(案)

動物用医薬品評価書

バルネムリン

2007年12月

食品安全委員会動物用医薬品専門調査会

- ○審議の経緯
- 〇食品安全委員会委員名簿
- 〇食品安全委員会動物用医薬品専門調査会専門委員名簿
- 〇要約
- I. 評価対象動物用医薬品の概要
 - 1. 用途
 - 2. 有効成分の一般名
 - 3. 化学名
 - 4. 分子式
 - 5. 分子量
 - 6. 構造式
 - 7. 使用目的及び使用状況
- Ⅱ.安全性に係る知見の概要
 - 1. 吸収・分布・代謝・排泄試験
 - (1) 投与試験 (ラット、イヌ)
 - (2) 投与試験(豚)
 - (3) 残留試験(豚)
 - 2. 急性毒性試験
 - 3. 亜急性毒性試験
 - (1)4週間亜急性毒性試験(マウス)
 - (2) 13週間亜急性毒性試験(ラット)
 - (3)13週間亜急性毒性試験(イヌ)
 - (4)28日間亜急性毒性試験(豚)
 - 4. 慢性毒性/発がん性試験
 - 5. 繁殖毒性試験及び催奇形性試験生殖発生毒性試験
 - (1)2世代繁殖毒性試験(ラット)
 - (2) 発生毒性催奇形性試験(マウス)
 - (3) 発生毒性催奇形性試験(ラット)
 - (4) 発生毒性催奇形性試験(ウサギ)
 - 6. 遺伝毒性試験
 - (1)遺伝毒性に関する各種試験
 - 7. 微生物学的影響に関する試験
 - (1) in vitro の MIC に関する試験
 - 8. その他
 - (1)免疫毒性試験
 - (2) 皮膚感作性試験(モルモット)
 - (3)皮膚刺激性試験(ウサギ)
 - (4) 眼刺激性試験(ウサギ)

- Ⅲ. 食品健康影響評価
- 1. 遺伝毒性/発がん性について
- 2. 微生物学的 ADI について
- 3. ADI の設定について
- 4. 食品健康影響評価について
- ・表3
- 別紙 1
- ・参照

〈審議の経緯〉

2006年 12月 18日 厚生労働大臣より残留基準設定に係る食品健康影響評価につい

て要請(厚生労働省発食安第 1218012 号)

2006年12月19日 関係書類の接受

2006 年 12 月 21 日 第 172 回食品安全委員会 (要請事項説明) 2007 年 12 月 18 日 第 3 回動物用医薬品専門調査会確認評価部会

〈食品安全委員会委員名簿〉

(2006年12月20日まで) (2006年12月21日から)

寺田 雅昭 (委員長) 見上 彪 (委員長)

見上 彪 (委員長代理) 小泉 直子 (委員長代理*)

 小泉 直子
 長尾 拓

 長尾 拓
 野村 一正

 野村 一正
 畑江 敬子

 畑江 敬子
 廣瀬 雅雄**

 本間 清一
 本間 清一

*: 2007年2月1日から
**: 2007年4月1日から

〈食品安全委員会動物用医薬品専門調査会専門委員名簿〉

(2007年2月11日まで) (2007年9月30日まで)

三森 国敏 (座長) 三森 国敏 (座長)

井上 松久 (座長代理) 井上 松久 (座長代理)

 青木
 宙
 津田
 修治
 青木
 宙
 寺本
 昭二

 明石
 博臣
 寺本
 昭二
 明石
 博臣
 長尾
 美奈子

江馬 眞 長尾 美奈子 江馬 眞 中村 政幸

 大野 泰雄
 中村 政幸
 小川 久美子
 林 真

 小川 久美子
 林 真
 渋谷 淳
 平塚 明

 渋谷 淳
 藤田 正一
 嶋田 甚五郎
 藤田 正一

 嶋田 甚五郎
 吉田 緑
 鈴木 勝士
 吉田 緑

鈴木 勝士 津田 修治

(2007年10月1日から)

三森 国敏 (座長)

井上 松久 (座長代理)

青木 宙 寺本 昭二

今井 俊夫 頭金 正博

今田 由美子 戸塚 恭一

江馬 眞 中村 政幸

小川 久美子 林 真

下位 香代子 山崎 浩史

津田 修治 吉田 緑

寺岡 宏樹

〈食品安全委員会動物用医薬品専門調査会確認評価部会専門委員名簿〉

(2007年9月30日まで)(2007年10月1日から)三森 国敏 (座長)三森 国敏 (座長)

林 真 (座長代理) 林 真 (座長代理)

渋谷淳井上松久嶋田甚五郎今井俊夫鈴木勝士津田修治寺本昭二寺本昭二

平塚 明 頭金 正博

1	
2	要約
3	
4	プレウロムチリン系抗生物質である「バルネムリン」(CAS No. 101312-92-9)
5	について、各種評価書等(EMEAレポート、動物用医薬品承認申請時の添付資
6	料等)を用いて食品健康影響評価を実施した。
7	評価に供した試験成績は、投与試験(ラット、イヌ及び豚)、残留試験(豚)、
8	急性毒性試験(マウス、ラット)、亜急性毒性試験(マウス、ラット、イヌ及び
9	豚)、2世代繁殖試験(ラット)、発生毒性試験(マウス、ラット及びウサギ)。
10	遺伝毒性試験、微生物学的影響に関する試験等である。
11	試験結果から、繁殖能に対する影響、催奇形性は認められなかった。慢性毒
12	性/発がん性試験は実施されていないが、バルネムリンは in vivo において遺伝
13	毒性を示さず、化学構造が類似しているチアムリンがマウス及びラットでは発
14	がん性を示さないことから、発がん性試験を欠いても ADI を設定することが可
15	能であると判断された。
16	各毒性試験で得られた無毒性量の最小値は、ラットを用いた13週間亜急性毒
17	性試験における 8mg/kg 体重/日であった。
18	微生物学的影響に関する試験で得られた MIC_{50} である 0.053μ g/mL から
19	CVMP の算出式に基づいて算出された微生物学的 ADI(0.00795mg/kg 体重/日)
20	は、慢性毒性/発がん性毒性試験がないことを踏まえ、仮に安全係数 1,000 を
21	適用した場合の毒性学的 ADI (0.008mg/kg 体重/日) と同じであり、毒性学的
22	安全性を十分に担保していると考えられる。
23	以上によりバルネムリンの食品健康影響評価については、ADIとして
24	mg/kg 体重/日を設定した。
25	
26	

I. 評価対象動物用医薬品の概要

2 1. 用途

豚の細菌感染症の治療 抗菌性物質

3 4 5

1

2. 有効成分の一般名

6 和名:バルネムリン 7 英名: Valnemulin

8

3. 化学名

10 **IUPAC**

英名:

111213

14

15

16

CAS(No. 101312-92-9)

英名: [2-[[(2R)-2-Amino-3-methyl-1-oxobutyl]Amino]-1, 1-dimethylethyl]thio]acetic acid (3as,4R,5S,6S,8R,9R,9aR, 10R)-6-ethenyldecahydro-5-hydroxy-4,-6,9,10-tetramethyl-1 -oxo-3a,9-propano-3aH-cyclopentacycloocten-8-yl ester

171819

4. 分子式

 ${
m C_{31}H_{52}N_2O_5S}$

202122

5. 分子量

564.8

2324

25 6. 構造式

26

272829

30

31

32

33

34

35

36

7. 使用目的及び使用状況

バルネムリンはプレウロム手リン系抗生物質であり、作用機序は細菌のタンパク質合成阻害である(参照1)。バルネムリンは、同じくプレウロム手リン系抗菌性物質であり、豚の細菌感染症の治療に使用されているチアムリンと似た構造をしている。

バルネムリンを主剤とする動物用医薬品は、国内及び EU 諸国で豚の細菌感染症の治療に使用されている (参照1)。 国内で承認を受けている製剤は、飼料に添加して使用され、と殺する前2日間前を休薬期間としている (参照

1 3)

Ⅱ.安全性に係る知見の概要

本評価書は、EMEA レポート (1998年)、動物用医薬品「バルネムリン NV、エコノア 1%、エコノア 10%プレミックス」の承認申請書概要等をもとに毒性に関する主な知見を整理したものである。(参照 1 , 2)

1. 吸収・分布・代謝・排泄試験

(1)投与試験(ラット、イヌ)

SD ラットに ³H-標識バルネムリン¹を経口(20 mg/kg 体重)投与及び静脈内(約 6 mg/kg 体重)投与した試験が実施された。被験物質は速やかに吸収され、生物学的利用率は 100%であった。組織中にも広く分布し、経口投与 3 時間後では肺、肝臓及び消化管中で高濃度であった。血漿、肝臓、尿及び糞中に 22 種類の代謝物が認められた。組織中に認められた代謝物の量には、かなりの個体差が認められた。(参照 1)(1)-2

SD ラットに 3 H-標識バルネムリンを強制経口及び混餌投与(20 mg/kg <u>体重</u>)及び静脈内(6 mg/kg <u>体重</u>)投与した試験が実施された。いずれも総投与放射能のほぼ 90 %以上が 168 時間以内に糞便中から回収された。尿中からは 2 - $^{3.5}$ %が回収された。いずれの投与方法においても糞中の代謝物 2 ロファイル (4 は同じであり、総放射能量の 6 - 8 %であった。(参照 2) (2)X-1

SD ラット(雄 4 匹/群)に 3 H-標識バルネムリンを強制経口(20 mg/kg <u>体重</u>) 投与及び静脈内(6 mg/kg <u>体重</u>) 投与し、血中の薬物動態が観察された。経口投与及び静脈内投与ともに $T_{1/2}$ は 2.1 時間と短く、8 時間後にはほどんど検出されなかった。経口投与及び静脈内投与の T_{max} は 3 時間及び 5 分、 C_{max} は $3.47\mu g/m l$ 及び $3.02\mu g/m l$ であった。(参照 2) (2)X-2

ビーグル犬に 3 H-標識バルネムリンを経口(10、30 mg/kg 体重)投与及び静脈内(3 mg/kg 体重)投与した試験が実施された。被験物質は速やかに吸収され、組織中にも広く分布した。生物学的利用率は 10 0%であった。30 mg/kg 体重/日を 7 7 日間経口投与した試験において、最終投与 2 7 時間後の組織中濃度は肝臓と胆汁で高濃度であった。経口及び静脈内投与において、未変化体及び代謝物の大部分は糞中に排泄された。 3 H $_{2}$ O の排泄はわずかであった。組織中及び排泄物中の代謝物は同定できなかった $_{10}^{10}$ 0の非泄はわずかであった。組織中及び排口ファイルに定性的な差は認められなかった。定量的な差は主に肝臓の未変化体の割合はで認められ、イヌで約 10 1%、豚で 10 16%まで(試料採取時による)、ラットで 10 10・2

(2)投与試験(豚)

¹ ビニル基部分に標識。以下特記しない場合も同様。

1 豚における経口投与試験において、バルネムリンは急速に吸収、分布、排泄 2 された。(参照1)

豚に塩酸バルネムリンを単回経口 (10,25,50 mg/kg 体重) 投与したところ、 T_{max} はそれぞれ 1.85,2.9、4.15 時間、 C_{max} は 1.29、2.67、 $6.23 \mu g/\text{mL}$ 、AUC は 5.58、18.23、 $67.3 \mu g \cdot \text{h/mL}$ であった。5 mg/kg 体重を 1 日 2 回投与する反復投与試験では、血漿中濃度は 7.5 日までにプラトーに達した。静脈内投与試験が実施されなかったため、絶対生物学的利用率は得られなかった。(1)-19

豚 3 頭に ³H-標識塩酸バルネムリンを 7.5 日間経口 (5 mg/kg 体重を 1 日 2 回)投与し、血漿、排泄物および主要可食組織中の総放射能を測定した。

1回目投与後の血漿中平均最高濃度および最高濃度到達時間は、それぞれ 0.36μg 当量/mL および 2.7 時間、総放射能の血漿中平均半減期 (α相) は 2.7 時間であった。投与 180 時間後の最終投与後では、血漿中平均半減期 (α相) は 1.3 時間であった。最終投与の 0-8 時間後、血漿中総放射能濃度一時間曲線の平均曲線下面積は、1回目の投与後の同じ期間に得られたものの 1.9 倍であり、最終投与 12 時間後以降の血漿中総放射能濃度は緩やかに低下し、総放射能の血漿中平均半減期 (β相) は 93 時間であった。

尿中における 12 日間(288 時間)の総放射能の回収率は 3.2%であった。尿中の放射能の大半が最終投与後 1 日以内に排泄され、1 日投与量に対する尿中の平均回収率は 1 回目投与の 72-192 時間後にプラトーに達し、その値は 2.4-3.5%の範囲であった。

主要な排泄経路は消化管であり、平均で総投与量の 87.5%が 12 日間(288 時間)で回収されている。1 日投与量に対する糞便中の平均回収率は、1 回目投与の 72-192 時間後にプラトーに達し、その値は 73-95%の範囲であった。

総放射能の排泄率は高く、平均で総投与量の 92%が 12 日間で回収された。また最終投与 5 日後の残留組織中の総放射能残留量は総投与量の 0.05%であった。 (2)- x_2

豚 12 頭(雌雄各 6 頭)に ³H-標識バルネムリンを 7.5 日間経口 (5 mg/kg 体重を 1 日 2 回)投与し、最終投与 1 時間、1 日、3 日、8 日後の各組織中(肝臓、皮下脂肪、腎臓、骨格筋、脳、胆汁、骨髄、皮膚、全血、血漿)について総放射能と非揮発性放射能を測定した。

主要可食組織中の非揮発性放射能の濃度は低く、全時点の肝臓と最終投与 1時間後までの腎臓だけが定量限界値より高い値を示した。

各測定時点における非揮発性放射能の残留量は肝臓が最も多く、肝臓と腎臓 以外の主要可食組織で検出された場合の平均組織残留濃度は、いずれも血漿よ り低い値であった。

39 最終投与1時間後の、脳、皮下脂肪、骨格筋、皮膚(付着脂肪を含む)及び 40 骨髄中の非揮発性放射能の濃度は非常に低く、胆汁、肝臓及び腎臓中の合計残

- 1 留量の平均値は、最終投与の1時間、1日、3日、8日後でそれぞれ総投与量の
- 2 0.76%、0.20%、0.05%、0.02%であった。非揮発性放射能の組織分布には性差
- 3 が認められなかった。(参照2)^{(2)-X2}

- 5 豚 15 頭に ³H-標識バルネムリンを 7.5 日間経口 (5 mg/kg 体重を 1 日 2 回)
- 6 投与し、各組織中濃度を測定した。最終投与1日後の肝臓で3,650μg eq/kg と
- 7 最高組織中濃度を示し、可食部位で検出された総放射能量の約92%を占めた。
- 8 腎臓では最終投与 1 日後で 240μg eq/kg で総放射能量の約 6%、筋肉では 70μg
- 9 eq/kg で総放射能量の約 2%を占めた。皮膚及び脂肪では検出されなかった。各
- 10 組織中濃度は投与8日後では肝臓で400μg eg/kg、腎臓で20μg eg/kg、筋肉で
- 11 は検出されなかった。(参照1)(1)-20

12

- 13 豚に 7.5 日間経口 (5 mg/kg 体重を 1 日 2 回)投与したところ、大部分が胆汁
- 14 及び糞中に排泄され、排泄率は最終投与後 120 時間までに約 87%であった。そ
- 15 の時の尿中排泄率は約3%であった。(参照1) (1)-21

16

- 17 豚に塩酸バルネムリンを 7.5 日間経口 (10、50 mg/kg 体重を 1 日 2 回)投与
- 18 し、最終投与2及び24時間後における組織中濃度を測定した。
- 19 **2550**mg/kg 投与群では、最終投与 2、24 時間後の定量結果は、肝臓でそれぞ
- 20 れ 35.7、0.23 μ g/g、腎臓で 5.83、0.1 μ g/g、筋肉で 1.51、0.17 μ g/g、胆汁中で
- 21 28.5, $0.5 \mu g/g$ であった。
- 22 **510**mg/kg 投与群の最終投与 2 時間後の定量結果は、肝臓で 4.4、腎臓で 1、
- 23 筋肉で 1、胆汁で $3.4\mu g/g$ であったが、最終投与後 24 時間では胆汁の $0.8\mu g/g$
- 24 を除いて検出限界 (0.01µg/g) 以下となった
- 25 未変化体は全ての組織で検出され、濃度の範囲は 0.1-36µg/g であった。肝臓、
- 26 腎臓、胆汁では、4種類の代謝物が見られている。そのうち1種は脂肪以外の
- 27 全ての器官試料で見られており(0.12-8.0 μ g/g 及び 12-16 μ g/mL)、主要代謝物
- 28 と推定されている。(参照2)^{(2)-X3}

29

- 30 豚に 7.5 日間経口 (25 mg/kg 体重を 1 日 2 回) 投与する試験が実施された。
- 31 胆汁で 11 <u>種類</u>の代謝物が認められ、その内 6 <u>種類</u>→は肝臓でも認められた。代
- 32 謝物の割合は胆汁で60%、肝臓で50%であった。これら代謝物はバルネムリン
- 33 の骨格は変わらず、側鎖又はプレウロムチリン環が酸化されたものであった。
- 34 エポキシドは認められなかった。2つの代謝物(代謝物のうちの4.4%)のみに
- 35 抗菌活性が認められ、これらがバルネムリンの抗菌活性の約70%を占めた。(参
- 36 照 1) (1)-22

3738

(3)残留試験(豚)

- 89 豚 6 頭に 3 H-標識バルネムリンを 7.5 日間経口(5 mg/kg 体重を 1 日 2 回)投
- 40 与し、最終投与 2 及び 24 時間後における組織中濃度を測定した。最終投与 2、

1 24 時間後の総放射活性及びその内の未変化体が占める割合は肝臓でそれぞれ 19,300、4,300 μ g/kg 及び 8、2%、腎臓で 1,000、400 μ g/kg 及び 6、6%であっ た。 <u>いくつかの</u>筋肉サンプルのでは</u>総放射活性は定量限界未満であったが、未 変化体の割合は<u>総放射活性の 6、</u>6%と推定された。皮膚及び脂肪では 1 例 (89 μ g/kg) を除き検出されなかった。(参照 1) (1)-23

豚に 28 日間混餌(バルネムリンの平均摂取量として約 3.8 あるいは、11.6 mg/kg 体重/日)投与し、最終投与 2 時間後から 5 日後までの組織中濃度を測定した。組織中濃度は肝臓で最も高く、なった。11.6 mg/kg 投与群における肝臓、腎臓、筋肉中濃度は最終投与 8 時間後でそれぞれ 455、94、33 μ g/kg、1 日後で113、63、26 μ g/kg、3 日後 の全ての組織で 25 μ g/kg 以下となった。皮膚及び脂肪では全ての採取ポイントでバルネムリンは検出されなかった。(参照 1)(1)-24 LW 系去勢 SPF 豚(16 頭/群)にバルネムリンを 7 日間混餌(0、200(常用量)、400(2 倍量)ppm;換算値として 0、10.3、22.7mg/kg 体重/日)投与し、最終投与 1、2、3 日後における組織中濃度を測定した。いずれの投与群においても最終投与 1 日後以降の組織中濃度は検出限界(0.05 μ g(力価)/g)未満であった。(参照 2)(2) X III - 2

去勢豚 (15 頭/群) に塩酸バルネムリンを 7 日間混餌 (0、200 (常用量)、400 (2倍量) ppm) 投与し、最終投与 4 時間後及び最終投与 1、2、3、5 日後における組織中濃度を測定した。200 ppm 以上投与群における肝臓、腎臓、小腸内では最終投与 4 時間後まで組織中から検出されたが、1 日後以降は検出限界 $(0.05\mu g(力価)/g)$ 未満であった。筋肉、脂肪、血清においては最終投与 4 時間後から検出限界 $(0.05\mu g(力価)/g)$ 未満であった。(参照 2)

2. 急性毒性試験

経口投与による LD_{50} はマウスの雄で 1,710 mg/kg 体重、雌で 1,482 mg/kg 体重、SD ラットの雌雄で 1,000 $\frac{2,000}{mg/kg}$ 体重以上 $\frac{2000 mg/kg}{kg}$ 体重未満であった。(参照 1) (1)-3

塩酸バルネムリンの経口投与における LD_{50} は ICR 系マウスの雄で 1,675mg/kg、雌で 1,943mg/kg、Wistar 系ラットの雌雄で 1,000mg/kg 又は、SD ラットの雌雄で 2,000mg/kg 以上であった。(参照 2) $^{(2)-IV}$

3. 亜急性毒性試験

(1)4週間亜急性毒性試験(マウス)

CD-1 マウス (雌雄各 5 匹/群) を用いた混餌 (0,20,100,300,1,000/700 mg/kg体重/日) 投与における 4 週間の亜急性毒性試験において認められた毒性所見は以下の通りであった。1,000 mg/kg 投与群に重篤な毒性影響(衰弱、体重減少)が認められたため、投与量を 700 mg/kg に減らしたが、毒性影響は継続したた

- 1 め、この群は試験 21 日で終了させた。300 mg/kg 投与群で、体重増加量の減少、
- 2 肝臓重量の増加、肝臓の病理組織学的変化が認められた。20 及び 100 mg/kg 投
- 3 与群でも肝臓に薬物の影響によると考えられる組織学的変化が認められた。な
- 4 お、本試験は用量設定試験として実施され、血液学的検査、血液生化学的検査、
- 5 尿検査、全身諸臓器の病理組織学的検査は実施されなかった。(1)-5

12

13

14

15

16

17

18 19

20

21

22

(2) 13 週間亜急性毒性試験 (ラット) (参照1, 2)

8 SD ラット (20-25 匹/群) を用いた混餌 (0、1、20、200 mg/kg 体重/日) 投9 与における 13 週間の亜急性毒性試験において認められた毒性所見は以下の通10 りであった。試験終了後、0 および 200 mg/kg 投与群の雌雄各 5 匹を 4 週間の11 回復試験に供した。

200 mg/kg 投与群雌雄で体重増加量、摂餌量の減少、平均血球ヘモグロビン 濃度の減少、雄に GGT、AST、ALT、BUN、K 濃度の高値が認められた。剖検 において肝臓病変が 20 及び 200 mg/kg 投与群に、甲状腺濾胞上皮過形成が 200 mg/kg 投与群で認められた。肝臓の門脈周囲の空胞変性が回復期終了後でも 200 mg/kg 投与群で認められた。(この試験における NOAEL は 1 mg/kg 体重/日で あった。)(1)・4 (2)^V·1

上記の試験の結果、より信頼できる NOAEL を設定するため、ラットを用いた混餌 (0, 8, 16, 32, 64 mg/kg 体重/日)投与における 13 週間の亜急性毒性試験が実施された。毒性所見は上記試験と同様で、16 mg/kg 以上投与群に</u>肝臓病変 (組織学的に肝門脈周辺細胞の空胞化) が認められたが、甲状腺への影響は認められなかった。本試験における NOAEL は 8 mg/kg 体重/日であった。(1)-4 (2)V-2

2324

25

26

27

28

29

30

31

(3) 13 週間亜急性毒性試験 (イヌ) (参照1, 2)

ビーグル犬(雌雄各 4 頭/群)を用いたゼラチンカプセルでの経口(0、10、30、100 mg/kg 体重/日)投与における 13 週間の亜急性毒性試験において認められた毒性所見は以下の通りであった。100 mg/kg 投与群の雄 1 頭が投与 3 日に重度の痙攣を起こしたため、安楽死させた。100 mg/kg 投与群で、投与 6 週から 12 週に体重増加量及び摂餌量の減少、AP 値の高値が認められた。剖検及び病理組織学的検査では特に異常は認められなかった。本試験における NOAELは 30 mg/kg 体重/日であった。(1)-6 (2)V-3

323334

35

36

(4)28日間亜急性毒性試験(豚)

豚 (ラージホワイト種) を用いた混餌 (75 mg/kg 体重/日;常用量の約5倍) 投与における28日間の亜急性毒性試験が実施された。一般状態、糞内容物、体 重増加量に投与の影響は認められなかった。(1)-7

373839

40

4. 慢性毒性/発がん性試験(参照1)

慢性毒性試験及び発がん性試験は実施されていない。EMEA では、構造が類

1 似しているチアムリン<u>の</u>←マウス、ラットに対する発がん性は認められないこ 2 とから、発がん性試験は要求されないと評価している。

5. 生殖発生毒性試験繁殖毒性試験及び催奇形性試験

(1)2世代繁殖毒性試験(ラット)(参照1, 2)

SD ラットを用いた経口 (0、8、40、200/160 mg/kg 体重/日)投与による 2 世代繁殖毒性試験 (2 定/世代) が実施されている。200 mg/kg 投与群で重篤な毒性影響が認められたため、投与量を 160 mg/kg に減らしたが、毒性徴候(F_0 世代雄 2 匹の死亡前の痙攣) 及び F_0 世代の体重増加量の減少は投与量変更後も認められた。剖検では 200 mg/kg 投与群で F_0 及び F_1 世代に肝臓病変(小葉 g 明瞭構造の増加(prominent lobulation)及び/又は 好塩基性変異肝細胞巣(pale focus)退色斑)の増加が認められた。交尾行動、妊娠、同腹児数、産児体重、産児生存に投与の影響は認められなかった。本試験における NOAEL は g0 mg/kg 体重/日 g1 と評価されているであった。

(2)発生毒性催奇形性試験(マウス)

 ${
m CD-1}$ マウス(雌 30 匹/群)を用いた経口(0、10、30、100 mg/kg 体重/日)投与による発生毒性催奇形性試験において認められた毒性所見は以下の通りであった。被験物質の投与は妊娠 6 日から 15 日までの間行った。100 mg/kg 投与群の母動物 2 匹に立毛、猫背姿勢円背、運動失調、うつろな目が認められた。30 mg/kg 以上投与群で体重増加量及び摂餌量の減少が認められた。30 mg/kg 以上投与群の胎児に骨化遅延が認められた²。本試験における NOAEL は母動物及び胎児で 10 mg/kg 体重/日 と評価されているであった。催奇形性は認められていないないなかった。(1)-10 (2) $^{
m VI-2}$

(3)発生毒性催奇形性試験(ラット)

SD ラットを用いた経口(0、25、75、225 mg/kg 体重/日)投与による発生毒性保育形性試験において認められた毒性所見は以下の通りであった。被験物質の投与は妊娠 6 日から 16 日までの間行った。225 mg/kg 投与群で母体毒性及び胎児毒性(波状肋骨及び骨化遅延)が認められた。本試験における NOAEL は母動物及び胎児で 75 mg/kg 体重/日 と評価されているであった。催奇形性は認められていないなかった。(1)-11 (2)VI-3

(4)発生毒性催奇形性試験(ウサギ)

非妊娠ウサギにバルネムリン<u>の</u>を 31.25、150 mg/kg 体重/日を 5 日間投与す

²数匹の母動物が剖検前に分娩したため、これらの胎児は除外した。

- 1 る用量設定試験が実施されている。両群で重篤な毒性影響が認められ、それぞ
- 2 れ投与3、4日で試験を中止した。これらの影響は、ウサギに抗菌剤を経口投与
- 3 した場合に通常、認められる消化管影響を介した二次的作用と考えられること
- 4 から、ウサギは本被験物質の発生毒性催奇形性試験に適さないと考えられた。
- **5** (1)-10 (2)VI-1

8

9

10

6. 遺伝毒性試験

(1)遺伝毒性に関する各種試験

表 1 in vitro 試験

試験系	試験対象	用量	結果
Ames 試験	Salmonella typhimurium,	_	陰性
	TA1535、TA1537、TA1538、		
	TA98、TA100		
遺伝子突然変異試験	СНО	_	陰性
UDS 試験	ラット初代肝細胞	_	陰性
前進突然変異試験	L5178Y マウスリンフォーマ	_	陽性 1
	細胞		
染色体異常試験	СНО	_	陽性 ²
	СНО	_	陰性3

- 11 1.細胞毒性の認められる用量で弱い陽性(-S9)。試験にも不足な点があることからこの陽性結 12 果は意味がないとした。
- 13 2.細胞毒性の認められる用量で弱い陽性(+S9)。-S9では陰性。用量相関性なし。
- 14 3.+S9 では染色体異常の頻度は増加するものの、その影響は小さく、上記染色体異常試験との
- 15 間に再現性はなかった。-S9では陰性。

16

17

表 2 in vivo 試験

試験系	試験対象	用量	結果
UDS 試験	Crl:CD ラット	800、2,000 mg/kg 体	陰性
(in vivo / in vitro)		重	
		経口	
小核試験	CD1 マウス		陰性

18 19

上記のように、バルネムリンについて $in\ vitro$ 、 $in\ vivo$ の試験が実施され、 $in\ vitro$ では弱い染色体異常誘発性が認められるが、 $in\ vivo$ では認められないと結論している。 $^{(1)-12}$ $^{(2)VI-5}$

212223

24

20

7. 微生物学的影響に関する試験

(1) in vitroの MIC に関する試験

1 ヒト臨床分離菌株 10 菌種 90 菌株以上における MIC が得られており、非感受 2 性株を除いた幾何学平均 MIC $_{50}$ は $0.053\mu g/mL$ であった。 $^{(1)-18}$

3 4

5

6

7

8. その他

(1)免疫毒性試験

免疫毒性試験は実施されていないが、亜急性毒性試験において免疫系への投 与の影響は認められなかった。また構造が類似しているチアムリンは、マウス と鶏の抗体形成において、免疫系を抑制しないとされている。(1)-14

8 9 10

11

12

(2)皮膚感作性試験(モルモット)

モルモットを用いた皮膚感作性試験が実施され、9/10 匹で感作性は認められず、1/10 匹ははっきりしなかった。文献調査によると類似薬のチアムリンの皮膚感作誘発率はヒトで約 2%程度とされている。(1)-15 (2)VI-8

131415

16

17

(3)皮膚刺激性試験(ウサギ)(参照2)

ウサギ 3 羽を用いた塩酸バルネムリンの単回(0.5g を無傷皮膚に対して半閉塞で 4 時間)投与による皮膚刺激性試験が実施され、反応は認められなかった。 (2) $^{VI-7}$

18 19

20

(4) 眼刺激性試験(ウサギ)(参照2)

21 ウサギ 3 羽を用いた塩酸バルネムリンの単回点眼 (40mg) 投与による皮膚刺 22 激性試験が実施された。

角膜混濁及び明らかな結膜刺激性が認められた。反応は徐々に軽減し、点眼後3又は7日に完全に消失した。(2)VI-6

2425

26

27

28

29

30

31

32

33

34

23

Ⅲ. 食品健康影響評価

1. 毒性学的 ADI について

バルネムリンは慢性毒性/発がん性試験は実施されていないが、in vivo において遺伝毒性を示さず、化学構造が類似しているチアムリンがマウス及びラットでは発がん性を示さないことから、発がん性試験を欠いても ADI を設定することが可能であると判断された。

毒性試験において、最も用量の低いところで投与の影響が認められたと考えられる指標はラット 13 週間亜急性毒性試験における肝臓病変で、NOAEL 8 mg/kg 体重/日であった。EMEA では、この知見に安全係数 100 を適用し、ADI は 0.08 mg/kg 体重/日と設定している。

353637

2. 微生物学的 ADI について

38 微生物学的影響について現時点で利用可能なものは $in\ vitro$ の MIC_{50} のみで 39 あり、非感受性株を除いた幾何学平均 MIC_{50} は $0.053\mu g/mL$ であった。これに 40 糞便塊 $150\ mL$ 、細菌が暴露される分画に 5%、ヒト体重に $60\ kg$ を適用し、CVMP

1 の算出式により、

ADI (mg/kg 体重/日) = $\frac{0.000053 \times 3^{*2}}{1^{*1}} \times 150 = 0.00795$

- *1:耐性機序に係る情報がないことから1
- *2: *in vitro* から *in vivo* への生育環境の違いによる補正<u>を</u>3 <u>とした</u>。
 pH 変化には補正は必要ない。<u>なお、</u>8 菌種の 32 株にで接種密度を 10⁶ から 10⁸cfu/mL にすることによるり 幾何学平均最小殺菌濃度 (MBC) が 7 に増加したとなった。
- *3:細菌が暴露される分画 5%。豚の混餌投与試験で抗菌活性を有する残留物が約 2%糞中に排泄されたことによる。

と算出している。

この CVMP 算出式に基づいて算出された微生物学的 ADI は、今後の評価で汎用されるであろう、現行の VICH ガイドラインに基づく結果とは異なると考えられるが、新たに試算を行うに足る詳細な知見は得られていない。従って、現時点における微生物学的 ADI の評価としては、暫定基準の見直しに当たって提出された資料に基づき、EMEA と同様の値を採用することが適当と考えられる。

3. ADI の設定について

微生物学的 ADI は慢性毒性試験・発がん性試験がないことを踏まえ、仮に安全係数 1,000 を適用した場合の毒性学的 ADI (0.008 mg/kg 体重/日) と同じであり、毒性学的安全性を十分に担保していると考えられる。このことから、バルネムリンの残留基準を設定するに際しての ADI としては、_____mg/kg 体重/日と設定することが適当であると考えられる。

4. 食品健康影響評価について

以上より、バルネムリンの食品健康影響評価については、ADI として次の値を採用することが適当と考えられる。

バルネムリン _____mg/kg 体重/日

暴露量については、当評価結果を踏まえ暫定基準値の見直しを行う際に確認 することとする。

表3 各試験における EMEA 及び動物用医薬品申請書の概要資料無毒性量等 の比較

動物種	試験	投与量	無毒性量(mg/kg 体重/日)		
		(mg/kg 体重/日)	EMEA	社内資料 動物用医薬品申	
				請書の概要資料	
マウス	4週間亜急性	0, 20, 100, 300,	_		
	毒性試験	1,000(→700)			
			肝臓に薬物の影響による組		
			織学的変化		
	発生毒性催	0, 10, 30, 100	10	母動物:10	
	奇形性 試験			胎児:30	
			母動物:体重増加量の減少、	母動物:体重低值、摂餌量低	
			摂餌量の減少など	値	
			胎児 : 骨化遅延	胎児:骨化遅延	
			(催奇形性は認められず)	(催奇形性は認められず)	
ラット	13 週間亜急	0, 1, 20, 200	1 (下記試験の予備試験の	2つの試験を合わせて評価	
	性毒性試験		ため NOEL として採用され	_	
			ず)	(設定していない)	
			甲状腺濾胞上皮過形成	20mg 投与群で肝門脈域の細	
	13 週間亜急	0, 8, 16, 32, 64	8	胞質内に脂質	
	性毒性試験			雄:16	
				雌:8	
			毒性所見は上記の試験に同	Had HH Bac I D. Jan	
			様で肝臓病変(甲状腺への影	肝門脈域の細胞質内に脂質	
	a III II Fin The		響はみられず)		
	2世代繁殖	0, 8, 40,	母動物:40	母動物: 40	
	毒性試験	200(→160)	200 - 机上形で手燃み事件	200 机上飛っ添加み事件	
			200mg 投与群で重篤な毒性 が認められたため、160mg	200mg 投与群で深刻な毒性 が認められたため、160 に	
			に変更。 母動物:体重増加量の減少、	mgに変更。 母動物:肝臓に軽度な小葉像	
			空動物・陸重増加重の減多、	明瞭化、中葉分枝部の退色病	
			/工 子 、	単、死亡前痙攣(2匹)	
	<u> </u>	0, 25, 75, 225	75	75	
	奇形性 試験	- c, 2 c, 10, 22 c		. •	
			 母動物:母胎毒性	母動物:流涎、被毛の汚れ	
<u> </u>	<u>I</u>	<u> </u>	<u> </u>	·	

			胎児 :波状肋骨、骨化遅延 (催奇形性は認められず)	胎児 : 胎児重量低値、骨化 遅延、波状肋骨
	10 岡田 ボ &	0 10 00 100		
イヌ	13 週間亜急	0, 10, 30, 100	30	30
	性毒性試験			
			重度の痙攣、体重増加量の減	体重増加量の減少、摂餌量の
			少、AP 値の高値	減少、AP 値の高値、雄のへ
				モグロビン、赤血球数、ヘマ
				トクリットが増加傾向
豚	28 週間亜急	75	_	
	性毒性試験			
毒性学的 ADI				
毒性学的 A	ADI		0.08 mg/kgbw/day	
毒性学的	ADI		0.08 mg/kgbw/day NOEL : 8mg/kgbw/day	
毒性学的 /	ADI			
	ADI ADI 設定根拠資	料	NOEL: 8mg/kgbw/day	
		料	NOEL: 8mg/kgbw/day SF: 100	
	ADI 設定根拠資	料	NOEL: 8mg/kgbw/day SF: 100 ラット 13 週間亜急性毒性試	
毒性学的 名 微生物学的	ADI 設定根拠資		NOEL: 8mg/kgbw/day SF: 100 ラット 13 週間亜急性毒性試験	
毒性学的 名 微生物学的	ADI 設定根拠資		NOEL: 8mg/kgbw/day SF: 100 ラット 13 週間亜急性毒性試験 0.00795 mg/kgbw/day	
毒性学的 名 微生物学的	ADI 設定根拠資		NOEL: 8mg/kgbw/day SF: 100 ラット 13 週間亜急性毒性試験 0.00795 mg/kgbw/day 非感受性株を除いた幾何学	

<別紙1 検査値等略称>

略称	名称
ADI	一日摂取許容量
ALT	アラニンアミノトランスフェラーゼ
AP	アルカリフォスファターゼ
AST	アスパラギン酸アミノトランスフェラーゼ
AUC	血中薬物濃度-時間曲線下面積
BUN	血液尿素窒素
СНО	チャイニーズハムスター卵巣由来細胞株
C_{max}	最高血(漿)中濃度
CVMP	欧州医薬品審査庁動物用医薬品委員会
GGT	ガンマグルタミルトランスペプチダーゼ
LD_{50}	半数致死量
MIC	最小発育阻止濃度
NOAEL	無毒性量
NOEL	無作用量
$T_{1/2}$	消失相半減期
T_{max}	最高血(漿)中濃度到達時間
VICH	動物用医薬品の承認審査資料の調和に関する国際協力会議

1	<	参	昭	>
I	_	<i>~</i>	HH.	_

- 2 1 EMEA: COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS,
- 3 VALNEMULIN SUMMARY REPORT
- 4 2 バルネムリン NV、エコノア 1%プレミックス、エコノア 10%プレミックス
- 5 の概要, ノバルティス アニマルヘルス株式会社(社内資料)
- 6 3 農林水産省動物医薬品検査所「動物用医薬品等データベース」
- 7 (http://www.nval.go.jp/asp/asp_dbDR_idx.asp)