(2.3)、D(2.3)、G(1.2)、C(0.8)、未知物質(1.5~1.9)	

5. 土壤残留試験

カナダの圃場 3 カ所(壌土、壌質砂土及びシルト質壌土)及び米国の圃場 2 カ所において、土壌残留試験が実施された。プリミスルフロンメチルの推定半減期は、カナダ土壌で 9.5~21 日、米国土壌で 2.5~11 日であった。(参照 4)

6. 作物残留試験

飼料用とうもろこしを用いて、プリミスルフロンメチルを分析対象化合物 とした作物残留試験が実施された。

 $2\sim6$ 葉期のとうもろこしに、プリミスルフロンメチル水和剤を 40 g ai/ha (推奨用量の 1.3 倍)の用量で処理し、最終処理 $88\sim137$ 日後に採取した 穀粒における残留値はいずれも定量限界未満(<0.01 mg/kg)であった。茎葉サイレージ、青刈り茎葉飼料及び乾燥飼料(fodder)における残留値もすべて定量限界未満(<0.05 mg/kg)であった。(参照 4)

7. 家畜残留試験

(1) 乳牛

ホルスタイン種及びジャージー種乳牛(11 頭)に、プリミスルフロンメチルを飼料中濃度 5、25 及び 50 ppm に相当する用量で 28 日間カプセル経口投与して残留試験が実施された。

組織、脂肪及び血液における親化合物の残留値は検出限界未満(<0.05 mg/kg)であり、乳汁における残留値は 0.01 mg/kg 未満であった。(参照 4)

(2) ニワトリ

白色レグホーン種の成熟雌(60 羽)に、プリミスルフロンメチルを飼料中濃度 0.1、0.5 及び 1.0 ppm に相当する用量で 28 日間混餌投与して残留試験が実施された。

卵、筋肉、肝臓及び脂肪における親化合物の残留値は検出限界未満 (<0.05 mg/kg) であった。(参照 4)

8. 一般薬理試験

一般薬理試験については、参照した資料に記載がなかった。

9. 急性毒性試験

プリミスルフロンメチルのラット及びウサギを用いた急性毒性試験が実施された。結果は表 4 に示されている。(参照 2、4)

投与経路 動物種・数 LD₅₀ (mg/kg 体重) 観察された症状 立毛、流淚、散瞳、縮 SDラット 経口 瞳、多尿、下痢、眼球 >5,050 雌雄各5匹 突出 下痢、活動低下、削瘦 NZW ウサギ 経皮 >2,010 雌雄各5匹 立毛、透明鼻汁、流涙、 LC_{50} (mg/L) SDラット 吸入 流涎、縮瞳、眼瞼下垂、 雌雄各5匹 >4.81 眼球突出

表 4 急性毒性試験概要

10.眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼刺激性試験及び皮膚刺激性試験が実施された。 その結果、ウサギの眼において結膜炎が認められたが、72 時間以内に 回復した。皮膚に対する刺激性は認められなかった。(参照 2、4)

Hartley モルモットを用いた皮膚感作性試験が実施されており、結果は陰性であった。(参照 2、4)

11. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

SD ラット (一群雌雄各 15 匹) を用いた混餌 (原体:0、10、300、3,000、10,000 及び 20,000 ppm) 投与による 90 日間亜急性毒性試験が実施された。

各投与群で認められた毒性所見は表 5 に示されている。

本試験において、3,000 ppm 以上投与群の雄及び 10,000 ppm 以上投与群の雌で体重増加抑制等が認められたので、無毒性量は雄で 300 ppm (15 mg/kg 体重/日)、雌で 3,000 ppm (150 mg/kg 体重/日) であると考えられた。 (参照 2)

表 5 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌
20,000 ppm	・切歯の異常(退色、陥凹)	・食餌効率減少
	・頭蓋冠軟化	
	·精巣小型化、絶対重量減少	
10,000 ppm 以上	・切歯の異常(短縮/折損)	体重増加抑制
	・精巣萎縮、変性	・摂餌量減少
3,000 ppm 以上	体重増加抑制	3,000 ppm 以下
	• 摂餌量減少	毒性所見なし
	• 食餌効率減少	
300 ppm 以下	毒性所見なし	

(2)90日間亜急性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 (原体:0、25、1,000 及び 10,000 ppm) 投与による 90 日間亜急性毒性試験が実施された。

各投与群で認められた毒性所見は表 6 に示されている。

1,000 ppm 投与群の雄 1 例、雌 3 例に胆嚢の軽度な上皮過形成が、雌 1 例に粘膜肥厚がみられたが、イヌの 1 年間慢性毒性試験 [12. (1)] では 10,000/5,000 ppm 投与群においても胆嚢に悪影響は認められなかったことから、これらの変化は検体投与に関連したものとは考えられなかった。本試験において、10,000 ppm 投与群の雌雄で体重増加抑制等が認められたので、無毒性量は雌雄とも 1,000 ppm (25 mg/kg 体重/日) であると考えられた。(参照 2、4)

表 6 90 日間亜急性毒性毒性試験 (イヌ) で認められた毒性所見

10 1 00	1.11	***
投与群	雄	雌
10,000 ppm	・体重増加抑制	・体重増加抑制
	• 摂餌量減少	• 摂餌量減少
	• 食餌効率減少	• 食餌効率減少
	•軽度削痩	· 軽度削痩
	• 食欲不振	• 食欲不振
	・甲状腺/上皮小体絶対及び比重量1、	・甲状腺/上皮小体絶対及び比重量、
	対脳重量比2減少	対脳重量比減少
	・甲状腺ろ胞コロイド減少	・甲状腺ろ胞コロイド減少
	・甲状腺傍ろ胞細胞過形成	甲状腺傍ろ胞細胞過形成
	・RBC、Hb 及び Ht 減少	・RBC、Hb 及び Ht 減少
	・PLT 増加、PT 延長	・胆嚢:膨満、粘膜肥厚、上皮過形成
	・胆嚢:膨満、粘膜肥厚、上皮過形成	
1,000 ppm 以	毒性所見なし	毒性所見なし
下		

¹ 体重比重量を比重量という(以下、同じ)。

2 脳重量に比した重量を対脳重量比という(以下、同じ)。

(3)21日間亜急性経皮毒性試験(ウサギ)

NZW ウサギ (一群雌雄各 5 匹) を用いた経皮 (原体:0、10、100 及び 1,000 mg/kg 体重/日、6 時間/日)投与による 21 日間亜急性経皮毒性試験が実施された。

本試験において、いずれの投与群にも毒性所見は認められなかったので、 無毒性量は雌雄とも本試験の最高用量 1,000 mg/kg 体重/日であると考え られた。(参照 2、4)

12. 慢性毒性試験及び発がん性試験

(1) 1年間慢性毒性試験 (イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 (原体:0、25、1,000 及び 10,000/5,000 ppm) 投与による 1 年間慢性毒性試験が実施された。なお、高用量投与群では体重減少がみられたため、投与 11 週以降は投与量を 5,000 ppm に下げて投与が継続された。

各投与群で認められた毒性所見は表7に示されている。

本試験において、10,000/5,000 ppm 投与群の雄で RBC、Hb 及び Ht 減少等が、雌で甲状腺過形成等が認められたので、無毒性量は雌雄とも 1,000 ppm(25 mg/kg 体重/日)であると考えられた。(参照 2)

投与群	雄	雌
10,000/5,000 ppm	・RBC、Hb 及び Ht 減少	・T.Chol 減少
	・PLT 増加	・肝退色
	・T.Chol 減少	・肝比重量増加
	・肝退色	・肝細胞空胞化
	・肝比重量増加	・甲状腺過形成
	肝細胞空胞化	
	• 甲状腺過形成	
1,000 ppm 以下	毒性所見なし	毒性所見なし

表 7 1年間慢性毒性試験(イヌ)で認められた毒性所見

(2)2年間慢性毒性/発がん性併合試験(ラット)

SD ラット(主群:一群雌雄各 70 匹、中間と殺群:一群雌雄各 10 匹)を用いた混餌(原体:0、10、300、3,000、10,000/8,000 及び 20,000 ppm) 投与による 2 年間慢性毒性/発がん性併合試験が実施された。なお、20,000 ppm 投与群の動物については、著しい体重増加抑制がみられたため投与13 週ですべてと殺され、10,000 ppm 投与群では投与 14 週以降の投与量を8,000 ppm に下げて投与が継続された。

各投与群で認められた毒性所見は表8に示されている。

本試験において、3,000 ppm 以上投与群の雄及び 10,000/8,000 ppm 投与群の雌で体重増加抑制等が認められたので、無毒性量は雄で 300 ppm

(15 mg/kg 体重/日)、雌で 3,000 ppm(150 mg/kg 体重/日)であると考れられた。発がん性は認められなかった。(参照 2)

表 8 2年間慢性毒性/発がん性併合試験(ラット)で認められた毒性所見

投与群	雄	雌
10,000/8,000	・精巣軟化、萎縮	・体重増加抑制
ppm	・切歯の異常(剥落/不整形、	・切歯の異常(剥落/不整形、
	白色化、不正咬合、欠損)	白色化、不正咬合、欠損)
3,000 ppm 以上	・体重増加抑制	3,000 ppm 以下
300 ppm 以下	毒性所見なし	毒性所見なし

(3) 18 カ月間発がん性試験(マウス)①

ICR マウス (一群雌雄各 50 匹) を用いた混餌 (0、10、300、3,000 及び 10,000/7,000 ppm) 投与による 18 カ月間発がん性試験が実施された。なお、10,000 ppm 投与群では投与 23 週に投与量を 7,000 ppm に下げて投与が継続された。

各投与群で認められた毒性所見は表 9 に示されている。

腫瘍性病変として、肝細胞腺腫が 3,000 ppm 投与群の雄で 56%、雌で 18%、10,000/7,000 ppm 投与群の雄で 50%、雌で 38%、肝細胞癌が 10,000/7,000 投与群の雌で 26%に認められ、これらの頻度は統計学的に 有意であり、背景データの範囲を上回るものであった。

本試験において、3,000 ppm 以上投与群の雌雄で死亡率増加等が認められたので、無毒性量は雌雄とも300 ppm (雄:40.2 mg/kg 体重/日、雌:50.8 mg/kg 体重/日) であると考えられた。3,000 ppm 以上投与群の雌雄で肝腫瘍の発生頻度増加が認められた。(参照2、4)

表 9 18 カ月間発がん性試験(マウス)①で認められた毒性所見

投与群	雄	雌
10,000/7,000 ppm	・精巣絶対及び比重量、対脳重量比減少 ・精巣:軟化/小型化/退色/斑/石灰化 ・精巣上体無精子症	・体重増加抑制 ・腎絶対及び比重量、対脳重量比減少 ・腎臓:表面粗造/顆粒状/退色/萎縮腎、 慢性腎炎 ・肝臓:腫瘤/斑/巨大細胞/巨大核/
3,000	• 死亡率増加	好塩基性変異細胞巣 ・肝細胞癌増加 ・死亡率増加
ppm 以上	 ・体重増加抑制 ・腎絶対及び比重量、対脳重量比減少 ・肝絶対及び比重量、対脳重量比増加 ・腎臓:表面粗造/顆粒状/退色/萎縮腎、慢性腎炎 ・肝臓:腫瘤/斑/巨大細胞/巨大核/好塩基性変異細胞巣 	・肝絶対及び比重量、対脳重量比減少・歯の異常(不正咬合、形成不全)・過骨症(大腿骨、頭蓋骨、歯茎)・肝細胞腺腫増加

	・精巣変性 ・歯の異常(不正咬合、形成不全) ・過骨症(大腿骨、頭蓋骨、歯茎) ・肝細胞腺腫増加	
300 ppm 以下	毒性所見なし	毒性所見なし

(4) 18 カ月間発がん性試験(マウス)② [補足試験]

ICR マウス (一群雌雄各 70 匹) を用いた混餌 (0.500.1,000 及び 1,500 ppm) 投与による 18 カ月間発がん性試験が実施された。

各投与群で認められた毒性所見は表 10 に示されている。

本試験では、肝腫瘍の発生頻度には投与群と対照群の間で差は認められなかったので、発がん性に関する無影響量は雌雄とも本試験の最高用量1,500 ppm (雄:185 mg/kg 体重/日、雌:239 mg/kg 体重/日)であり、1,000 ppm 以上投与群の雄で Alb 減少、雌で TP 減少が認められたので、慢性毒性に関する無毒性量は雌雄とも 500 ppm (雄:61 mg/kg 体重/日、雌:77 mg/kg 体重/日) であると考えられた。

また、1,500 ppm 投与群で小葉中心性肝細胞肥大、腎症及び精巣変性が認められたことから、最大耐量は 1,500 ppm 付近であると考えられ、前述の試験[12.(3)]において肝腫瘍が認められた用量は最大耐量を超える量であることが確認された。したがって、[12.(3)]において設定された無毒性量は妥当なものであると考えられた。(参照 4)

数 10 10 /3 /1 		
投与群	雄	雌
1,500 ppm	• 小葉中心性肝細胞肥大	· 小葉中心性肝細胞肥大
	・精巣変性	
	• 腎症	
1,000 ppm 以上	・Alb 減少	・TP 減少
500 ppm 以下	毒性所見なし	毒性所見なし

表 10 18 カ月間発がん性試験(マウス)②で認められた毒性所見

13. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)

SD ラット (一群雌雄各 30 匹) を用いた混餌 (0,10,1,000 及び 5,000 ppm) 投与による 2 世代繁殖試験が実施された。

各投与群で認められた毒性所見は表 11 に示されている。

本試験において、親動物では 5,000 ppm 投与群の P 雄及び F_1 雄で体重増加抑制等が、児動物では 5,000 ppm 投与群の F_2 雌雄で哺育期間中の低体重が認められたので、無毒性量は、親動物では雄で 1,000 ppm (50 mg/kg 体重/日)、雌で本試験の最高用量 5,000 ppm (250 mg/kg 体重/日)、

児動物で 1,000 ppm (50 mg/kg 体重/日) であると考えられた。5,000 ppm 投与群の F_1 雄で精細管萎縮及び精子形成欠如が認められたが、繁殖能に関する各種パラメータには悪影響は認められなかった。 (参照 2、4)

親:P、児: F_1 親:F₁、 児: F₂ 投与群 雄 雌 雄 • 体重增加抑制 5,000 ppm 毒性所見なし 体重増加抑制 毒性所見なし ・精巣絶対及び 比重量減少 親 •精細管萎縮、 動 精巣上体の無 物 精子症を伴う 精子形成欠如 1,000 ppm 毒性所見なし 毒性所見なし 以下 ・低体重 (哺育14及び21日) 5,000 ppm 毒性所見なし 児 1,000 ppm 毒性所見なし 物 以下

表 11 2世代繁殖試験(ラット)で認められた毒性所見

(2)発生毒性試験(ラット)①

SD ラット(一群雌 24 匹)の妊娠 $6\sim15$ 日に強制経口(原体:0,100、500 及び 1,000 mg/kg 体重/日、溶媒:0.5% Tween 80 を含む 3%コーンスターチ水溶液)投与して、発生毒性試験が実施された。

本試験において、母動物にはいずれの投与群においても毒性所見は認められなかったが、胎児では 500~mg/kg 体重/日以上投与群で骨化遅延が認められたので、無毒性量は母動物で本試験の最高用量 1,000~mg/kg 体重/日、胎児で 100~mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 2、4)

(3)発生毒性試験(ラット)②

SD ラット (一群雌 26 匹) の妊娠 $6\sim15$ 日に強制経口 (原体:0、10、50、及び 100 mg/kg 体重/日) 投与して、発生毒性試験が実施された。

本試験において、母動物及び胎児にはいずれの投与群においても毒性所見は認められなかったので、無毒性量は母動物及び胎児で本試験の最高用量 100 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 4)

(4)発生毒性試験(ウサギ)

NZW ウサギ (一群雌 19 匹) の妊娠 $7\sim19$ 日に強制経口 (原体:0、10、300 及び 600 mg/kg 体重/日、溶媒:0.5% Tween 80 を含む 3%コーンス

ターチ水溶液) 投与して、発生毒性試験が実施された。

300 mg/kg 体重/日以上投与群で、母動物に流産増加、摂餌量減少、体 重増加抑制及び糞の異常が認められた。600 mg/kg 体重/日投与群では母 動物 2 例が死亡した。

本試験において、300 mg/kg 体重/日以上投与群の母動物に流産増加等が認められたが、胎児にはいずれの投与群においても検体投与の影響は認められなかったので、無毒性量は母動物で10 mg/kg 体重/日、胎児で本試験の最高用量600 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照2)

14. 遺伝毒性試験

プリミスルフロンメチル (原体) の細菌を用いた復帰突然変異試験、チャイニーズハムスター肺由来培養細胞 (V79) 及び卵巣由来培養細胞 (CHO) を用いた染色体異常試験、ラット及びヒト肝細胞を用いた不定期 DNA 合成 (UDS) 試験、チャイニーズハムスターを用いた小核試験が実施された。

結果は表 12 に示されているとおり、すべて陰性であった。(参照 2、4)

試験 対象 処理濃度・投与量 結果 Salmonella $1 \sim 5,000 \, \mu g/7^{\circ} \, V - \ \ (+/-S9)$ 復帰突然 typhimurium 陰性 変異試験 (TA98, TA100, TA1535, TA1537株) チャイニーズハムスター 20~100 μg/mL 陰性 in染色体 肺由来培養細胞(V79) vitro異常試験 チャイニーズハムスター $75\sim600 \mu g/mL$ 陰性 卵巢由来培養細胞(CHO) ラット肝細胞 0.4~400 µg/mL 陰性 ラット初代培養肝細胞 陰性 UDS 試験 $1\sim500 \mu g/mL$ ヒト初代培養肝細胞 20~400 μg/mL 陰性 チャイニーズハムスター 0, 1,250, 2,500, 5,000 mg/kg in小核試験 (骨髄細胞)(一群雌雄 8 体重 陰性 vivo匹) (単回強制経口投与)

表 12 遺伝毒性試験概要

注) +/- S9: 代謝活性化系存在下及び非存在下

皿. 食品健康影響評価

参照に挙げた資料を用いて農薬「プリミスルフロンメチル」の食品健康影響評価を実施した。

ラットに経口投与されたプリミスルフロンメチルは、速やかに吸収及び排泄された。プリミスルフロンメチルの主要排泄経路には性差がみられ、低用量 (0.5 mg/kg 体重)群の雄では糞中、雌では尿中であり、高用量 (500 mg/kg 体重)群では雌雄とも糞中であった。臓器・組織への残留性は認められなかった。動物体内における主要代謝経路は、ピリミジン環の水酸化による \mathbf{B} の生成とそれに続くピリミジン環の異性化、スルホニルウレア部位の開裂による \mathbf{C} 及び \mathbf{D} の生成であると考えられた。

飼料用とうもろこしを用いた植物体内運命試験では、植物体における残留放射能濃度は 0.08 mg/kg 未満と少なかった。主要代謝経路は、フェニル基及びピリミジン環の水酸化及び抱合化、スルホニルウレア部位の開裂であると考えられた。

各種毒性試験結果から、プリミスルフロンメチル投与による影響は主に切歯、骨、肝臓、腎臓、精巣(ラット及びマウス)及び甲状腺(イヌ)に認められた。催奇形性及び遺伝毒性は認められなかった。発がん性試験では、雌雄マウスで肝細胞腫瘍の発生頻度増加が認められたが、発生機序は遺伝毒性メカニズムとは考え難く、評価にあたり閾値を設定することが可能であると考えられた。

各種試験結果から、農産物中の暴露評価対象物質をプリミスルフロンメチル (親化合物のみ)と設定した。

各試験における無毒性量等は表 13 に示されている。

食品安全委員会農薬専門調査会は、各試験で得られた無毒性量の最小値が ウサギを用いた発生毒性試験の 10 mg/kg 体重/日であったので、これを根拠 として、安全係数 100 で除した 0.1 mg/kg 体重/日を一日摂取許容量 (ADI) と設定した。

ADI 0.1 mg/kg 体重/日

(ADI 設定根拠資料) 発生毒性試験

(動物種) ウサギ

(期間) 妊娠 7~19 日

(投与方法) 強制経口

(無毒性量) 10 mg/kg 体重/日

(安全係数) 100

暴露量については、当評価結果を踏まえて暫定基準値の見直しを行う際 に確認することとする。

表 13 各試験における無毒性量の比較

	表 13 合				
- 投与書 - 無毎 任重(mg/kg 平重/ロ)					1 /
動物種	試験	(mg/kg 体重/日)	米国	カナダ	食品安全委員会 農薬専門調査会
ラット	90 日間 亜急性 毒性試験	0、10、300、3,000、 10,000、20,000 ppm	15	30 (NOEL)	雄:15 雌:150
		0、0.5、15、150、500、 1,000	体重、体重增加量 減少、摂餌量減 少、食餌効率減少	雌雄:体重増加抑 制	雌雄:体重増加抑制等
	2 年間	0、10、300、3,000、 10,000/8,000 a ppm	15	12.4 (NOEL)	雄:15 雌:150
	慢性毒性 / 発がん性	0, 0.5, 15, 150, 500	雄:体重増加抑制	雄:体重増加抑制 等	雌雄:体重増加抑制等
	併合試験	3, 3,5, 15, 150, 500	(発がん性は認 められない)	(発がん性は認 められない)	(発がん性は認 められない)
		0 、10 、1,000 、5,000 ppm	親動物、児動物、 繁殖能:50	親動物、児動物、 繁殖能:50(NOEL)	親動物 雄:50 雌:250 児動物:50
	2世代繁殖試験	0, 0.5, 50, 250	親動物:体重増加 抑制等 児動物:低体重 繁殖能:精細管萎 縮、精子形成欠如	親動物:体重增加 抑制 児動物:低体重 繁殖能:精細管萎 縮、精子形成欠如	親動物:体重増加 抑制、精細管萎 縮、精子形成欠如 等 児動物:低体重
					(繁殖の指標に 悪影響は認めら れない)
			母動物:1,000 胎児:100	母動物:1,000 胎児:100(NOEL)	母動物:1,000 胎児:100
	発生毒性 試験①	0,100,500,1,000	母動物:毒性所見なし お児:骨化遅延	母動物:毒性所見なし お児:骨化遅延	母動物:毒性所見 なし 胎児:骨化遅延
				(催奇形性は認められない)	(催奇形性は認 められない)
	発生毒性 試験②	0,10,50,100		母動物、胎児: 100 (NOEL)	母動物、胎児: 100
				毒性所見なし (催奇形性は認	毒性所見なし (催奇形性は認
				められない)	められない)

			無毒物	生量(mg/kg 体重/F) 1)		
動物種	試験	投与量			食品安全委員会		
2010年	i vijo	(mg/kg 体重/日)	米国	カナダ	農薬専門調査会		
マウス		0, 10, 300, 3,000,	40.2	40.2	雄: 40.2		
		10,000/7,000 b ppm	T 1. + 14 La 11. 5		雌:50.8		
	18 カ月	## 0 10¥ 100	死亡率増加、体重	# . 死亡	11/1. L.V		
	間発がん	雄: 0、1.35、40.2、	増加量減少、腎、	雄:死亡率増加等 雌:切歯の異常等	雌雄:死亡率増加		
	性	408、1,160	肝、精巣、歯及び 骨に対する毒性	雌:男圏の共吊寺	等		
	試験①	雌: 0、1.72、50.8、	育に刈りる母性				
		512、1,390	(肝腫瘍発生頻	(肝腫瘍発生頻	(雌雄:肝腫瘍発		
			度増加)	度増加)	生頻度増加)		
		0,500,1,000,1,500	/	61 (NOEL)	雄:61		
		ppm			雌:77		
	18 カ月						
	間発がん			雄:Alb 減少	雄:Alb 減少		
	性	雄:0、61、122、185		雌:TP 減少	雌:TP 減少		
	試験②	雌:0、77、155、239		 (発がん性は認	 (発がん性は認		
				められない)	(光がん性は認) められない)		
ウサギ			/ 母動物:10	母動物、胎児:	母動物:10		
994			胎児:600	10 (NOEL)	胎児:600		
			, AL 7E . 000	10 (1(0)11)	ма уш. 000		
	>> 仕 ≠ ¼		母動物:流産、体	母動物:体重増加	母動物:流産増加		
	発生毒性 試験	0,10,300,600	重増加抑制	抑制、糞の異常	等		
	时间失		胎児:毒性所見な	胎児:流産	胎児:毒性所見な		
			L		L The state of the		
			(催奇形性は認	(催奇形性は認	(催奇形性は認		
1 7		0 0 1000 10000	められない)	められない)	められない)		
イヌ	90 日間	0、25、1,000、10,000	25	25	雌雄: 25		
	亜急性	ppm	 体重増加抑制、摂	雌雄:体重増加抑	 雌雄:体重増加抑		
	毒性試験	0,0.6,25,250	餌量減少等	制、摂餌量減少等	制等		
		, ,		• • • • • • • •	,		
		0, 25, 1,000,	25	28.1 (NOEL)	雌雄:25		
	1年間	10,000/5,000 c ppm					
	慢性毒性		RBC、Hb 及び	雌雄:貧血等	雄:RBC、Hb 及		
	試験	0, 0.6, 25, 250/125	Ht 減少等		びHt減少等		
	- ·				雌:甲状腺過形成		
ADI (-DCD)			NOAEL: 25	NOEL: 10	NOAEL: 10		
ADI (cRfD)			UF: 100	SF: 100	SF: 100		
			cRfD: 0.25	ADI: 0.1	ADI: 0.1		
ADI(cRfD)設定根拠資料			イヌ1年間	ウサギ	ウサギ		
NOARI · 無事州县 NORI · 無影線			慢性毒性試験	発生毒性試験 TUE: 不確実係数	発生毒性試験 ADI: 一旦摂取許		

NOAEL:無毒性量 NOEL:無影響量 SF:安全係数 UF:不確実係数 ADI:一日摂取許容量

^{1):}無毒性量欄には、最小毒性量で認められた主な毒性所見を記した。

a: 投与 13 週以降 8,000 ppm に下げた。

b: 投与 23 週以降 7,000 ppm に下げた。

^{。:} 投与 11 週以降 5,000 ppm に下げた。

<別紙1:代謝物/分解物略称>

記号	略称	化学名
В	CGA-239769	5-hydroxy-primidinyl- primisulfuron-methyl
С	CGA-120844	2-carboxymethyl-benzene sulfonamide
D	CGA-27913/147087	saccharin, O -benzoic sulfimide
Е	CGA-171683	2-amino-4,6-bis(difluoromethoxy)-pyrimidine
F	CGA-191429	primisulfonic acid
G	CGA-177288	O-sulfonamide benzoic acid
Н	CGA-239771	2-urea-4,6-bis(difluoromethoxy)-pyrimidine
I	CGA-219741	3-(4,6-bis(difluoromethoxy)-pyrimidin-2-yl)-1-(2-methoxycarbonyl-5-hydroxy-phenylsulfonyl)-urea

<別紙2:検査値等略称>

略称	名称	
ai	有効成分量	
Alb	アルブミン	
Hb	Hb へモグロビン(血色素量)	
Ht	ヘマトクリット値	
LC_{50}	半数致死濃度	
LD_{50}	半数致死量	
PLT	血小板数	
PT	プロトロンビン時間	
RBC	赤血球数	
TAR	総投与(処理)放射能	
T.Chol	総コレステロール	
TP	総蛋白質	
TRR	総残留放射能	

<参照>

- 1 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する 件(平成 17 年 11 月 29 日付、平成 17 年厚生労働省告示第 499 号)
- 2 US EPA: Primisulfuron-methyl Toxicology Chapter for RED (2002)
- 3 US EPA: Primisulfuron-methyl—Report of the Hazard Identification Assessment Review Committee (2002)
- 4 Health Canada: Proposed Regulatory Decision Document (PRDD) (2001)
- 5 食品健康影響評価について

(URL: http://www.fsc.go.jp/hyouka/hy/hy-uke-primisulfuron-methyl-191218.pdf)

6 第 220 回食品安全委員会

(URL: http://www.fsc.go.jp/iinkai/i-dai220/index.html)

7 第 19 回食品安全委員会農薬専門調査会確認評価第一部会

(URL: http://www.fsc.go.jp/senmon/nouyaku/kakunin1_dai19/index.html)

8 第 47 回食品安全委員会農薬専門調査会幹事会

(URL: http://www.fsc.go.jp/senmon/nouyaku/kanjikai_dai47/index.html)