1 清涼飲料水に係る化学物質の食品健康影響評価

2 番号16 テトラクロロエチレン(案)

3

4 I. 評価対象物質の概要

5 1. 用途

6 有機物の溶剤、ドライクリーニングの工程、金属部品の脱脂剤、フルオロカーボン

7 合成の中間体、織物工業等に使用される。(H4 専門委員会報告)

8 ドライクリーニング溶剤、フロンガス製造、原毛洗浄、溶剤(医薬品、香料、メッ

キ、ゴム、塗料)、セルロースエステル及びエーテルの混合物溶剤(参照55)

10

9

11 2. 一般名

12 テトラクロロエチレン、四塩化エチレン、パークロロエチレン

13

16

14 3. 化学名

15 IUPAC

和名:1,1,2,2-テトラクロロエテン

5. 英名:1,1,2,2-tetrachloroethene

CAS No. : 127-18-4

18 19

20 4. 分子式

 C_2Cl_4

22

23 5. 分子量

24 166

25

26

6. 構造式

2728

30 31 32

29

7. 物理化学的性状

33 物理的性状:特徴的な臭気のある、無色の液体

34 沸点 (℃) : 121

35 融点 (℃) :-22

36 比重 (水=1):1.6

37 水への溶解性 (g/100mL (20°C)): 0.015

1	水オクタノール分配係数(log Pow): 2.9
2	蒸気圧(kPa(20°C)): 1.9
3	
4	8. 現行規制等
5	(1) 法令の規制値等
6	水質基準値(mg/L): 0.01
7	環境基準値(mg/L): 0.01
8	その他基準(mg/L): 給水装置の構造及び材質の基準 0.001
9	労働安全衛生法:作業環境評価基準 50ppm
10	
11	(2)諸外国等の水質基準値またはガイドライン値
12	WHO(mg/L): 0.04 (第 3 版)
13	EU (mg/L): 0.01 (トリクロロエチレン及びテトラクロロエチレンの和で)
14	U.S. EPA (mg/L): 0.005 (Maximum Contaminant Level)
15	欧州大気質ガイドライン(参照 51a): 指針値 0.25mg/m³ 年間
16	
17	Ⅱ.安全性に係る知見の概要
18	1. 毒性に関する科学的知見
19	WHO 飲料水水質ガイドライン、EPA/IRIS のリスト、ATSDR の毒性学的プロファイ
20	ル、IARC のモノグラフ等を基に、毒性に関する主な科学的知見を整理した(参照
21	$52,49,1,32)_{\circ}$
22	
23	(1)体内動態
24	① 吸収
25	$8\sim 10 \; \mathrm{mL} \; (12\text{-}16\mathrm{g}) \;$ のテトラクロロエチレンを誤って飲用した 6 歳の少年の事例で
26	は、 1 時間後に血液中に $21.5\mu \mathrm{g/mL}$ のテトラクロロエチレンが検出された (参照 34)。
27	このことは、ヒトにおいてテトラクロロエチレンが経口暴露後に吸収されることを示し
28	ている (参照 1)。
29	
30	いくつかの動物実験結果において、テトラクロロエチレンは、ラット、マウス及びイ
31	ヌへの経口投与後、急速かつ完全に吸収されることが示されている(参照 17,22,44,46,1)
32	Sprague-Dawley ラット(雄)に、放射能標識したテトラクロロエチレン 500 mg/kg
33	体重(溶媒:コーンオイル)を強制経口投与した試験では、投与1時間後に、血液テト
34	ラクロロエチレン濃度が 40 μg/mL で最高となった(参照 44)。
35	
36	Sprague-Dawley ラット(雄)及びビーグル犬(雄) に、テトラクロロエチレン $10 mg/kg$
37	体重(溶媒:ポリエチレングリコール400)を単回強制経口投与した試験から、吸収係
38	数はラットで 0.025/分、イヌでは 0.34/分と推定された。ラット及びイヌにテトラクロ
39	ロエチレン(ラット: 1 、 3 、 10 mg/kg 体重、イヌ: 3 、 10 mg/kg 体重)を単回経口投
40	与した試験では、血液中のテトラクロロエチレン濃度が最高に達したのは、ラットでお

1 およそ投与20~40分後、イヌではおおよそ投与15~30分後であった(参照19)。

2 3

② 分布

Sprague-Dawley ラット(雄)に、テトラクロロエチレン 10 mg/kg 体重(溶媒:ポ 4 リエチレングリコール 400) を単回強制経口投与した試験では、脂肪で投与後 360 分、 5 6 肝臓で投与後 10 分、腎臓で投与後 10 分、脳で投与後 15 分に Tmax が認めれらた。ビ 7 ーグル犬(雄) にテトラクロロエチレン 10 mg/kg 体重(溶媒:ポリエチレングリコー ル 400) を単回経口投与した試験では、脂肪で投与後 720 分、脳で投与後 60 分、肝臓 8 9 で投与後 60 分、心臓で投与後 60 分、腎臓で投与後 60 分に Tmax が認められた。この 10 試験では、最高濃度が 720 分に認められた脂肪を除いて、他の臓器の最高濃度は最初の 計測時である投与 60 分後に観測された。このため、実際にはテトラクロロエチレンの 11 12 濃度はより早い時間に最高値に達していた可能性がある(参照17)。

1314

15

16

17

18

1920

2122

23

③ 代謝

ヒトにおける、経口暴露後のテトラクロロエチレンの代謝に関する知見は、8~10 mL (12-16 g) のテトラクロロエチレンを誤って飲用した 6 歳の男児の症例報告のみである。この事例では尿中にテトラクロロエチレン、トリクロロ酢酸(TCA)、トリクロロエタノールが検出され、摂取 1 日目は総テトラクロロエチレンが 30 μ g、総トリクロロ化合物が 8 mg であったのに対し、3 日目には総テトラクロロエチレンが 3 μ g に減少し、総トリクロロ化合物が 68 mg に増加した(参照 34)。

ATSDR によると、ヒトにおける吸入暴露後のテトラクロロエチレンの代謝は約100 ppm 以上で飽和するとのことである。齧歯類ではTCAへの代謝が主要な代謝ルートであること、ラットはヒトよりも速い速度でテトラクロロエチレンを代謝し、また、マウスはラットよりもさらに速い速度で代謝すると記されている(参照1)。

242526

27

28

29

30

31 32

33

34

35

36 37

38

39

40

Lash と Parker (参照36) はテトラクロロエチレンの肝及び腎毒性とそれに関係する代謝及び作用機序について下記のようにまとめている。

テトラクロロエチレンの代謝には主として、CYP を介する酸化経路とグルタチオン S-トランスフェラーゼ (GST) を介する経路がある。

CYP を介するヒトの酸化経路では、CYP2E1、CYP2B1/2、CYP3A4 が関与している。これらの酵素には遺伝的多様性がある。CYP を介する代謝は、トリクロロエチレンに比べてテトラクロロエチレンは遅い。また、ヒトにおける代謝速度はげっ歯類に比べて相当遅い。代謝産物はTCA及びジクロロ酢酸(DCA)であり、肝毒性及び肝における腫瘍誘導に関係するとされている。

GST を介する代謝経路における最初の段階は肝臓で行われ、ここでの代謝物は直ちに腎臓に運ばれる。システイン抱合体となった後、腎臓のβ-リアーゼがこれをタンパクや DNA と共有結合する反応性代謝物に変換する。この段階には性及び種による違いがあると知られている。各段階での反応性の違いに基づいて、ヒトにおける反応性代謝物の生成率は 0.00082%、ラットでは 0.052% と算出されている。

in vitro の研究によると、テトラクロロエチレンの代謝経路は、CYP 系が GSH 系に

対し優位であるが、GST系では反応性代謝産物が生じるのに対して、CYP系の二つの主要な代謝産物(TCA、DCA)は化学的に安定である(参照36)。

4) 排泄

ヒトにおける、経口暴露後のテトラクロロエチレンの排泄及び代謝に関する研究は、唯一8~10 mL (12-16 g) のテトラクロロエチレンを誤って飲用した6歳の男児の症例報告である(参照34)。摂取したテトラクロロエチレンの大部分は、未代謝のまま呼気から吐出された。しかし、この患者はテトラクロロエチレンを肺から容易に浄化する目的で過換気されたため、通常とは異なる状態に置かれていた。尿中にはテトラクロロエチレン及び代謝物である TCA、トリクロロエタノールが排泄され、時間の経過に伴い代謝物の排泄量が増加した(参照34)。

動物では、未変化のテトラクロロエチレンの呼気への排出が、経口摂取後の主な排泄 経路であった。テトラクロロエチレンが単回経口投与(1 mg/kg 体重)された Sprague-Dawley ラット(雄)では、投与後 72 時間以内に、投与量の 72%が未代謝物 として呼気を通して、また、16%が代謝物として尿中にそれぞれ排泄された。投与量が 500 mg/kg 体重に増えた場合、投与後 72 時間以内に未代謝物として呼気に排出される 比率は 90%に増加し、尿中への代謝物としての排泄率は 5%に低下した(参照 44)。

同様の結果がテトラクロロエチレンを飽和させた飲水(約 150 ppm)を 12 時間自由 に摂取させた Sprague-Dawley ラット(雄)で報告されている。投与量は平均 8.1 ± 3.1 mg/kg 体重であった。投与後 72 時間以内に、体内負荷量の 87.9%が未代謝物として呼気から排泄され、また、7.2%は尿中に、1.7%は糞中に排出された(参照 22)。

B6C3F₁マウスにおいても、経口投与されたテトラクロロエチレン (500 mg/kg 体重) は主として未代謝のまま呼気から排出された。テトラクロロエチレン (500 mg/kg 体重) を単回経口投与されたマウスは、投与後 72 時間中に吸収量の 82.6%を未代謝物として呼気中に排出し、10.3%を代謝物として尿中に排出した。500 mg/kg 体重の投与により、マウスでの酸化的代謝が飽和され、代謝及び排出経路が尿への排泄から呼気への排出へと変化した (参照 46)。

Sprague-Dawley ラット及びビーグル犬において、経口投与後のテトラクロロエチレンの代謝及び排泄を比較すると、呼気への排出と代謝速度及び程度は、イヌよりラットの方がはるかに高かった(参照 17)。テトラクロロエチレンの呼気中での排出は直接には認められなかった。しかし、血液:空気分配係数がイヌ(40.5)に比べてラット(19.6)で小さいことは、テトラクロロエチレンがラットでは肺の血液から肺胞を介して速やかに拡散していることを示している(参照 1)。単回経口投与されたラットとイヌにおけるテトラクロロエチレンの全身クリアランスは、ラットについては、3 mg/kg 体重の投与量で、30.1 mL/分/kg、10 mg/kg 体重の投与量で 32.5 mL/分/kg であった。また、イヌについては、3 mg/kg 体重の投与量で 14.6 mL/分/kg、10 mg/kg 体重の投与量で 25 mL/

分/kg であった (参照 19)。

2 3

(2) 実験動物等への影響

① 急性毒性試験

Sprague-Dawley ラット(雌雄、各投与群 5 匹)におけるテトラクロロエチレン(溶媒: 4%Emulphor 水溶液)の強制単回経口投与において、 LD_{50} 値は、雄で 3,835 mg/kg体重、雌で 3,005 mg/kg体重であった。死亡は投与後 24 時間以内に認められたが、それに先立ち、振戦、運動失調、中枢神経系の抑制が認められた(参照 31)。

② 亜急性毒性試験

a. 11 日間亜急性毒性試験(マウス)

B6C3 F_1 マウス(雄、各投与群 6-7 匹)におけるテトラクロロエチレン(100、250、500、1,000 mg/kg 体重/日、溶媒:コーンオイル)の 11 日間の強制経口投与試験を行った。各投与群で認められた毒性所見を表 1 に示す。

250 mg/kg 体重/日以上の投与群で肝臓の比重量の有意な増加が認められた。また、100 mg/kg 体重/日以上の投与群で肝細胞の腫脹が認められた(参照 46)。

表1 マウス 11 日間亜急性毒性試験

投与群	雄	
250 mg/kg 体重/日以上	肝の比重量の増加	
100 mg/kg 体重/日以上	肝細胞の腫脹	

b. 6週間亜急性毒性試験(マウス)

Swiss Cox マウス (雄、各投与群 4-15 匹) におけるテトラクロロエチレン (0、20、100、200、500、1,000、1,500、2,000 mg/kg 体重/日、溶媒:コーンオイル)の 6 週間 (週 5 日) 強制経口投与試験を行った。各投与群で認められた毒性所見を表 2 に示す。

100 mg/kg 体重/日以上の投与群で肝臓の比重量の有意な増加、肝の TG の上昇及び 肝細胞損傷が認められた。また、500 mg/kg 体重/日以上の投与群でグルコース-6-リン 酸の減少と ALT の上昇が認められた。肝の組織学的検査を行った 2 つの投与群(200 及び 1,000 mg/kg 体重/日)で、細胞の核崩壊、小葉中心性壊死、倍数性細胞が認めら れた(参照 11)。

表2 マウス6週間亜急性毒性試験

投与群	雄
500 mg/kg 体重/日以上	グルコース-6-リン酸の減少、ALTの上昇
200 mg/kg 体重/日以上	肝における細胞核崩壊、小葉中心性壊死、倍数性細胞
100 mg/kg 体重/日以上	肝の比重量の増加、肝のTGの上昇、肝細胞損傷
20 mg/kg 体重/日	毒性所見なし

c. 5日間亜急性毒性試験(ラット)

Wistar ラット(雄、各投与群 4 匹)におけるテトラクロロエチレン(125、500、1,000、2,000 mg/kg 体重/日、溶媒:コーンオイル)の 5 日間の強制経口投与試験を行った。各投与群で認められた毒性所見を表 3 に示す。

1,000 mg/kg 体重/日以上の投与群では肝臓の比重量が有意に増加し、CYP2B 酵素が有意に増加した。テトラクロロエチレンは Phase II 薬物代謝酵素を誘導し、2,000 mg/kg 体重/日投与群では DT・ジアホラーゼ活性の有意な上昇、1,000mg/kg 体重/日以上の投与群では GST 活性の有意な上昇、また全ての投与群(125 mg/kg 体重/日以上)で 7-ヒドロキシクマリン(Hydroxycoumarin)UDP・グルクロニルトランスフェラーゼ(UGT)活性の有意な上昇が見られた。 脾臓及び胸腺の萎縮は、2,000 mg/kg 体重/日投与群では認められなかった。 5日間の暴露後、2,000 mg/kg 体重/日投与群の体重は、対照群の 84%であった (参照 30)。

表3 ラット5日間亜急性毒性試験

投与群	雄	
2,000 mg/kg 体重/日	DT・ジアホラーゼ活性の上昇、脾臓及び胸腺の萎縮、体重減	
	少	
1,000 mg/kg 体重/日以上	肝の比重量の増加、CYP2B 酵素の増加、GST 活性の有意なト昇	
	0.44)	
125 mg/kg 体重/日以上	7 -ヒドロキシクマリン UGT 活性の増加	

d. 11 日間亜急性毒性試験(ラット)

Sprague-Dawley ラット (雄、各投与群 7 匹) におけるテトラクロロレチレン (100、250、500、1,000mg/kg 体重/日、溶媒: コーンオイル) の 11 日間の強制経口投与試験を行った。各投与群で認められた毒性所見を表 4 に示す。

1,000 mg/kg 体重/日投与群で肝臓の比重量の有意な増加が認められた。1,000 mg/kg 体重/日投与群の体重増加量は、対照群の77%であった(参照46)。

表 4 ラット 5 日間 亜急性 毒性 試験

投与群	雄	
1,000 mg/kg 体重/日	肝の比重量の増加、体重増加量の抑制	
500 mg/kg 体重/日以下	毒性所見なし	

e. 14 日間亜急性毒性試験(ラット)

F344 ラット(雌、各投与群 8 匹)におけるテトラクロロエチレン(0、50、150、500、1,500 mg/kg 体重/日、溶媒: コーンオイル)の 14 日間の強制経口投与試験を行った。各投与群で認められた毒性所見を表 5 に示す。

1,500 mg/kg 体重/日投与群では肝臓の比重量の増加、ALT の増加ならびに肝細胞の肥大が認められた。しかし、肝臓への影響は500 mg/kg 体重/日投与群では認められな

かった。また、腎臓への影響及び脾臓と胸腺における病理組織学的変化はいずれの投 与群でも認められなかった(参照9)。

2 3

表 5 ラット 14 日間亜急性毒性試験

投与群	雌	
1,500 mg/kg 体重/日	肝の比重量の増加、ALT増加、肝細胞の肥大	
500 mg/kg 体重/日以下	毒性所見なし	

f. 42 日間亜急性毒性試験 (ラット)

Wistar ラット (雄、各 6 匹) におけるテトラクロロエチレン (3,000 mg/kg) 体重/日、溶媒: ゴマ油) の 42 日間の強制経口投与試験を行った。投与群で認められた毒性所見を表 6 に示す。

肝臓に多巣性壊死、腎臓に糸球体過形成及び尿細管のうっ血が認められ、肝臓・腎臓ともに、総タンパク質及びタンパク質が結合した糖の濃度の有意な上昇が認められた(参照21)。

表 6 ラット 14 日間亜急性毒性試験

F :		
投与群	雄	
3,000 mg/kg 体重/日	肝に多巣性壊死、腎に糸球体過形成及び尿細管のうっ血、肝・腎における総タンパク質及びタンパク質結合糖の濃度上昇	

g. 13週間亜急性毒性試験(ラット)

CD (SD) ラット (雌雄、各投与群 20 匹) におけるテトラクロロエチレン (14、400、1,400 mg/kg 体重/日) の 13 週間の飲水投与試験を行った。各投与群で認められた毒性所見を表 7 に示す。

400 mg/kg 体重/日以上の投与群の雄及び 1,400 mg/kg 体重/日投与群の雌で血清酵素である 5'-ヌクレオチダーゼが増加した。肝臓の比重量の増加が 1,400 mg/kg 体重/日投与群の雌雄で認められた。腎臓の比重量の増加が、400mg/kg 体重/日以上の投与群の雄及び 1,400 mg/kg 体重/日投与群の雌で認められた。体重増加が、1,400 mg/kg 体重/日投与群の雄及び 400 mg/kg 体重/日以上の投与群の雌で抑制された。剖検による肉眼的検査では、肝臓を含む対象器官に異常は全く認められなかった。また、顕微鏡検査は行われなかった(参照 31)。

表 7 ラット 13 週間亜急性毒性試験

次,		
投与群	雄	雌
1,400 mg/kg 体重/日以上	肝の比重量の増加、体重増加	5'-ヌクレオチダーゼの増加、肝の比重
	抑制	量の増加、腎の比重量の増加
400 mg/kg 体重/日以上	5'-ヌクレオチダーゼの増	体重増加抑制
	加、腎の比重量の増加	
14 mg/kg 体重/日	毒性所見なし	毒性所見なし

③ 慢性毒性試験及び発がん性試験

a. 78 週間慢性毒性/発がん性併合試験(マウス)

B6C3 F_1 マウス(雌雄、各投与群 50 匹、溶媒対照群各 20 匹)におけるテトラクロロエチレン(時間加重平均 536、1,072 mg/kg 体重/日(雄)、386、772 mg/kg 体重/日(雌)、溶媒:コーンオイル)の 78 週間(週 5 日)強制経口投与試験を行い、その後 12 週間観察した。各投与群で認められた毒性所見を表 8 に示す。

雌雄の全ての投与群に中毒性腎症が生じ、死亡率が上昇した。また、雌雄において 肝細胞腫瘍による早期死亡も認められた。尿細管上皮壊死を伴う皮質及び髄質の接合 部の近位尿細管における変性変化が認められた。

また、発がん性については、肝細胞がんの統計的に有意な増加が認められた。無処置対照群、溶媒対照群、低用量群、高用量群における肝細胞がんの発生率は、雄ではそれぞれ 2/17、2/20、32/49、27/48、雌ではそれぞれ 2/20、0/20、19/48、19/48 であった(参照 41)。

この試験には、投与群(50)と比べて対照群(20)が少ないこと、試験期間中に何回も投与量を調整したこと、最大耐量の超過を示唆する暴露に関係した中毒性腎症による早期高死亡といった限界がある。いずれにも、介入性感染症による肺炎(マイコプラズマ肺炎)も発生した(参照1)。

表 8 マウス 78 週間慢性毒性/発がん性併合試験

	投与群	雄	雌
	雄 536 mg/kg 体重/日以上	中毒性腎症、死亡率上昇、腎臓	中毒性腎症、死亡率上昇、腎臓
	雌 386 mg/kg 体重/日以上	の病理組織学的変化、肝細胞が	の病理組織学的変化、肝細胞が
L		んの発生率増加	んの発生率増加

b. 78週間慢性毒性/発がん性併合試験(ラット)

Osborne-Mendel ラット(雌雄、各投与群 50 匹、溶媒対照群各 20 匹)におけるテトラクロロエチレン(時間加重平均 471、941 mg/kg 体重/日(雄)、474、949 mg/kg 体重/日(雌)、溶媒: コーンオイル)の 78 週間(週 5 日)強制経口投与試験を行い、その後 32 週間観察した。各投与群で認められた毒性所見を表 9 に示す。

雌雄の全ての投与群に中毒性腎症が生じ、死亡率が上昇した。腎障害として、混濁腫脹、脂肪変性、また尿細管上皮壊死を伴う皮質及び髄質の接合部の近位尿細管における変性変化が認められた。影響のあった尿細管には、硝子円柱で満たされているものもあったり、空のものもあった。いくつかの尿細管では、障害を受けた細胞が、肥大した好塩基性の再生性尿細管上皮細胞に置きかわっていた。また、腎臓において、炎症性細胞の湿潤、線維症、局所的な鉱質沈着が認められた(参照 41)。

ATSDRでは、生存率が下がったため、この試験で、ラットの発がん性を評価するのは妥当とは考えられないとしている(参照1)。

表 9 ラット 78 週間慢性毒性/発がん性併合試験

投与群	雄	雌
雄 471 mg/kg 体重/日以上	中毒性腎症、死亡率上昇、腎臓	中毒性腎症、死亡率上昇、腎
雌 474 mg/kg 体重/日以上	の病理組織学的変化	臓の病理組織学的変化

c. 103 週間発がん性試験(マウス)

 $B6C3F_1$ マウス(雌雄、各暴露群 $49\sim50$ 匹)におけるテトラクロロエチレン(0、100、200 ppm)の 103 週間(週 5 日)吸入暴露試験を行った。各投与群で認められた毒性所見を表 10 に示す。

雄では、生存率が低下した(対照群:46/50、低濃度群:25/50、高濃度群:32/50)。 また雌では、高濃度群で生存率が低下した(対照群:36/50、低濃度群:31/50、高濃度群:19/50)。この原因は肝細胞がんの発生によるものと考えられた。雄では暴露により肝細胞腺腫が増加し(対照群:12/49、低濃度群:8/49、高濃度群:19/50)、肝細胞がんも増加した(対照群:7/49、低濃度群:25/49、高濃度群:26/50)。雌では肝細胞がんが増加した(対照群:1/48、低濃度群:13/50、高濃度群:36/50)。また、雌雄に腎尿細管細胞の核肥大を引き起こし、低濃度群の雄1匹には尿細管腺がんが見られた(参照41a)。

表 10 マウス 103 週間発がん性試験

投与群	雄	雌
200 ppm	生存率の低下、肝細胞がん増加、腎尿	生存率の低下
100 ppm 以上	細管細胞の核肥大	肝細胞がん、腎尿細管細胞の核肥大

d. 103 週間発がん性試験 (ラット)

F344/N ラット(雌雄、各暴露群 50 匹)におけるテトラクロロエチレン(0、200、400 ppm)の 103 週間(週 5 日)吸入暴露試験を行った。各投与群で認められた毒性所見を表 11 に示す。

雄では 400 ppm 暴露群で死亡率が高く(対照群: 27/50、200 ppm 暴露群: 30/50、400 ppm 暴露群: 38/50)、LGL(単核球性)白血病の発生率増加(対照群: 28/50、200 ppm 暴露群: 37/50、400 ppm 暴露群: 37/50)によるものと考えられた。雌では、白血病の発生率が増加した(対照群: 18/50、200 ppm 暴露群: 30/50、400 ppm 暴露群: 29/50)。テトラクロロエチレン暴露は雌雄の腎尿細管細胞の核肥大、雄の腎尿細管過形成を誘発した。また、雄に腎尿細管腺腫あるいは腺がんを誘発したが(対照群: 1/49、200 ppm 暴露群: 3/49、高濃度群: 4/50)、この増加は統計学的に有意ではなかった。腎尿細管腺腫は他の塩素化エタンあるいはエチレンの 2 年間暴露試験で雄に一貫して低頻度で見られるものである。高濃度群の雄 4 匹及び雌 2 匹で、脳の神経膠腫が見られた(対照群: 各 1 匹)(参照 41a)。

表 11 ラット 103 週間発がん性試験

投与群	雄	雌
400 ppm	死亡率上昇、脳の神経膠 腫の発生	脳の神経膠腫の発生
100 ppm 以上	白血病の発生率増加	白血病の発生率増加

※すべての毒性所見に関して、有意差不明

発がんに関係する作用機序

肝臓に対する作用機序

テトラクロロエチレンの肝臓における作用には①シグナル伝達系への影響、②細胞死と修復性肥大の誘導、③体細胞突然変異が関係していると考えられる。肝毒性にはCYPによる代謝産物であるTCA及びDCAが関与している。シグナル伝達系を介する影響には、酵素の誘導、がん遺伝子の活性化、ペルオキシソーム増殖、中間代謝の変化がある。ペルオキシソーム増殖はヒトには当てはまらないと考えられる。遺伝毒性を介する影響を示唆する証拠も若干はあるが、DCAやTCAの変異原性は弱い(参照36)。

ATSDR はペルオキシソーム増殖について、下記のようにまとめている。

マウスとラットは肝細胞ペルオキシソームの誘導により TCA と多くの他の化学物質に反応するが、ヒトはペルオキシソーム増殖物質に対して比較的感受性が乏しいか、あるいは、ラットやマウスに顕著な反応を引き起こす投与量においても反応しない。ペルオキシソーム増殖がどのようにして肝臓がんに至るのかはまだ不明であるが、増殖する過程では、活性化されるとカタラーゼを誘発することなく副生成物として過酸化水素を生成するようなペルオキシソーム酵素を誘導する特別な受容体を必要とするようである。過酸化水素の生成が増すと DNA 損傷を増大させる可能性がある。さらに、ペルオキシソーム増殖物質は、腫瘍を形成するに足る持続的 DNA 合成及び過形成により、内因性の病変を促進する可能性がある。肝臓がんはラットのテトラクロロエチレン暴露では観察されていないが、それは、TCA 生成のための代謝経路が飽和する結果、ペルオキシソーム増殖を誘発するのに必要な TCA の閾値濃度に達しないからである。ヒトでは、テトラクロロエチレン暴露後に TCA をほとんど生成せず、また、ヒトでのペルオキシソーム増殖反応がごく微小であるため、マウスに観察されるような肝臓肥大と腫瘍発現は、ヒトの同じ機序では起こらないと考えられる(参照 1)。

テトラクロロエチレンのマウスの肝毒性にはトリクロロアセチル化タンパク質付加体が関係していると考えられている。免疫組織化学により、これらの付加体がマウス肝の小葉中心に局在することが示された(参照28)。

ヒトの CYP1A1、CYP1A2、CYP2E1、CYP2A6、CYP3A4 を発現するリンホブラストーマ (MCL-5) を用いて、小核試験が行われ、テトラクロロエチレンではこの細胞に対する小核誘導の用量依存的な増加が示された。また、ヒトにおいて活性化に関わるのは CYP2E1 ではなく、CYP1A2、CYP2B6、CYP2C8 である可能性を示した (参照

 $1 54)_{\circ}$

2 3

腎臓に関する作用機序

テトラクロロエチレンの腎臓に対する最初の反応は、ミトコンドリアの機能不全、タンパク質のアルキル化、DNAのアルキル化あるいは酸化的ストレスであると考えられる。遺伝毒性が関わらない機序もあるが、GSTを介した代謝物であるTCVC(S-(1,2,2-トリクロロビニル)-L-システイン)はかなり強い変異原性物質であることから、遺伝毒性を介する機序も重要であることが示唆される。ペルオキシソーム増殖作用はヒトの腎では肝よりもさらに弱いと考えられる。 α -2u-グロブリン(α -2u)の蓄積は発がん性試験に用いられる濃度より高濃度でラットの腎に生じる。ラットにおける腎毒性の一部が α -2u の蓄積によるものであれば、ラットに見られる腎毒性や腎腫瘍はヒトに定量的に外挿することはできない。しかし、ラットの腎毒性にはその他の機序も関与しているようであり、これらについてはヒトにも関与している(参照 36)。

F344 ラット(雌雄)に 1,000 mg/kg 体重/日のテトラクロロエチレン(溶媒: コーンオイル)を 10 日間強制経口投与し、腎臓における α -2u レベルの変化、小滴状タンパク質沈着の増加及び細胞複製(=replication(原著), ATSDR には proliferation とあり。)の増加が雄ラットに特異的か否かについて調べた。雄ラットでは腎臓の P2 セグメント内に、小滴状タンパク質沈着の増加及び細胞複製の増加が認められたが、雌のラットにはこれらの変化は認められなかった。 α -2u を免疫組織学的に染色したところ、小滴状タンパク質と近位尿細管曲部上皮細胞中の α -2u とはよく相関していた。また、雄ラットに特異的な α -2u が細胞複製に直接関与しているようであった。これらのことから、Goldsworthy らはテトラクロロエチレン暴露により誘導される雄ラットの腎腫瘍は、腎毒性とその結果生じる細胞複製に関与している可能性があるとしている(参照 26)。

F344 ラット(雌雄各 12 匹)に 500 mg/kg 体重/日のテトラクロロエチレン(溶媒:コーンオイル)を 4 週間(毎日)強制経口投与し、尿中へのアルブミン、 α -2u、レチノール結合タンパク(RBP)の排泄を調べた。また、N-アセチルグルコサミニダーゼ(NAG)を測定した。雄ラットではアルブミン尿症の傾向及び一次的な α -2u 及び NAGの増加が認められ、近位尿細管の S2 セグメントに α -2u の蓄積と軽度の障害が認められた。一方、雌ではごくわずかなアルブミンの増加のみ認められたが、尿中の α -2u は対照群の 4 倍にまで増加した。尿細管における取り込みに α -2u との競合が起こるためにアルブミン尿症が強まると考えられた。Bergamaschi らは、テトラクロロエチレンの腎臓に対する作用に種及び性特異性が認められることから、結果をヒトへ外挿するには注意が必要であるとしている(参照 7)。

F344 ラット(雄)に 1,500 mg/kg 体重のテトラクロロエチレン(溶媒: コーンオイル)を 42 日間強制経口投与したところ、雄ラットは典型的な α -2u-腎症を発症した。 テトラクロロエチレンは肝でグルタチオン抱合体となったのち腎の β -lyase により活性 化されることから、これらの反応を *in vitro* 試験においてヒト、ラット、マウス組織で

比較したところ、ヒト腎には β -lyase 活性が認められたが、肝にはグルタチオン抱合体は認められなかった。Green らは、テトラクロロエチレンに誘導される雄ラットの腎腫瘍は慢性毒性、タンパク顆粒による腎毒性及び β -lyase 経路を介する遺伝毒性によると考えられ、これらの機序はヒトにはほとんど適用できないとしている(参照 29)。

1 2

テトラクロロエチレン (溶媒: コーンオイル)を雄の F344 ラット及び雄の B6C3F1 マウスに 1,000 mg/kg 体重/日の用量で 10 日間強制経口投与し、肝及び腎における腫瘍誘導の種特異性とペルオキシソーム増殖の関連性を調べた。シアン化物に反応しないパルミトイル CoA 酸化酵素活性(PCO)をペルオキシソーム増殖反応の指標として調べた。対照群 (コーンオイルのみ)と比較し、マウス肝ではこの酵素活性が有意に上昇し、ペルオキシソーム増殖反応が認められたが、ラット肝では有意な上昇は認められなかった。また、対照群と比較し、マウス腎では酵素活性の有意な上昇が認められたが、ラット腎においては、有意な上昇は認められなかった。テトラクロロエチレンはマウスに肝腫瘍を誘導するが、ラットでは誘導しない。一方、腎臓ではラットで尿細管の腺がんを誘導するがマウスでは誘導しない。Goldsworthyらは、このことから、テトラクロロエチレンの腎臓における発がん性とペルオキシソームの増殖とは関連しないことを示した(参照 27)。

4) 神経毒性試験

a. 7日間神経毒性試験(マウス)

NMRI マウス(雄、生後 10 日齢、各投与群 12 匹)におけるテトラクロロエチレン(5、320 mg/kg 体重/日)の 7 日間の強制経口投与試験において、神経系発達への影響を調べた。各投与群で認められた毒性所見を表 12 に示す。

運動の測定(自発運動、立ち上がり反応及び全体の動き)を、17日齢と60日齢に実施した。60日齢では、両投与群で、自発運動(p<0.05または<0.01)及び全体の動き (p<0.01) に著しい増加が認められた。17日齢には全く影響は認められなかった (参照23)。

表 12 マウス 7 日間神経毒性試験

投与群	17 日齢	60 日齢
5 mg/kg 体重/日以上	毒性所見なし	自発運動及び全体の動きの増加

b. 単回神経毒性試験(ラット)

F344 ラット(雌、各投与群 8 匹)におけるテトラクロロエチレン(150、500、1,500、5,000 mg/kg 体重、溶媒: コーンオイル)の単回強制経口投与試験において、自律神経、神経筋及び知覚運動機能を含む一連の神経行動学的影響を調べた。各投与群で認められた毒性所見を表 13 に示す。

1,500 mg/kg 体重以上の投与群で、4 時間後、流涙及び歩行異常のスコアが有意に増

加し、自発運動量は有意に低下した。500 mg/kg 体重投与群では24 時間後のハンドリングに対する反応性(興奮性)が有意に高く、150 mg/kg 体重投与群では4時間後の興奮性が有意に高かった。5,000 mg/kg 体重投与群では、4 時間後及び24 時間後において有意に低かった(参照39)。

表 13 ラット単回神経毒性試験

投与群	雌		
5,000 mg/ kg 体重/日	ハンドリングに対する反応性の低下		
1,500 mg/kg 体重以上	流涙及び歩行異常の増加、自発運動量の低下		
500 mg/kg 体重	ハンドリングに対する反応性の増加(150及び		
150 mg/kg 体重	500mg/kg 体重/日投与群)		

c. 単回神経毒性試験(ラット)

Sprague-Dawley ラット(雄、各投与群 $6\sim7$ 匹)におけるテトラクロロエチレン(50、500 mg/kg 体重/日、溶媒: コーンオイル)の単回強制経口投与試験において、神経行動学的影響を調べた。各投与群で認められた毒性所見を表 14 に示す。

ホットプレート試験及び尾浸漬試験により痛覚を、オープンフィールド試験により運動性を、ペンチレンテトラゾールによる発作誘導により発作感受性を調べたところ、500 mg/kg 体重/日投与群で、痛覚耐性、行動低下が認められ、発作感受性は両投与群で低下した(参照 13)。

表 14 ラット単回神経毒性試験

投与群	雄
500 mg/kg 体重	痛覚耐性、行動低下
50 mg/kg 体重以上	発作感受性低下

d. 14 日間神経毒性試験 (ラット)

F344 ラット (雌、各投与群 8 匹) におけるテトラクロロエチレン (150、500、1,500 mg/kg 体重、溶媒: コーンオイル) の 14 日間の強制経口投与試験において自律神経、神経筋及び知覚運動機能を含む一連の神経行動学的影響を調べた。14 日間にわたる投与において、最終投与 24 時間後に、各投与群ともに、有意な神経学的影響は認められなかった (参照 39)。

e. 8週間神経毒性試験(ラット)

Sprague-Dawley ラット (雄、各投与群 $6\sim9$ 匹) におけるテトラクロロエチレン (5、 50 mg/kg 体重/日、溶媒: コーンオイル) の 8 週間 (週 5 日) 強制経口投与試験において、神経行動学的影響を調べた。各投与群で認められた毒性所見を表 15 に示す。

ホットプレート試験及び尾浸漬試験により痛覚を、オープンフィールド試験により 運動性を、ペンチレンテトラゾールによる発作誘導により発作感受性を調べたところ、 50 mg/kg 体重/日投与群で行動低下が認められ、痛覚耐性、発作感受性は、両投与群で低下した(参照13)。

2 3

表 15 ラット 8 週間神経毒性試験

2010			
投与群	雄		
500 mg/kg 体重/日	行動低下		
50 mg/kg 体重/日以上	痛覚耐性、発作感受性低下		

⑤ 生殖・発生毒性試験

③ 王旭・光王母注試験 - a. 妊娠6~19 日生殖・発生毒性試験(ラット)

F344 ラット (雌、各投与群 16-23 匹) におけるテトラクロロエチレン (900、1,200 mg/kg 体重/日、溶媒: コーンオイル) の妊娠 $6\sim19$ 日の強制経口投与試験において、生殖発生毒性を調べた。各投与群で認められた毒性所見を表 16 に示す。

両投与群に、運動失調が認められ、投与後 4 時間持続した。また、体重増加量の有意な減少が認められた。胎児の吸収は両投与群で有意に増加した。また、妊娠 22 日での生存出生児数は、1,200 mg/kg 体重/日投与群では皆無であり、900 mg/kg 体重/日投与群(1 同腹児あたり 5.2±1.5 匹の児)では対照群(1 同腹児あたり 7.7±0.7 匹の児)に比べて有意(p<0.01)に減少した。着床痕の検出に塩化アンモニウムによる染色が必要であったことから、胎児が投与期間の早い時期に死亡したことが示唆された。さらに、投与群には、出生児の小眼球/無眼球症や出生後の死亡数の増加が認められた。出生後 6 日目の 1 同腹児中の生存児の数は、対照で 7.7±0.7 であったのに対し、900 mg/kg 体重/日投与群では 4.9±1.2 (p<0.01)であった(参照 42)。

表 16 ラット生殖・発生毒性試験

投与群	親	児
900mg/kg 体重/日以上	運動失調、体重増加量の	胎児吸収の増加、出生児の小眼
	抑制、生存出生児数の減	球/無眼球症の増加、出生後の
	少	死亡数增加

b. 2週間生殖毒性試験(ラット)

アルビノラット (3 匹) におけるテトラクロロエチレン (0.9% 飲料水 (3.5% Tween を含む)) の 2 週間の飲水投与後、母体への影響及び卵子への影響を調べた。各投与群で認められた毒性所見を表 17 に示す。

排卵の起こった個体数は減少したが、1回の排卵当たりの卵子数、卵子の受精能には影響はみとめられなかった(参照8)。

表 17 ラット 2 週間生殖毒性試験

投与群	親	
飲水濃度 0.9%	排卵の個体数の減少	

c. 2週間生殖毒性試験(ラット)

アルビノラット (5 匹) におけるテトラクロロエチレン $(1,700 \, \mathrm{ppm})$ の 2 週間 (週 5 日、1 日に 1 時間 2 回) の吸入暴露後、卵子への影響を調べた。各投与群で認められた毒性所見を表 18 に示す。

卵子の受精能は有意に低下した(参照8)。

るものである可能性があるとしている(参照6)。

表 18 ラット 2 週間生殖毒性試験

投与群	親	
1,700 ppm	卵子の受精能の低下	

Belikes はテトラクロロエチレンの実験動物及びヒトに対する生殖発生毒性に関する研究論文をレビューし、妊娠後期から出生初期にかけてのシナプス形成期がテトラ

クロロエチレンの発生毒性影響に最も感受性の高い時期であるとしている。また、こ

の時期に見られる神経毒性について、その作用機序がドーパミン代謝への影響を介す

⑥ 遺伝毒性試験

テトラクロロエチレンの遺伝毒性試験結果を表19、20に示す。

a. in vitro試験

サルモネラ菌(Salmonella typhimurium)を用いる復帰突然変異試験の結果は陰性である(参照 1)。 in vitro での暴露によるテトラクロロエチレンの染色体異常誘発性に関するデータはほとんどない。チャイニーズハムスターCHO 細胞を用いた SCE 試験の結果は陰性である(参照 41a)。テトラクロロエチレンで処理されたマウス細胞の細胞形質転換に関する2つの試験では陰性であった(参照 41a, Tu et al. 1985:参照 1)。一方、Fischer ラットの胚細胞には、代謝活性化の非存在下で形質転換が認められた(参照 44a)。

GSH 及びラット腎臓片の存在下で、ラットの精製肝 GSHSトランスフェラーゼでテトラクロロエチレンをプレインキュベーションしたとき、復帰突然変異試験において変異原性を示す抱合体やS(1,2,2-トリクロロビニル)GSH が形成される(参照 50)。このことは、GSH 代謝物がテトラクロロエチレンの変異原性及び発がん性の原因である可能性を示唆している (参照 1)。

テトラクロロエチレン in vitro 遺伝毒性(参照1) 表19

		結果		
試験	対象	代謝活性 代謝活性		著者
		有	無	
復帰突然変異試験	Salmonella typhimurium	_	_	Bartsch et al. 1979, Haworth
				et al. 1983 (参照1) 、 (参照41a)
	Escherichia coli	_	_	Greim et al. 1975, Henschler
				1977(参照1)
	Saccharomyces cerevisiae	_	_	Bronzetti et al. 1983, Callen
				et al. 1980(参照1)
遺伝子組換え試験	S.cerevisiae	(+/-)	_	Bronzetti et al. 1983, Callen
				et al. 1980、Koch et al. 1988
				(参照1)
細胞形質転換試験	ラット胚細胞 RaL V/Fischer	NR	+	Price et al. 1978(参照1)
	BALB/C3T3マウス細胞	_	NR	Tu et al. 1985(参照1)
	マウスリンパ腫L5178Y/TK++	_	_	(参照41 a)
UDS試験	ラット・マウス肝細胞	_	NR	(参照16)
	ヒト線維芽細胞	(+/-)	(+/-)	NIOSH 1980(参照1)
SCE試験	チャイニース、ハムスターCHO細胞	_	_	(参照41a)

- : 陰性、(+/-): 陽性または陰性、+:陽性、 NR:報告なし

1 2 3

b. in vivo試験

4 肝臓のミクロソームを用い、グルタチオントランスフェラーゼを添加した実験にお いて、マウスの肝臓とラットの腎臓でテトラクロロエチレンの DNA 結合が認められ 5 た (参照 58)。マウスに対し最高 2,000 mg/kg 体重のテトラクロロエチレンを腹腔内 6 7 に単回注入した試験では、マウスが部分肝切除前に処理される場合は、網状赤血球ま 8 たは肝細胞中の小核は増加しなかった。マウスが部分肝切除後に処理された場合は、 1,000 及び2,000 mg/kg 体重において小核は増加した(参照59)。その他、殆どの in vivo 9

の遺伝毒性試験は陰性の結果を示した。

10 11

12

13

14

15

16

17

18 19

ATSDR は、テトラクロロエチレンの変異原性に関する矛盾した結果は、試験した 動物種間の代謝と活性化の差、プロトコルの違い、あるいは試験した化合物の純度に 起因する可能性があるとしている。また、テトラクロロエチレンに関する研究の大く は、市販または工業用化学品を使って行われてきたため、影響は汚染物質が関与した 可能性があるとしている(参照1)。一方、テトラクロロエチレンの変異原性は、グル タチオン抱合体を含む代謝経路に依存し、その経路はマウスやヒトよりもラットにお いてより顕著である(参照29)との証拠が増えている。そのため、低レベルのテトラ クロロエチレンが、ヒトに遺伝毒性を引き起こすか否かは明らかではないとしている (参照1)。

表20 テトラクロロエチレン in vivo 遺伝毒性

役20 / 「					
試験	対象	結果	著者		
SCE試験	ヒトリンパ球	_	Ikeda et al. 1980(参照1)		
		_	Seiji et al. 1990(参照1)		
DNA損傷試験	マウス/単鎖DNA切断誘発	+	(参照57)		
DNA結合またはアルキル化試験	マウス/肝	-	(参照46)		
	ラット/腎	+	(参照58)		
	マウス/肝	+			
小核試験	マウス 末梢赤血球	-	(参照59)		
	部分肝切除マウス 肝細胞	+			
伴性劣性致死突然変異試験	キイロショウジョウバエ	_	NIOSH 1980, Valencia et al. 1985		
			(参照1)		
	キイロショウジョウバエ	_	(参照41a)		
染色体異常試験	ラット 骨髄細胞	_	NIOSH 1980(参照1)		
	ヒトリンパ球	_	Ikeda et al. 1980(参照1)		

- : 陰性、(+/-): 陽性または陰性、+: 陽性

(3) ヒトへの影響

① 神経系への影響

テトラクロロエチレン摂取後のヒトにおける神経系への急性影響は、吸入後の影響に類似している。テトラクロロエチレンを12~16 g 摂取した6歳の子供の場合、摂取1時間後に病院に収容された時には意識はあったが、意識レベルは、傾眠から昏睡へと低下していった。この男児は治療後、完全に回復した(参照34)。

テトラクロロエチレンはかつて、駆虫薬としてヒトに経口投与されていた。この事例における死亡例はないが、駆虫薬として $2.8\sim4\,\mathrm{mL}$ (約 $4.2\sim6\,\mathrm{g}$) のテトラクロロエチレンの経口投与された患者に、麻酔効果、酩酊、知覚障害、高揚感(exhilaration)が報告されている(参照 1)。

 テトラクロロエチレンに暴露されたヒトにおいて視覚の影響が報告されている。

ドライクリーニング施設と同じ建物内に居住してテトラクロロエチレン暴露を受けている住民 17 名及び同じ建物内のデイケアセンターでテトラクロロエチレン暴露を受けている労働者 9 名について、暴露と視覚コントラスト感度の関係を調べた。前者は平均778 μg/m³のテトラクロロエチレンに平均5.8 年間、後者は平均2,150 μg/m³に平均4.0年間暴露されていた。これらの被験者の視力は対照群と変わりがなかったが、視覚パターンの識別能が対照群に比較して有意に劣っていた(参照45)。

テトラクロロエチレンに職業暴露された労働者における色覚障害についての報告がある。7 ppm (TWA: Time Weighted Average) のテトラクロロエチレンに暴露されたドライクリーニング労働者の色覚は対照群に比較して有意に劣っており、CCI (color confusion index) はテトラクロロエチレンによる暴露レベルと有意に関連していた(参照 25)。

② 生殖·発生毒性

ニュージャージー州の 75 の町を対象に、出生の結果と飲料水汚染との関連性について調査がされた。最高暴露群 (>10 ppb) では 4 例の口蓋裂がみられ、そのオッズ比は 3.54 (90%信頼区間 1.28~8.78) であった。しかし Bove らは、暴露の誤分類の可能性、調査した交絡因子 (母親の職業暴露、喫煙、病歴、身長、妊娠中の体重増加量) が限られていることなどの理由から、この関連が飲料水中汚染物質によるものか、あるいは、偶発的要因やバイアスによるものかは明らかではないとしている (参照 10)。

ATSDR によると、マサチューセッツ州ウォバーンで 21 ppb のテトラクロロエチレンを含む溶剤で汚染された飲料水を摂取した住民を対象とした調査においても、眼/耳の奇形及び中枢神経系/染色体/口蓋裂 (oral cleft) などの異常とテトラクロロエチレン暴露の関連性が示唆されている。ただし、解析方法について他の研究者から疑問が投げかけられているとのことである (参照 1)。

ノースカロライナ州キャンプ・レジュンにある米国海兵隊基地において、揮発性有機化合物(主としてテトラクロロエチレン)に汚染されていた飲料水による母親の暴露と子供の出生時体重、低体重(small-for-gestational-age, SGA)、早産との関係について調べた。1968年から1985年までの出生証明書に基づき、6,117人の暴露群、5,681人の非暴露群が確認された。飲料水中のテトラクロロエチレン濃度は測定データが存在する1982年5-6月には76-104 ppb、1985年1月16日から2月5日には215 ppbであった。テトラクロロエチレン暴露群と対照群との出生時体重の相違は、母親の年齢が35歳以上では、-130g(90%CI [=信頼区間:-236,-23)であり、2回以上の胎児死亡経験者では、-104g(90%CI:-174,-34)であった。また、テトラクロロエチレン暴露と低体重の調整オッズ比は、全体では1.2(90%CI:1.0,1.3)、高齢母親については2.1(90%CI:0.9,4.9)、2回以上の胎児死亡を経験した母親では2.5(90%CI:1.5,4.3)であった(参照47)。

ドライクリーニング及び洗濯業に従事した 16 歳から 45 歳の女性 7,305 人について、自然流産とテトラクロロエチレン暴露との関係が調べられた。暴露の有無は機械作業者か否かで識別した。流産率はドライクリーニングや洗濯業に関与しなかった人で最も低く(10.9%)、洗濯業がこれに続き(13.4%)、ドライクリーニング業では 14.8%であった。また、ドライクリーニング業中では、妊娠時に機械作業者であった人で高く(17.1%)、そうでない人では 11.6%であった。1980 年から 1995 年の機械作業者のリスクと非機械作業者の調整オッズ比は、1.63 であった(p=0.04)(参照 20)。

1997年12月から1999年1月までの間にライプチヒで生まれた976人の新生児よりなるコホートについて、母親による室内空気からの揮発性有機化合物暴露と新生児による免疫機能の低下に関する疫学的研究が行われている。テトラクロロエチレン暴露と臍帯血中の IFN- γ 産生 T 細胞の含有率の低下との間に関連性が認められた(オッズ比=2.9)(参照 37)。

出生前に有機溶媒に暴露された子供の視覚誘発電位(visual evoked potential, VEP) 測定により、出生前にテトラクロロエチレンに暴露された歳半の子供に色覚異常があることが一例報告されている(参照48)。

③ 発がん性

マサチューセッツ州ウォバーンでは 1979 年、2 つの井戸がテトラクロロエチレンを含む工業用水により汚染されていることが明らかになり、その後、この地域では子供の白血病が全国平均と比較して多いことが明らかになった。これらの 2 つの井戸は 1964~1967 年に汲み上げが始まった。1979 年にそれらの井戸が閉鎖されるまでに行われた汚染物質の測定で、飲料水中に多数の揮発性有機物質が検出され、トリクロロエチレン(267 ppb)及びテトラクロロエチレン(21 ppb)の濃度が高かった(参照 12)。白血病の子供の汚染井戸水摂取量の推定に基づく統計学的な解析から、溶剤で汚染された飲料水の摂取と幼児の白血病増加との関連性が報告された(参照 35)。しかし、ATSDRは、この報告に対して多数の研究者から問題点が指摘されていること、また複数汚染物質に対する暴露があることを指摘している(参照 1)。

テトラクロロエチレンを含む樹脂が裏打ちされている水道管を多く用いていたマサチューセッツ州の1地区を対象に、膀胱がん(症例数:61)、腎臓がん(同:35)、白血病(同:34)と飲料水からのテトラクロロエチレン暴露との関係を調べる症例-対照研究が実施された。暴露量は Webler と Brown(参照53)のモデルを用いて、居住歴、供給水道管の裏打ちの有無、水道管でのフロー特性、パイプの古さと構造に基づいて推定された。テトラクロロエチレンに暴露された人では白血病の相対リスクが高まっていた(潜伏期あり:調整オッズ比:1.96,95%CI=0.71-5.37、潜伏期なし:調整オッズ比:2.13,95%CI=0.88-5.19)。またテトラクロロエチレン暴露が90パーセンタイル以上の人については、相対リスクはさらに高くなった(潜伏期あり:調整オッズ比:5.84,95%CI=1.37-24.91、潜伏期なし:調整オッズ比:8.33,95%CI=1.53-45.29)(参照3)。しかし、ATSDRはこの研究について、患者数が少ないこと、また飲料水が他の化学物質で汚染されていた可能性もあることなどから、この研究で言及された白血病とテトラクロロエチレンとの関連は確実なものではないとしている(参照1)。

ニュージャージー州の75の町(人口:1980年時でほぼ150万人)で飲料水汚染と白血病及び非ホジキンリンパ腫との関係を調べる疫学研究が行われた。汚染物質の濃度は飲料水のモニタリングデータから得られ、テトラクロロエチレン濃度は最高で14 ppbであった。患者数のデータは州のがん登録から得た。解析の結果、テトラクロロエチレン濃度が5 ppbを超える区分で女性の高度非ホジキンリンパ腫及び非バーキット高度非ホジキンリンパ腫の発生率が有意に高かった(相対リスクと95%CI はそれぞれ、2.66:1.27-5.60、2.74:1.20-6.26)。しかし、給水の多くがトリクロロエチレンでも汚染されていたため(相関係数0.63)、各々の化学物質の相対的寄与を評価するのは困難であった。また、Cohnらは個々の居住歴と水の消費量に関する情報がないため、暴露の分類

上の誤りが予想され、研究の結論には限界があると述べている(参照15)。

マサチューセッツ州ケープコッドにおいて、公共飲料水経由のテトラクロロエチレン 暴露と乳がんの発生率の関係を調べる症例—対照研究が実施された。暴露量は居住歴、 水流、パイプの特性に基づき推定した。1998年の研究では1983年から1986年の間に 乳がんと診断された患者258人と対照686人について解析を行った。高暴露の女性で 潜伏期を7年または9年とした場合、乳がんの調整オッズ比が高かった(暴露レベルが 75パーセンタイル以上:潜伏期7年:1.5,95%CI=0.5-4.7、潜伏期9年:2.3,95%CI=0.6-8.8;90パーセンタイル以上:潜伏期7年:2.7,95%CI=0.4-15.8、潜伏期9年:7.6,95%CI=0.9-161.3)(参照4)。

2003年の研究では1987年から1993年の間に乳がんと診断された患者672人と対照616人について解析を行った。高暴露の女性で潜伏期を0-15年とした場合、乳がんのリスクが高かった(調整オッズ比:暴露レベルが75パーセンタイル以上:1.5-1.9、90パーセンタイル以上:1.3-2.8)。1998年の結果と合わせると、潜伏期を0-15年とした場合、調整オッズ比は、暴露レベルが75パーセンタイル以上で1.6-1.9、90パーセンタイル以上で1.3-1.9となった(参照5)。なお、Aschengrauらはこの研究ではテトラクロロエチレンへの暴露量はモデルに基づき、相対到達量(relative delivered dose, RDD)

*として推定されているため、誤分類がありうることを認めている(参照5)。

マサチューセッツ州ケープコッドにおいて、公共飲料水経由のテトラクロロエチレン暴露と大腸ー直腸がん、肺がん、脳腫瘍、膵臓がんの関係を調べる症例ー対照研究が実施された。暴露量(相対到達量)は居住歴、水流、パイプの特性に基づいて推定した。患者は1983年から1986年の間に上記のがんと診断され、州のがん登録に報告された人であった。脳腫瘍(37)と膵臓がん(37)については例数が少なく、調整オッズ比は求められなかった。肺がん(252)については、暴露レベルが90パーセンタイル以上の人で、調整オッズ比が有意に高かった(潜伏期0年:3.7,95%CI=1.0-11.7、潜伏期5年:3.3,95%CI=0.6-13.4、潜伏期7年:6.2,95%CI=1.1-31.6、潜伏期9年:19.3,95%CI=2.5-141.7)。大腸ー直腸がん(326)については、暴露された人における調整オッズ比が潜伏期11年で1.7(95%CI=0.8-3.8)、13年で2.0(95%CI=0.6-5.8)であった。直腸がんについては、暴露された人での調整オッズ比が潜伏期11年で2.6(95%CI=0.8-6.7)、13年で3.1(95%CI=0.7-10.9)であり、調整オッズ比は直腸がんが大腸がんよりも高かった(参照43)。この研究でもテトラクロロエチレンへの暴露量は相対到達量として推定されており、誤分類がありうる。

テトラクロロエチレンの発がん性については職業暴露に基づく多くの疫学的研究が 行われている(参照1)。Mundtら(参照40)は、1963年~2003年までに発表された

^{*} 相対到達量: テトラクロロエチレンの飲料水への混入は、ビニル裏打ちのパイプから浸出すると考えられ、テトラクロロエチレンの初期の暴露量は、パイプの内側の表面積に比例するとしたモデルから仮定した量。

- 1 テトラクロロエチレンへの職業暴露と発がん性に関する疫学研究の論文 44 編(コホー
- 2 ト研究:12編、症例研究32編)をレビューし、一般に信頼性の高い暴露データがない
- 3 こと、またコホート研究では、重要な交絡因子(例えば禁煙や飲酒)による交絡につい
- 4 て調整できないという限界があることを指摘している。この研究では、乳がん、前立腺
- 5 がん、皮膚がん、脳腫瘍の増加とテトラクロロエチレン暴露との関連性を示す証拠はな
- 6 いとしている。また、口腔がん、肝がん、膵臓がん、子宮頸がん、肺がんとの関連性は
- 7 ありそうにないと考えられるとし、喉頭がん、腎臓がん、食道がん、膀胱がんについて
- 8 は、科学的証拠が不十分であるとしている。
- 9 子宮頸がんについては、5編の論文中4編で発がんの増加を報告しており、3編では
- 10 統計学的にわずかに有意であった。しかし、いずれにおいても重要な交絡因子の調整が
- 11 行われていなかった。
- 12 食道がんについては、4つのコホート研究のうち3つが発がんの増加を報告しており
- 13 そのうち2つでは統計学的に有意であった。一方、発がんの増加を報告している2つの
- 14 症例対照研究ではいずれも統計学的に有意でなかった。コホート研究では交絡因子の調
- 15 整が行われていないことから、Mundt らはテトラクロロエチレン暴露と食道がんとの
- 16 関係について確固たる結論を導くことはできないとしている。ただし、テトラクロロエ
- 17 チレン暴露があったと考えられる大きなドライクリーニングコホートで暴露期間及び
- 18 潜伏期間の増加を伴ったリスクの増加が報告されていることから、テトラクロロエチレ
- 19 ン暴露が発がんの原因である可能性も無視できないとした(参照40)。

27

28

29

30

31

32

2. 国際機関等の評価

- 23 (1) International Agency for Research on Cancer (IARC)
- 24 グループ 2A:ヒトに対して恐らく発がん性がある物質 (参照 32)。
- 25 テトラクロロエチレンはヒトに対する限られた発がん性の証拠及び動物に対する十 26 分な発がん性の証拠がある。
 - (i) テトラクロロエチレンはマウス肝においてペルオキシソームの増加を誘導するが、 吸入暴露後の肝における腫瘍発生と、ペルオキシソーム増加間の量的相関は低い。 テトラクロロエチレン暴露とトリクロロエチレン暴露のマウス肝の腫瘍における がん原遺伝子の突然変異スペクトラムは異なる。
 - (ii) ラットに白血病を引き起こす。
 - (iii) いくつかの疫学研究結果では食道がん、非ホジキンリンパ腫、子宮頸がんのリスクが増加している。

333435

(2) Joint Expert Committee on Food Additives (JECFA) Monographs and Evaluations 評価書なし。

- (3) WHO 飲料水水質ガイドライン 第3版(参照52)
- 39 雄マウスを用いた6週間の経口投与試験(参照11)及び雌雄のラットを用いた90日
- 40 間の飲水投与試験(参照 31) における肝毒性に基づく NOAEL: 14 mg/kg 体重/日から、

不確実係数 1000 (種差及び個体差 100×発がんポテンシャル 10) を適用して、TDI を 14 μg/kg 体重/日としている。(データベース及び飲水投与試験の用量を考慮して、試験 期間が短いことについての不確実係数は不要と判断した。)

なお、TDI については、第 2 版(1996)ガイドライン値と同様である。 [参考]

飲料水の寄与率 10%、大人の体重を 60 kg、飲水量を 1 H 2 L として TDI に適用し、ガイドライン値 0.04 mg/L(端数処理値)が設定された。

8

4

5

6

7

9 10

11

12

13

14

(4) 米国環境保護庁(U.S. EPA)

Integrated Risk Information System (IRIS) (参照49)

EPA/IRISでは、化学物質の評価を、TDI に相当する経口リファレンスドース(経口 RfD)として慢性非発がん性の情報を提供している。また、もう一方で、発がん影響について、発がん性分類についての情報を提供し、必要に応じて、経口暴露によるリスクについての情報を提供している。

151617

① 経口 RfD

影響 (Critical Effect)	用量	不確実係数	修正係数	参照用量
		(UF)	(MF)	(RfD)
マウスの肝毒性	NOAEL: 20 mg/kg 体重/日	1000**	1	1×10 ⁻²
6週間Swiss-Coxマウス経口投与	(換算値*: 14 mg/kg 体重/日)			mg/kg 体重/
試験 (参照 11)	LOAEL: 100 mg/kg 体重/日			目
	(換算値*: 71 mg/kg 体重/日)			
ラットの体重減少	NOAEL: 14 mg/kg 体重/日			
13 週間 CD ラット飲水投与試験 (参照 31)	LOAEL: 400 mg/kg 体重/日			
(> ···· = /				

^{*} 週5日投与からの換算値

18 19

2021

② 発がん性

ヒトに対する発がん性について評価されていない。

2223

2425

26

27

2829

30

32

(5) 我が国における水質基準の見直しの際の評価(参照55)

テトラクロロエチレンは、ヒトでの発がん性に関しては限られた情報しかないが、実験動物での発がん性に関しては、十分な証拠があるとして、IARCでは、グループ2A(ヒトでおそらく発がん性あり)に分類されている(参照32)。

平成4年の専門委員会では、NCI(参照41)の2年のマウスの肝発がん性に基づいてマルチステージモデルを用いた発がんリスクから評価値:0.01 mg/L を設定した。

その後、評価値算出にかかわる新たな毒性情報は報告されていない、とした。

31 [参考]

WHO では、我が国の基準値より高い値が設定されているが、健康にかかわる評価値として

^{**} 種差 10×個体差 10×亜慢性試験から慢性影響への外挿 10

は、安全性の観点から現行の基準値: 0.01 mg/L を維持することが適切であると考えられる。

表 21-1 WHO 等によるテトラクロロエチレンの TDI 法によるリスク評価

	根拠	NOAEL	確実係数	TDI
		(mg/kg 体重/	日)	(µg/kg 体重/日)
WHO/DWGL 第3版	雄マウスを用いた 6 週間の 投与試験 肝毒性 (参照 11)、 雌雄のラットを用いた 90 日 飲水投与試験 肝毒性 (参照 31)	14	1000 10(種差)×10(体差)×10 (発 んポテンシャ の採用に対 て)	がルル
EPA/IRIS	マウスを用いた 6 週間の総 与試験 肝毒性(参照 11) ラットを用いた 90 日間の館 与試験 体重減少 (参照 31)	20 (週 5 日接	1000 10(種差)×10(体差)×10 (亜 性試験から慢 影響への外挿 対して)	性性

表 21-2 モデル外挿法による過剰発がんリスクの定量的評価

	リスクレベル	濃度(μg/L)	用量(μg/kg 体重/日)
水道水	10 ⁻⁵	10	0.4

^a成人体重 50 kg、1日の飲水量を 2Lと仮定し、飲料水ユニットリスク: $1.0 \times 10^{-6}/\mu g/L$ (当該物質を 1L あたり $1\mu g$ 含む飲料水を生涯にわたり摂取するときの過剰発がんリスク)、経口傾斜係数: $2.5 \times 10^{-2}/m g/kg$ 体重/日及び用量を算出。

3. 暴露状況

平成 18 年度水道統計におけるテトラクロロエチレンの水道水の検出状況(表 22) は、原水において、最高検出値は水質基準値(0.01 mg/L)の100%超過で6箇所にみられた。一方、浄水においては、最高検出値は40%超過50%以下で12箇所にみられた。

		1	X	八旦八	(N)\\)\	/ナ/ハ/		ローハヘンし		J /			
			基準値に対する度数分布表										
浄			100/	10% ±27.63	20%	30% ±27.63	40% ±20:00	50% ±27.63	60% ±77.63	70%	80% ±70.63	90% ±77:F3	1000/±77
水/原水	水源種別	測定地点数	10% 以下	超過 20%	超過 30%	超過 40%	超過 50%	超過 60%	超過 70%	超過 80%	超過 90%	超過 100%以	100%超 過
				以下	下								
			~	~	~	~	~	~	~	~	~	~	0. 011
別			0.001 (mg/L)	0.002 (mg/L)	0.003 (mg/L)	0.004 (mg/L)	0.005 (mg/L)	0.006 (mg/L)	0.007 (mg/L)	0.008 (mg/L)	0.009 (mg/L)	0.010	(mg/L) ~
נימ	全体	5270		(lig/L)	(lig/L)	10	17	(lig/L)	(lig/L)	(lig/L)	(lig/L)	(mg/L)	6
			5219	-						-11		1	-
原水	表流水	1027	1024	0	0	1	2	0	0	0	0	0	0
	ダム、湖沼水	305	304	0	0	1	0	0	0	0	0	0	0
	地下水	3142	3103	6	6	7	13	2	0	0	0	1	4
	その他	791	783	2	0	1	2	1	0	0	0	0	2
	全体	5223	5194	11	4	2	12	0	0	0	0	0	0
浄水	表流水	928	925	1	0	0	2	0	0	0	0	0	0
	ダム湖沼	271	271	0	0	0	0	0	0	0	0	0	0
	地下水	2851	2827	10	4	2	8	0	0	0	0	0	0
	その他	1158	1156	0	0	0	2	0	0	0	0	0	0
	(亚式19年度調本結果)							(土田)					

表 22 水道水 (原水・浄水) での検出状況 (参照 56)

(平成18年度調査結果)

1 2 3

4

56

7

20

21

2223

24

25

Ⅲ. 食品健康影響評価

テトラクロロエチレンは、遺伝毒性に関するほとんどの in vitro 試験で陰性であった。 in vivo 試験では、マウスの肝臓とラットの腎臓で DNA 結合が認められ、部分肝切除後に処理された特殊状況下のマウスにおいては小核の増加が認められたが、標準的な手法で行われた試験においては、小核の誘発は認められなかった。

発がん性試験においては、マウスの経口投与試験において肝細胞がんの発生率の増加が 8 9 示唆されているが、この試験では、早期死亡の増加、投与群(50)と比べて対照群(20) が少ないことや、介入性感染症による肺炎などが見られることから、評価として採用する 10 には信頼性が低いと考えられる。一方、ラットでは、評価として採用するのに適当な経口 11 投与試験はないが、吸入暴露試験において、単核球性白血病の増加が認められている。 12 IARC では、ラットでの白血病を懸念しているが、対照群(雄 28/50 匹、雌 18/50 匹)に 13 も認められたように、この白血病は、Fischer ラットでは自然発生率が高く、また、ヒト 14 15 では稀であるため、ヒトへの外挿は困難と考えられる。このラットの試験において、腎尿 細管腺腫あるいは腺がんを誘発したが、有意差は認められなかった。したがって、現時点 16 において、これらラットやマウスにおけるテトラクロロエチレン暴露による発がん性試験 17 18 の結果は、発がん性の可能性は否定できないが、経口投与における発がん性は明確ではな 19 V

以上のことから、現時点においては、遺伝毒性があるとは判断できず、マウス及びラットでの発がん性をヒトに適用するのは疑問が残り、遺伝毒性発がん物質と判断するのは適当ではない。よって閾値を設定することが可能であると判断した。各種の毒性試験において、最も低い用量で影響が認められた指標は、ラットの8週間及びマウスの7日間の強制経口投与における神経毒性であり、LOAELは3.6及び5mg/kg体重/日であった。しかし、神経毒性以外の影響を調べていないこと、かつ認められた神経影響が、強制経口という瞬

- 1 時投与により高くなった血中濃度に依存している可能性が考えられるため、慢性影響を指
- 2 標とした耐容一日摂取量 (TDI) 設定の根拠とするのは不適当であると判断した。そこで、
- 3 次に低い用量で認められたマウスを用いた6週間の経口投与試験における肝毒性及びラッ
- 4 トを用いた 13 週間の飲水投与試験における雄でみられた腎臓の比重量の増加及び雌でみ
- 5 られた体重増加の NOAEL14mg/kg 体重/日を TDI 設定の根拠に採用した。これを根拠に
- 6 不確実係数 1000 (種差、個体差各 10、亜急性試験結果及び毒性の重篤性〔発がんの可能
- 7 性〕10) を適用して、TDIは、14 µg/kg 体重/日となる。

9	TDI	14 μg/kg 体重/日		
10	(TDI 設定根拠)	亜急性毒性試験		
11	(動物種)	マウス	ラット	
12	(期間)	6週間	13 週間	
13	(投与方法)	経口投与	飲水投与	
14	(NOAEL 設定根拠	心所見) 肝毒性	腎臓の比重量、	体重增加抑制
15	(NOAEL)	14 mg/kg 体重/日	1	
16	(不確実係数)	1000(種差、個	体差各々:10、	
17		亜急性試験 結	果及び毒性の重篤性	E 〔発がんの可能性〕: 10)
10				

18

19 <参考>

20 水道法水質基準値の 100%である濃度 0.01 mg/L の水を体重 53.3 kg の人が 1 日あたり 2 L 摂水した場合、1 日あたり体重 1 kg の摂取量は、0.4 μ g/kg 体重/日と考えられる。こ の値は、TDI 14 μ g/kg 体重/日の 35 分の 1 である。

[†]国民栄養の現状 - 平成 10 年、11 年、12 年国民栄養調査結果 - 健康・栄養情報研究会編、2000 年、2001年、2002年(平成 10 年、11 年、12 年の 3 ヶ年の平均体重)

表 23 各試験における NOAEL 等

777	エルノイエ	⇒ N#A ~~.	女との 音画機にあげる		TOART	/++
番	動物種・	試験種	エンドポイント	NOAEL	LOAEL	備考
号	系統•性•			mg/kg 体重/	mg/kg 体重/	
	動物数/群			日	日	
亜	マウス	11 日間	肝比重量增加(250-)		100 [T]	
1	-	強制経口投			100 (1)	
1	雄 6~7		万 / /			
	从上 0, ○1	与(コーンオ				
		イル)				
2	マウス	6週間(週5	肝比重量增加,肝TG上昇,肝細	20 (T)	100 (T)	WHO 第3版の根
	Swiss Cox	日)	胞損傷(100-), グルコース-6-リン酸減			拠
	雄	強制経口投		週7日換算:		, -
	4~15	与(コーンオ	F F F F F F F F	14 (W)		
	4 10			11 (11)		
		イル)	のみ実施):核崩壊, 小葉中心性			
			壊死, 倍数性細胞			
3	ラット	5日間	肝比重量增加(1,000-), CYP2B	500 [T]	1,000 (T)	ATSDR では、UGT
	Wistar 雄	強制経口投	増加(1,000-), DT-ジアホラーゼ活性			の上昇を、NOAEL
	,	与(コーンオ			125	評価には用いてな
		イル)	UGT 上昇(125-),脾臟·胸腺萎縮		120	
		170)	I			V %
	_ ,	44 - 88	(2000)		1.005 (=)	
4		11 日間	肝比重量增加(1,000)	500 [T]	1,000 [T]	
	SD 雄	強制経口投	体重增加量減少(1,000)			
	7	与(コーンオ				
		イル)				
(5)	ラット	14 日間	肝比重量増加,血清 ALT 増加,	500 (T)	1,500 (T)	
0	·			500 [1]	1,500 [1]	
	F344 雌	強制経口投	肝細胞肥大(1,500)			
	8	与(コーンオ				
		イル)				
6	ラット	42 日間	肝:多巣性壊死, 腎:糸球体過形		3,000	
	Wistar	強制経口投	成、尿細管うっ血、肝・腎:タンパク			
	雄 6	与(ゴマ油)	質及びタンパク結合した糖の有意			
	ин О	子(一、III)				
	-) 07	. a Maria	な上昇(3,000)		()	
7		13 週間	5'-ヌクレオチタ゛ーセ゛増加、腎比重量増	14 (T)	400 [T]	
	雄雌 20	飲水投与	加(雄 400-, 雌 1,400), 肝比重量			
			增加(1,400),体重增加量減少(雄			
			1,400, 雌 400-)			
慢	マウス	78 週間(週			雄536〔T〕	
	B6C3F ₁ 雄	5日)強制経				
(8)			, , , , , , , , , , , , , , , , , , , ,		雌386〔T〕	
	雌 20-50	口投与(コー	病理組織学的変化(雄 536-,雌			
		ンオイル)	386-)			
9	ラットOM	78 週間 (週	中毒性腎症, 死亡率上昇, 腎臓		雄471〔T〕	
	雄雌	5日)強制経	の組織組織学的変化(雄 471-,雌		雌 474〔T〕	
	20-50	口投与(コー	474-)		, m = / ± (±)	
	20 00	ンオイル)	= 1 = <i>1</i> 			
т.	1.				= (m)	11公中上日、上)
	マウス	7日間	60 日齢時観察での自発運動量/		5 (T)	瞬時投与かつ神経
10	NMRI 雄	強制経口投	全体の動きの増加(5-),			毒性に焦点を絞っ
	(10 日齢)	与				た実験であること
	12					から、TDI 設定の
						根拠論文としては
						適当ではないと判
						断。

(1)	F344 雌 8	単回強制経 口投与(コー ンオイル)	下(1,500-), ハンドリングに対する反応性 (興奮性) (500), 4 時間後の興奮性(150)	500 (T)	150 1,500	ATSDR は、流涙、歩行異常、自発運動量で判断。
12)	ラット SD 雄 6~7	単回強制経 口投与(コー ンオイル)			50	
13)	ラット F344雌 8	14 日間 強制経口投 与(コーンオ イル)	神経行動学的影響なし	1,500 (A)		
	ラット SD 雄 6~9	8週間 (週5日)強制経口投与(コーンオイル)			5 週7日換算: 3.6	瞬時投与かつ神経 毒性に焦点を絞っ た実験であること から、TDI 設定の 根拠論文としては 適当ではないと判 断。
	ラット F344 16-23	妊娠 6-19 日 強制経口投 与(コーンオ イル)	加,生存出生児の有意な減少,		900 (T)	
16	ラット (アルビノ) 3	2週間 飲水投与	排卵個体数减少		0.9%(3.5%T ween 中)	
17)	ラット (アルビノ) 5	1日2回×1 時間, 2週間 吸入暴露			1,700ppm	

亜:亜急性毒性試験 慢:慢性毒性試験 神:神経毒性試験 生:生殖・発生毒性試験

A:著者 W:WHO T:ATSDR 無印:食品安全委員会

本評価書中で使用した略号については次にならった

ALT アラニンアミノトランスフェラーゼ, グルタミン酸ピルビン酸トランスアミ

ナーゼ

AP、ALP アルカリフォスファターゼ

AST アスパラギン酸アミノトランスフェラーゼ、グルタミン酸オキサロ酢酸トラ

ンスアミナーゼ

AUC 血中薬物濃度-時間曲線下面積

BUN 血液尿素窒素

BMDL₁₀ 10%の影響に対するベンチマーク用量の95%信頼下限値

CHL チャイニーズハムスター肺由来細胞株

CHO チャイニーズハムスター卵巣由来細胞株

C_{max} 最高血(漿)中濃度

COHb 一酸化炭素ヘモグロビン

CPK クレアチンフォスフォキナーゼ

CYP シトクロムP450

DCA ジクロロ酢酸

GSH グルタチオン

Hb ヘモグロビン(血色素)

Ht ヘマトクリット

INF インターフェロン

LC₅₀ 半数致死濃度

LD₅₀ 半数致死量

LDH 乳酸脱水素酵素

LOAEL 最小毒性量

LOEL 最小作用量

NOAEL 無毒性量

NOEL 無作用量

OCT オルニチンカルバミルトランスフェラーゼ

SCE 姉妹染色分体交換

T_{1/2} 消失半減期

TCA トリクロロ酢酸

TDI 耐容一日摂取量

TG トリグリセリド

T_{max} 最高血(漿)中濃度到達時間

UDS 不定期 DNA 合成

- 1 <参照>
- ATSDR. Toxicological Profile for Tetrachloroethylene. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. 1997.
- Andrys C, Hanovcova I, Chylkova V, Tejral J, Eminger S, Prochazkova J. Immunological monitoring of dry-cleaning shop workers--exposure to tetrachloroethylene. Cent Eur J Public Health. 1997;5(3):136-42.
- Aschengrau A, Ozonoff D, Paulu C, Coogan P, Vezina R, Heeren T et al. Cancer risk and tetrachloroethylene-contaminated drinking water in Massachusetts.

 Archives of Environmental Health 1993; 48(5):284-292.
- 11 4 Aschengrau A, Paulu C, Ozonoff D. Tetrachloroethylene-contaminated drinking 12 water and the risk of breast cancer. Environ Health Perspect. 1998; 106 Suppl 13 4:947-53.
- 14 5 Aschengrau A, Rogers S, Ozonoff D. Perchloroethylene-contaminated drinking 15 water and the risk of breast cancer: additional results from Cape Cod, 16 Massachusetts, USA. Environ Health Perspect.2003 167-73.
- Beliles RP. Concordance across species in the reproductive and developmental toxicity of tetrachloroethylene. Toxicol Ind Health. 2002; 18(2):91-106.
- Bergamaschi E, Mutti A, Bocchi MC, Alinove R, Olivetti G, Ghiggeri GM et al. Rat model of perchloroethylene-induced renal dysfunctions. Environmental Research 1992; 59:427-439.
- Berger T, Horner CM. n vivo exposure of female rats to toxicants may affect oocyte quality. Reprod Toxicol. 2003; 17(3):273-81.
- 24 9 Berman E, Schlicht M, Moser VC, MacPhail RC. A multidisciplinary approach to toxicological screening: I. Systemic toxicity. J Tox Environ Health 1995; 45:127-143.
- Bove FJ, Fulcomer MC, Klotz JB. Public drinking water contamination and birth outcomes. Am J Epidemiol 1995; 141850-862.
- Buben JA, O'Flaherty EJ. Delineation of the role of metabolism in the hepatotoxicity of trichloroethylene and perchloroethylene: A dose-effect study. Toxicol Appl Pharmacol 1985; 78:105-122.
- Byers VS, Levin AS, Ozonoff DM, Baldwin RW. Association between clinical symptoms and lymphocyte abnormalities in a population with chronic domestic exposure to industrial solvent-contaminated domestic water supply and a high incidence of leukemia. Cancer Immunol Immunother 1988; 27:77-81.
- 36 13 Chen HH, Chan MH, Fu SH. Behavioural effects of tetrachloroethylene exposure in rats: acute and subchronic studies. Toxicology. 2002; 170(3):201-9.
- Chen SJ, Wang JL, Chen JH, Huang RN. ossible involvement of glutathione and p53 in trichloroethylene- and perchloroethylene-induced lipid peroxidation and apoptosis in human lung cancer cells. Free Radic Biol Med.2002; 33(4):464-72.
- Cohn P, J Klotz, F Bove, Berkowitz Marian, Fagliano J. Drinking water contamination and the incidence of leukemia and non-Hodgkin's lymphoma. Environmental Health Perspectives 1994; 102(6-7): 556-561.

- 1 16 Costa AK, Ivanetich KM. Tetrachloroethylene metabolism by the hepatic microsomal cytochrome P-450 system. Biochem Pharmacol 1980; 29:2863-2869.
- Dallas CE, Chen XM, Muralidhara S, Varkonyi P, Tackett RL, Bruckner JV. Use of tissue disposition data from rats and dogs to determine species differences in input parameters for physiological model for perchloroethylene. Environ Res 1994a; 67:54-67.
- Dallas CE, Chen XM, O'Barr K, et al. Development of a physiologically based pharmacokinetic model for perchloroethylene using tissue concentration time data. Tox Appl Pharm 1994b;128:50-59.
- 10 19 Dallas CE, Chen XM, Muralidhara S, Varkonyi P, Tackett RL, Bruckner JV.
 11 Physiologically based pharmacokinetic model useful in prediction of the influence
 12 of species, dose, and exposure route on perchloroethylene pharmacokinetics. J
 13 Toxicol Environ Health1995; 44:301-317.
- Doyle P, Roman E, Beral V, Brookes M. Spontaneous abortion in dry cleaning workers potentially exposed to perchloroethylene. Occup Environ Med. 1997; 54(12):848-53.
- Ebrahim AS, Gopalakrishnan R, Murugesan A, Sakthisekaran D. In vivo effect of vitamin E on serum and tissue glycoprotein levels in perchloroethylene induced cytotoxicity. Mol Cell Biol 1995; 144: 13-18.
- 20 22 Frantz SW, Watanabe PG. Tetrachloroethylene: Balance and tissue distribution in male Sprague-Dawley rats by drinking water administration. Toxicol Appl Pharmacol 1983; 69:66-72.
- 23 Fredriksson A, Danielsson BRG, Eriksson P. Altered behavior in adult mice orally exposed to tri- and tetrachloroethylene as neonates. Toxicology Letters 1993; 66: 13-19.
- 26 24 Germolec DR, Yang RSH, Ackermann MF, et al. Toxicology studies of a chemical mixture of 25 groundwater contaminants: II. Immunosuppression in B6C3F1 mice. Fundam Appl Toxicol 1989;13:377-387.
- 29 25 Gobba F, Cavalleri A. Color vision impairment in workers exposed to neurotoxic chemicals. Neurotoxicology. 2003; 24(4-5):693-702.
- 31 26 Goldsworthy TL, Lyght 0, Burnett VL, Popp JA. Potential rate of α -2 μ -globulin, protein droplet accumulation, and cell replication in the renal carcinogenicity of rats exposed to trichloroethylene, perchloroethylene, and pentachloroethane. Toxicol Appl Pharmacol 1988; 96:367-379.
- Goldsworthy TL, Popp JA. Chlorinated hydrocarbon-induced peroxisomal enzyme activity in relation to species and organ carcinogenicity. Toxicol Appl Pharmacol 1987; 88:225-233.
- 38 28 Green SM, Khan MF, Kaphalia BS, Ansari GA.. Immunohistochemical localization of trichloroacylated protein adducts in tetrachloroethene-treated mice. J Toxicol Environ Health A.2001; 63(2):145-57.
- 41 29 Green T, Odum J, Nash JA, Foster JR. Perchloroethylene-induced rat kidney tumors: An investigation of the mechanisms involved and their relevance to humans. Toxicol Appl Pharmacol 1990; 103:77-89.
- 44 30 Hanioka N, Jinno H, Toyo'oka T, Ando M. Induction of rat liver drug-metabolizing

- enzymes by tetrachloroethylene. Arch Environ Contam Toxicol 1995; 28:273-280.
- 2 31 Hayes JR, Condie LW Jr, Borzelleca JF. The subchronic toxicity of tetrachloroethylene (perchloroethylene) administered in the drinking water of rats. Fundam Appl Toxicol 1986; 7:119-125.
- 5 32 IARC Tetrachloroethylene. In: IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Vol.63. Dry cleaning, some chlorinated solvents and other industrial chemicals. Lyon, France, International Agency for Research on Cancer 1995; 159-221
- 9 33 Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, DeLuca JG, Lai DY, McKee RH, Peters JM, Roberts RA, Fenner-Crisp PA. 2003. PPARalpha agonist-induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol. 33(6):655-780.
- 13 34 Köppel C, Arndt I, Arendt U, Koeppe PP. Acute tetrachloroethylene poisoning: 14 Blood elimination kinetics during hyperventilation therapy. Clin Toxicol 1985; 23: 15 103-1 15.
- Lagakos SW, Wessen BJ, Zelen M.An analysis of contaminated well water and health effects in Wobum, Massachusetts. Journal of the American Statistical Association 1986; 81:583-614.
- 19 36 Lash LH, Parker JC. Hepatic and renal toxicities associated with perchloroethylene. Pharmacol Rev. 2001; 53(2):177-208.
- 21 37 Lehmann I, Thoelke A, Rehwagen M, Rolle-Kampczyk U, Schlink U, Schulz R, Borte M, Diez U, Herbarth O. The influence of maternal exposure to volatile organic compounds on the cytokine secretion profile of neonatal T cells. Environ Toxicol. 2002; 17(3):203-10.
- 25 38 McLaughlin JK, Blot WJ. A critical review of epidemiology studies of trichloroethylene and perchloroethylene and risk of renal-cell cancer. Int Arch Occup Environ Health. 1997; 70(4):222-31.
- 28 39 Moser VC, Cheek BM, MacPhail RC. A multidisciplinary approach to toxicological screening: III. Neurobehavioral toxicity. J Tox Eviron Health 1995; 45:173-210.
- Mundt KA, Birk T, Burch MT. Critical review of the epidemiological literature on occupational exposure to perchloroethylene and cancer. Int Arch Occup Environ Health. 2003; 76(7):473-91.
- 33 41 NCI: Bioassay of tetrachloroethylene for possible carcinogenicity. National Cancer 34 Institute. U.S. Department of Health, Education, and Welfare, Public Health 35 Service, National Institutes of Health, DHEW Publ (NIH) 1977; 77-813.
- 41a NTP: National Toxicology Program--technical report series no. 311. Toxicology and carcinogenesis studies of tetrachloroethylene (perchloroethylene) (CAS No. 127-18-4) in F344/N rats and B6C3Fl mice (inhalation studies). Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, 1986; NIH publication no. 86-2567.
- 41 42 Narotsky MG, Kavlock RJ. A multidisciplinary approach to toxicological screening: 42 II. Development toxicity. J Tox Environ Health 1995; 45:145-171.
- 43 43 Paulu C, Aschengrau A, Ozonoff D. Tetrachloroethylene-contaminated drinking water in Massachusetts and the risk of colon-rectum, lung, and other cancers.

- 1 Environ Health Perspect. 1999; 107(4):265-71.
- 2 44 Pegg DG, Zempel JA, Braun WH, Watanabe PG. Disposition of (14C) tetrachloroethylene following oral and inhalation exposure in rats. Toxicol Appl Pharmacol 1979; 5 1:465-474.
- 5 44a Price PJ, Hassett CM, Mansfield JI. Transforming activities of trichloroethylene -and proposed industrial alternatives. In vitro 1978; 14:290-293.
- Schreiber JS, Hudnell HK, Geller AM, House DE, Aldous KM, Force MS et al.
 Apartment residents' and day care workers' exposures to tetrachloroethylene and deficits in visual contrast sensitivity. Environ Health Perspect. 2002; 110(7):655-64.
- Schumann AM, Quast JF, Watanabe PG. The pharmacokinetics and macromolecular interactions of perchloroethylene in mice and rats as related to oncogenicity. Toxicol Appl Pharmacol 1980; 55:207-219.
- Sonnenfeld N, Hertz-Picciotto I, Kaye WE. Tetrachloroethylene in drinking water and birth outcomes at the US Marine Corps Base at Camp Lejeune, North Carolina. Am J Epidemiol. 2001; 154(10):902-8.
- Till C, Rovet JF, Koren G, Westall CA. Assessment of visual functions following prenatal exposure to organic solvents. Neurotoxicology. 2003; 24(4-5):725-31.
- 49 U.S. EPA (Environmental Protection Agency) Integrated Risk Information System
 20 (IRIS). Tetrachloroethylene (CASRN 127-18-4), RfD Last Revised 03/01/1988,
 21 Washington, DC.2003; Available online at http://www.epa.gov/iris/
- Vamvakas S, Herkenhoff M, Dekant W, Henschler D. Mutagenicity of tetrachloroethene in the Ames test: Metabolic activation by conjugation with glutathione. J Biochem Toxicol 1989; 4:21-27.
- Vaughan TL, Stewart PA, Davis S, Thomas DB. 1997. Work in dry cleaning and the incidence of cancer of the oral cavity, larynx, and oesophagus. Occup Environ Med. 54(9):692-5.
- 28 51a WHO: Air Quality Guidelines for Europe. Secound edition, Chapter 3 Summary of the guidelines 2000
- 30 52 WHO. Guidelines for Drinking Water Quality, Third edition, 2004.
- WebIer T, Brown HS. Exposure to tetrachloroethylene via contaminated drinking water pipes in Massachusetts: A predictive model. Archives of Environmental Health 1993; 48(5):293-297.
- White IN, Razvi N, Gibbs AH, Davies AM, Manno M, Zaccaro C et al. Neoantigen formation and clastogenic action of HCFC-123 and perchloroethylene in human MCL-5 cells. Toxicol Lett. 2001; 124(1-3):129-38.
- 37 55 厚生労働省: 水質基準の見直しにおける検討概要 平成15年4月、厚生科学審議会、38 生活環境水道部会、水質管理専門委員会 2003
- 39 56 日本水道協会: 水道統計 平成18年度版 2008
- 40 57 Walles SAS. Induction of single-strand breaks in DNA of mice by trichloroethylene and tetrachlorocthylene. Toxicology Letters 1986; 31:31-35

- Mazzullo M,Grilli S,Lattanzi G, Prodi G, Turina MP, Colacci A. Evidence of DNA binding activity of perchloroethylene. Research Communications in Chemical Pathology Pharmacology 1987; 58:215-235
- 4 59 Murakami K, Horikawa K. The induction of micronuclei in mice hepatocytes and reticulocytes by tetrachloroetylene. Chemosphere 1995; 31(7):3733-3739