清涼飲料水評価書(案)

1,1,2-トリクロロエタン

2007年11月 食品安全委員会化学物質・汚染物質専門調査会

目 次

・審議の経緯	•	•	•	2
・食品安全委員会委員名簿	•	•	•	2
・食品安全委員会汚染物質・化学物質専門調査会				
合同ワーキンググループ専門委員名簿	•	•	•	2
・食品安全委員会化学物質・汚染物質専門調査会清涼飲料水部会				•
専門委員名簿	•	•	•	3
要約	•	•	•	4
. 評価対象物質の概要	•	•	•	5
1.用途	•	•	•	5
2.一般名	•	•	•	5
3 . 化学名	•	•	•	5
4 . 分子式	•	•	•	5
5.分子量	•	•	•	5
6.構造式	•	•	•	5
7.物理化学的性状	•	•	•	5
8 . 現行規制等	•	•	•	5
. 安全性に係る知見の概要	•			6
1 . 毒性に関する科学的知見	•	•		6
2.国際機関等の評価		•	•	14
3.暴露状況		•	•	16
. 食品健康影響評価		•	•	17
・本評価書で使用した略号一覧	•	•		20
・参照	•	•	•	21

<審議の経緯>

平成15年7月1日 厚生労働大臣より食品健康影響評価について要請、関係書

類の接受

平成 15 年 7 月 18 日 第 3 回食品安全委員会 (要請事項説明)

平成19年7月3日 第5回汚染物質・化学物質専門調査会合同ワーキンググル

ープ

平成 19 年 11 月 28 日 第1回化学物質・汚染物質専門調査会幹事会

< 食品安全委員会委員名簿 >

(2006年6月30日まで)(2006年12月20日まで)(2006年12月21日から)

寺田雅昭(委員長) 寺田雅昭(委員長) 見上 彪(委員長)

寺尾允男(委員長代理) 見上 彪(委員長代理) 小泉直子(委員長代理*)

 小泉直子
 小泉直子
 長尾 拓

 坂本元子
 長尾 拓
 野村一正

 中村靖彦
 野村一正
 畑江敬子

 本間清一
 畑江敬子
 廣瀬雅雄**

 見上 彪
 本間清一
 本間清一

*:2007年2月1日から
**:2007年4月1日から

< 食品安全委員会汚染物質・化学物質専門調査会合同ワーキンググループ 専門委員名簿 >

(2007年3月31日まで) (2007年9月30日まで)

汚染物質専門調査会 汚染物質専門調査会

安藤 正典 安藤 正典

佐藤 洋(座長) 佐藤 洋(座長)

千葉百子千葉百子広瀬明彦広瀬明彦前川昭彦前川昭彦

化学物質専門調査会 化学物質専門調査会

 太田 敏博
 太田 敏博

 立松 正衞(座長代理)
 渋谷 淳

廣瀬 雅雄 立松 正衞(座長代理)

< 食品安全委員会化学物質・汚染物質専門調査会清涼飲料水部会専門委員名簿>

安藤 正典

太田 敏博

渋谷 淳

千葉 百子(座長)

長谷川 隆一(座長代理)

広瀬 明彦

前川 昭彦

要 約

4 清涼飲料水に係る汚染物質として、1,1,2-トリクロロエタンの食品健康影響評価を 5 行った。

評価に供した試験成績は、急性毒性試験(ラット、マウス、イヌ) 亜急性毒性試験(マウス) 慢性毒性試験及び発がん性試験(マウス、ラット) 神経毒性試験(マウス、イヌ) 生殖・発生毒性試験(マウス) 遺伝毒性試験等である。

1,1,2-トリクロロエタンは、現時点では、遺伝毒性を示す十分な証拠はなく、遺伝 毒性の可能性は低いと考えられた。一方、発がん性試験では、マウスにおいて高用 量で発がん性が認められたが、いずれも高用量での発生であり、遺伝毒性試験の成 績から発生機序が遺伝毒性に起因する可能性は低いと考えられた。以上より、遺伝 毒性発がん物質の可能性が低いため、TDIを設定することが可能であると判断した。

毒性学的影響において最も低い用量で被験物質投与の影響が認められた指標は、雌マウスを用いた 90 日間の飲水投与試験による血清生化学値の用量依存性の変化及び免疫系への影響であり、NOAEL が 3.9mg/kg 体重/日であった。これを根拠として、種差 10、個体差 10、亜急性毒性 10 の安全係数 1,000 で除した 3.9μg/kg 体重/日を耐容一日摂取量 (TDI) と設定した。

```
. 評価対象物質の概要
1
   1.用途
2
       油脂、ワックス、天然樹脂及びアルカロイドの溶剤(参照1)
3
4
   2.一般名
5
       1,1,2-トリクロロエタン
6
7
   3.化学名
8
       IUPAC
9
         和名:1,1,2-トリクロロエタン
10
         英名:1,1,2-trichloroethane
11
       CAS No.: 79-00-5
12
13
   4.分子式
14
       C_2H_3Cl_3
15
16
   5.分子量
17
       133.4
18
19
   6.構造式
20
21
22
23
           CI.
24
   7.物理化学的性状
25
                    特徴的な臭気のある、無色の液体
       物理的性状
26
       融点()
                    -36
27
       沸点()
                    114
28
       比重(水=1): 1.44
29
       水への溶解性 :
                    溶けない
30
       水オクタノール分配係数 (log Pow): 2.35
31
       蒸気圧(kPa(20)): 2.5
32
33
34
   8. 現行規制等
35
   (1)法令の規制値等
36
       水質管理目標 (mg/L): 0.006
37
       環境基準値 (mg/L): 0.006
38
       その他基準 (mg/L): 薬品基準、資機材基準及び給水装置基準 0.006、
39
                     労働安全衛生法 なし
40
```

(2)諸外国等の水質基準値またはガイドライン値

WHO(mg/L) : なし(~第3版)

EU(mg/L) : なし

US EPA (mg/L): 0.005(Maximum Contaminant Level)

. 安全性に係る知見の概要

EPA/IRISのリスト、ATSDRの毒性学的プロファイル、IARCのモノグラフ等を基に、毒性に関する主な科学的知見を整理した(参照 $2\sim4$)。

- 1. 毒性に関する科学的知見
- (1)体内動態

吸収

1,1,2-トリクロロエタンの経口暴露後におけるヒトの吸収に関する研究はなかった。実験動物において入手できる唯一のデータでは、最大耐量(MTD)に近い用量で、マウス(300 mg/kg 体重)またはラット(70 mg/kg 体重)に経口投与すると、その 81%が代謝され、少なくともこの量が吸収されたことを示している。これは、1,1,2-トリクロロエタンが、構造的に近いハロカーボンのように動物の消化管からよく吸収され、おそらく同様に、ヒトの消化管からもよく吸収されることを示唆している(参照 2)。

分布

1,1,2-トリクロロエタンの経口暴露後におけるヒトまたは実験動物の分布に関する研究はなかった。唯一の研究では、実験動物に経口投与した結果、1,1,2-トリクロロエタンが肝臓に分布したことを示していた。この試験において、1,1,2-トリクロロエタンは(おそらく、肝臓で)大量に代謝され、肝タンパクと結合していることも認められた。1,1,2-トリクロロエタンはまた、ヒトにおいても肝臓へ分布することが考えられる(参照2)。

代謝

1,1,2-トリクロロエタンを経口暴露したときのヒトの体内動態(代謝)に関する研究はなかった(参照2)。1,1,2-トリクロロエタンを強制経口投与したラット及びマウスにおいて、高速液体クロマトグラフィーにより確認された主要代謝物は、クロロ酢酸、S-カルボキシメチルシステイン及びチオ二酢酸であった。S-カルボキシメチルシステイン及びチオ二酢酸は、1,1,2-トリクロロエタンが抱合され産生される(参照5)。クロロ酢酸は、肝CYPによって形成される。この反応は、塩化アシルを介して進行すると考えられている(参照6)。CYPはまた、1,1,2-トリクロロエタンからフリーラジカルを産生することができる(参照7)。塩化アシル及びフリーラジカルは、タンパク質や核酸と結合することができる反応性代謝物であり、肝細胞毒性、変異原性、及び発がん性が疑われている(参

照 6,7,8 。他の代謝物として、1,1,2-トリクロロエタンに暴露したマウス及びラットにおいて、トリクロロ酢酸とトリクロロエタノールが微量に認められた(参照 5,9,10)が、どのように生成されたかは明らかでない。Yllner(参照 30)は、これらの化合物が生成された 1,1,2-トリクロロエタン中の不純物由来の可能性を示唆した。

1,1,2-トリクロロエタンを MTD に近い用量でマウスまたはラットに投与した場合、マウスの投与量は 4.3 倍であったが、同じ率 (81%) で代謝することができた。このラットよりも高いマウスの 1,1,2-トリクロロエタンの代謝効率が、1,1,2-トリクロロエタンの細胞毒性及び発がん性に対するマウスの比較的高い感受性の一因かもしれない。ヒトにおける 1,1,2-トリクロロエタン代謝の速度が、マウス及びラットにおける代謝速度に匹敵するかどうかは、不明である(参照 2)。

排泄

1,1,2-トリクロロエタンの経口暴露後におけるヒトの排泄に関する研究はなかった(参照 2)。この化学物質を経口投与または腹腔内投与(参照 5)のいずれにおいても、排泄経路はラット及びマウスで類似していることが示された。放射性標識化合物を投与したとき、呼気から 1,1,2-トリクロロエタンの約 $7 \sim 10\%$ が未変化のまま、 $3 \sim 7\%$ が CO_2 として排出され、 $72 \sim 87\%$ が尿中に代謝物として認められ、約 1% が糞中に排出され、 $1 \sim 3\%$ が 48 時間後のラット及びマウスのカーカスに残存していた。ヒトの排泄も、主として代謝物の尿中へ排出と考えられる(参照 2)。

(2)実験動物等への影響

急性毒性試験

報告されている 1,1,2-トリクロロエタンの LD_{50} 値は、ラットの経口投与(原液)では 0.58~mL/kg (ATSDR 換算で 837~mg/kg 体重)であった(参照 11)。

マウスでは、水を溶媒とした場合の 1,1,2-トリクロロエタンの強制経口 LD_{50} は雄 378~mg/kg 体重、雌 491~mg/kg 体重という報告がある。死亡例には、肺に出血部位、出血によると思われる肝臓の蒼白化が認められ、死亡に関連したと考えられる(参照 12)。

イヌでは 0.5 mL/kg 体重 (ATSDR 換算 722 mg/kg 体重)の経口投与で死亡が認められ、0.1~0.3 mL/kg 体重 (ATSDR 換算 144~433 mg/kg 体重)では死亡は認められなかったとの報告がある (参照 13)。

亜急性毒性試験

a.14日間亜急性毒性試験(マウス)

CD-1 マウス(雄、各投与群 11~12 匹)における 1,1,2-トリクロロエタン(最大 38 mg/kg 体重/日: Emulphor 中)の 14 日間(1日1回)の強制経口投与試験を行った(参照 12,14)。

血液への影響は認められなかった(参照 12)。ヒツジ赤血球に対する液性ま たは細胞性免疫反応に影響はなかった(参照 14)。液性免疫反応として、脾臓 でのヒツジ赤血球に対する IgM 抗体産生細胞数の変動を測定した(参照2)。 脾臓と胸腺の相対重量は、投与によっても影響を受けなかった(参照12)。

ATSDR では、この試験から、急性経口暴露後のマウスにおける免疫系への 影響の NOAEL は 38 mg/kg 体重/日としている (参照 2)。

6 7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

5

b.90日間亜急性毒性試験(マウス)

CD-1 マウス(雌雄、各投与群 32 匹、対照群 48 匹)における 1,1,2-トリク ロロエタン(飲水中濃度:0.02、0.2、2.0 mg/mL 検体摂取量:雄0、4.4、46、 305 mg/kg 体重/日、雌 0、3.9、44、384 mg/kg 体重/日)の90日間の飲水投与 試験を行った。各投与群で認められた毒性所見を表1に示す。

雄では、血液への影響は認められなかったが、雌では、血液学的パラメータ のうち、384 mg/kg 体重/日投与群において Ht 及び Hb の軽度の減少、全投与 群で用量依存性ではない血小板及びフイブリノーゲンの増加、ならびに高用量 群での白血球の増加(ただし、この研究所における背景対照値よりわずかに高 いのみ)がみられた。プロトロンビン時間は、44 mg/kg 体重/日(雌)以上の 投与群で、用量依存的に有意に減少した。雄では、GSH が、46 mg/kg 体重/ 日投与群で 16%減少し、305 mg/kg 体重/日投与群では 28%減少し、また、血 清トランスアミナーゼレベルは、いずれの投与群でも増加しなかったが、46 mg/kg 体重/日投与群において、AST、ALT の有意な減少がみられた。 雌では、 384 mg/kg 体重/日投与群で、GSH が 13%増加し、ALT は有意に増加した。さ らに、雌において、用量依存的な減少を示した CYP 及びアニリンヒドロキシ ラーゼは、44 mg/kg 体重/日以上の投与群で有意であった。脾臓の絶対重量は、 384 mg/kg 体重/日投与群の雌において有意に増加したのみであった。 胸腺重量 は、いずれの投与群においても有意な差はなかった。雌では、CYP 及びアニリ ンヒドロキシラーゼ活性の減少が、44 mg/kg 体重から見られたことを採用し、 NOAEL を 3.9 mg/kg 体重/日としている。雄では、GSH の減少を考慮し、 NOAEL を 4.4 mg/kg 体重としている (参照 12)。

表 1 マウス 90 日間亜急性毒性試験

	フバッロ門土心	
投与群	雄	雌
飲水中濃度 2.0 mg/mL		Ht・Hb の軽度の減少、白血球増
(検体摂取量		加、GSH 増加、ALT 増加、脾臓
雄:305 mg/kg 体重/日		絶対重量増加
雌:384 mg/kg 体重/日)	 GSH 減少	
飲水中濃度 0.2 mg/mL 以上	GSロ ペン	プロトロンビン時間の減少、
(検体摂取量		CYP・アニリンヒドロキシラー
雄:46 mg/kg 体重/日		ゼ活性の減少
雌:44 mg/kg 体重/日)		
飲水中濃度 0.02 mg/mL	毒性所見なし	毒性所見なし
(検体摂取量		
雄:4.4 mg/kg 体重/日		
雌:3.9 mg/kg 体重/日)		

c.90日間亜急性毒性試験(マウス)

CD-1 マウス(雌雄)における 1,1,2-トリクロロエタン(飲水中濃度:0.02、0.2、2.0 mg/mL 検体摂取量:雄 0、4.4、46、305 mg/kg 体重/日、雌 0、3.9、44、384 mg/kg 体重/日)の 90 日間の飲水投与試験を行った。各投与群で認められた毒性所見を表 2 に示す。

液性免疫反応のパラメーターとして、脾臓中で生じたヒツジ赤血球に対する IgM 抗体産生細胞の数、血球凝集反応力価、及びリポ多糖に対する脾臓リンパ球反応を測定した。脾臓における抗体産生細胞数には、投与による一貫した影響が認められなかった。血球凝集反応力価は用量依存性の低下を示し、雄の 46 mg/kg 体重/日以上の投与群、雌の 44 mg/kg 体重/日以上の投与群で有意であった。ヒツジ赤血球に対する細胞性免疫反応として、遅延型過敏反応及び膝窩リンパ節増殖反応を検討した結果、いずれの投与群においても、影響は認められなかった。他の免疫反応も評価したところ、305 mg/kg 体重/日に暴露した雄の腹膜大食細胞では、ヒツジ赤血球の貪食能が有意に低下していた。この影響は雌には見られなかった。384 mg/kg 体重/日投与群の雌において、細網内皮系の固定大食細胞の機能活性が変化し、肝において、ヒツジ赤血球脈管クリアランスの 17%の増加を示したが、雄には見られなかった(参照 14)。

ノスの日间土心に母にか	も同大
太 隹	雌
腹膜大食細胞への影響	網膜内皮系固定大食細
	胞機能活性変化
血液凝集反応力価の低	血液凝集反応力価の低
下	下
毒性所見なし	毒性所見なし
	腹膜大食細胞への影響血液凝集反応力価の低下

表 2 マウス 90 日間亜急性毒性試験

慢性毒性試験及び発がん性試験

a.78 週間慢性毒性試験/発がん性併合試験(マウス)

B6C3F₁マウス(雌雄、投与群 50 匹、対照群 20 匹)における 1,1,2-トリクロロエタン(時間加重平均 195、390mg/kg 体重/日、溶媒:コーンオイル)の78 週間(週 5 日)の経口投与試験を行った。各投与群で認められた毒性所見を表 3 に示す。

呼吸器、循環器、消化管、肝臓、腎臓、脾臓及び骨髄、筋・骨格系、皮膚及び眼等の組織の病理組織学的検査では、非腫瘍性病変の有意な増加は認められなかった。免疫系の臓器・組織にも非腫瘍性病変の発生増加は認められなかった(参照 15)。

この試験は、脾臓、胸腺、及びリンパ節に対する病理組織学的検査を含むも

のであるが、免疫毒性に関する特異的試験は行わなかった(参照2)。

また、発がん性については、雌雄の肝細胞がんの発生率において、用量依存性の有意な増加が認められた(雄:無処置対照群で 12%、溶媒対照群で 10%、低用量群で 37%、及び高用量群で 76%雌:同じく 10%、0%、33%、及び 89%)。 さらに、高用量群で雌雄に副腎褐色細胞腫の発生率が有意に増加した。これらの病変は対照群や低用量群には見られなかったが、高用量群の雄で 17%、雌で 28%に発生した(参照 15)。

ATSDR では、最小発がん量 (Cancer Effect Level: CEL) を 195 mg/kg 体重/日としている (参照 2)。

表 3 マウス 78 週間慢性毒性 / 発がん性併合試験

投与群	雄	雌
時間加重平均	副腎褐色細胞の発生率	
390 mg/kg 体重/日	増加	肝細胞がんの発生率増
時間加重平均	肝細胞がんの発生率増	加
195 mg/kg 体重/日	加	

b.78 週間慢性毒性試験/発がん性併合試験(ラット)

Osborne-Mendel ラット(雌雄、投与群 50 匹、対照群 20 匹)における 1,1,2-トリクロロエタン(時間加重平均 46、92 mg/kg 体重/日、溶媒:コーンオイル)の 78 週間(週 5 日)の経口投与試験を行った。呼吸器、循環器、消化管、肝臓、腎臓、脾臓及び骨髄、筋・骨格系、皮膚及び眼等の組織の病理組織学的検査では、非腫瘍性病変の有意な増加は認められなかった。免疫系の臓器・組織にも非腫瘍性病変の発生増加は認められなかった(参照 15)。

この試験は、脾臓、胸腺及びリンパ節に対する病理組織学的検査を含むものであるが、免疫毒性に関する特異的試験は行わなかった(参照2)。

雌雄の腫瘍発生に有意な増加はなかった(参照15)。

c.2年間発がん性試験(ラット)

Sprague-Dawley ラット (雌雄、各投与群 50 匹)における 1,1,2-トリクロロエタン (15.37、46.77 μmol = 分子量から換算 2.05、6.24 mg、溶媒: DMSO)の 2 年間 (週 1 回)の皮下投与試験を行った。各投与群で認められた毒性所見を表 4 に示す。

無処置対照群と比較して、雌雄の高用量群で肉腫(多くは四肢)の合計数が増加した(参照 16)。

表 4 ラット 2 年間発がん性試験

投与群	雄	雌
46.77µmol	肉腫の合計数の増加	肉腫の合計数の増加
(分子量換算 6.24 mg)		
15.37µmol	毒性所見なし	毒性所見なし
(分子量換算 2.05 mg)		

IARC(参照4)では、出典は明記していないが、SDラットの2年間皮下投与試験の結果について、「腫瘍発生率の増加はなかった」と判断している。

神経毒性試験

a . 単回神経毒性試験(マウス)

CD-1 マウス(雌雄、全投与群の合計:雌雄各 56 匹)における 1,1,2-トリクロロエタン($200 \sim 600$ mg/kg 体重を 7 群、水溶液)の単回経口投与試験が行われた。投与群で認められた毒性所見を表 5 に示す。

450 mg/kg 体重以上の投与群のすべてのマウスが、投与後 1 時間以内に鎮静した(参照 12)。

表 5 マウス単回神経毒性試験

投与群	雄	雌
450 mg/kg 体重以上	鎮静	鎮静

b. 単回神経毒性試験(マウス)

CD-1 マウス (雌雄)における 1,1,2-トリクロロエタン (溶媒:水)の強制経口投与試験を行った。運動障害の ED_{50} (実験動物の半数に運動障害を発生させる量)は、128 mg/kg 体重であった。影響のピークは、投与後 5 分以内に生じた (参照 17)。

c.7日間神経毒性試験(マウス)

CD-1 マウス(雄)において、1,1,2-トリクロロエタン(3、10、30、100、300 mg/kg 体重、溶媒:水)の強制経口投与試験を行った。飲水中に添加したサッカリンに対し、用量依存性の有意な味覚嫌悪を示した。 ED_{50} は 32 mg/kg 体重と算出された(参照 18)。

ATSDR では、この影響における NOAEL は 30 mg/kg 体重であり、LOAEL は 100 mg/kg 体重としている (参照 2)。

d. 単回神経毒性試験(イヌ)

イヌにおける 1,1,2-トリクロロエタン ($0.1 \sim 0.5~\text{mL/kg}$ 体重 (ATSDR 換算 $144 \sim 722~\text{mg/kg}$ 体重) 溶媒:不明) の経口投与試験を行った。0.2~mL/kg 体重 (ATSDR 換算 289~mg/kg 体重) 以上で、 $12~\text{分から}~50~\text{分後に傾眠状態及び協調運動障害を生じた (参照 <math>13~\text{)}$ 。

1,1,2-トリクロロエタンを飲水投与した亜急性試験によって、神経学的影響は

報告されていない(参照2)。

生殖・発生毒性試験

妊娠8~12日生殖毒性試験(マウス)

ICR/SIM マウスにおける 1,1,2-トリクロロエタン (350 mg/kg 体重/日、溶媒: コーンオイル) の妊娠 8~12 日の経口投与試験を行った。

吸収同腹児数または 1 腹あたりの平均生存児数への影響は認められなかった。また、新生児(1~3日)生存率(%)にも影響は認められなかった。350 mg/kg体重/日の用量は、有意な母動物の体重減少及び、最大で 10%の母動物死亡率をもたらすことが予想される最小の毒性用量であった。本試験で母動物の体重は影響を受けなかったが、若干の母動物の死亡が発生した(参照 19)。

ATSDR では、この試験における児に対する影響の NOAEL を 350 mg/kg 体 重/日としている (参照 2)。

遺伝毒性試験

1,1,2-トリクロロエタンの *in vitro* 及び *in vivo* の試験結果を表 6、7 に示す。 a . *in vitro* 試験

復帰突然変異試験の一試験において TA100、TA104 及び TA97 株で陽性の結果が得られたが、他の複数の試験ではいずれも陰性であった。DNA 損傷試験では、ヒト培養リンパ球において、代謝活性の有無に関わらず陽性が示された。また、小核試験では、ヒト培養リンパ球において代謝活性化なしでは弱い陽性が示され、代謝活性有りでは陰性であった(参照 4)。異数性誘発試験では、Aspergillus nidulansP1 において、陽性であった。その他、前進突然変異試験及び有糸分裂組換え試験では、いずれも陰性であった。

表 6 1,1,2-トリクロロエタンの *in vitro* 遺伝毒性試験結果 (参照 2)

試験	対象	結果	果 a	用量 b	著者
		代謝活性	代謝活性	(LED または	
		化 無	化有	H1D)	
前進突然変異(Ar2)	Salmonella typhmurium	-		500	Roldan-Arjona et al.
試験					1991
復帰突然変異試験	S. typhmurium TA100	_ c	-	4000	Barber et al. 1981
	S. typhmurium TA100	+	-	5	Stobel & Grummt
					1987
	S. typhmurium TA100	_ d	-	NG	Mersch-Sunderman
	S. typhmurium TA102	_ c	-	NG	1989
	S. typhmurium TA104	-	+	5	Stobel & Grummt 1987
	S. typhmurium TA1535	-	-	3000	Rannug et al. 1978
	S. typhmurium TA1535	_ c	-	4000	
	S . typhmurium TA98	_ c	-	4000	Barber et al. 1981
	S . typhmurium TA98	-	-	500	Stobel & Grummt 1987
	S . typhmurium TA98	_ d	-	NG	Mersch-Sunderman 1989
	S . typhmurium TA97	+	+	5	Stobel & Grummt 1987
	S . typhmurium TA97	_ d	-	NG	Mersch-Sunderman 1989
有糸分裂組換え試 験	Aspergillus nidulans P1	-	NT	1000	C
有糸分裂異数性試	A. nidulans P1	+	NT	1000	Crebelli et al. 1988
験		(+)6	NIT	9.5	To at al 1005
細胞形質転換試験	BALB/c-3T3 細胞	(+)c	NT	25	Tu et al. 1985
DNA 損傷試験	ヒト培養リンパ球	+	+	333	Tafazoli &
小核試験	ヒト培養リンパ球	(+)	-	133	Kirsch-Volders 1996

a) +:陽性, (+):弱い陽性, -:陰性, NT:試験せず

b . in vivo試験

1
 2
 3

4

5

6

7 8 1,1,2-トリクロロエタンをラット及びマウスに腹腔内投与した後に、DNA、RNA との結合が認められた。経口投与されたマウス肝細胞に強い S 期の誘導が認められたが、マウス及びラットの肝細胞に UDS は認められなかった (参照 4)。

 $^{^{\}text{b}}$) $\,$ LED: lowest effective dose, $\,$ HID: highest effective dose(µg/mL) , NG: not given

c) 密閉容器使用 d) 密閉容器使用で陰性.標準の試験法またはスポットによる.

表 7	1.1.2-トリ	Jクロロエタンの in	vivo遺伝毒性試験結果
-----	----------	-------------	--------------

	1,1,2 1 2 2 1 1 1 2 2 1			2 (N-H > 1 4
試験	対象	結果 a	用量 b	著者
			(LED または	
			H1D)	
UDS 試験	Fischer 344 ラット肝細胞	-	1000po x 1	Mirsalis et al. 1989
	B6C3F1 マウス肝細胞	-	1000po x 1	(参照2)
DNA/RNA/タンパクへの	BALB/c マウス肝,腎,肺,胃	+	0.8ip × 1	(参照7)
結合試験	Wistar ラット肝,腎,肺,胃	+	0.8ip × 1	
S期合成誘導試験	マウス肝細胞	+	500po × 1	Mirsalis et al. 1989
				(参照2)

- a) +: 陽性. -: 陰性
- b) LED: lowest effective dose, HID: highest effective dose (mg/kg 体重/日) po: 経口投与, ip: 腹腔内投与
- (3)ヒトへの影響

3 報告なし

4 5

6

7

9

10

11

12

1

- 2. 国際機関等の評価
- (1) International Agency for Research on Cancer (IARC)
- 8 グループ 3:ヒトに対する発がん性について分類できない。
 - 1,1,2-トリクロロエタンの発がん性に関する疫学データはなく、実験動物での証拠*は限られている(参照4)
 - *雌雄の B6C3F1 マウス及び OM ラットの 2 年間経口投与試験〔出典の記載がないが NCI(参照 15)と思われる〕、SD ラットの 2 年間皮下投与試験結果〔出典明記なし〕。

131415

- (2) Joint Expert Committee on Food Additives (JECFA) Monographs and Evaluations
- 17 評価書なし

18 19

16

- (3)WHO飲料水水質ガイドライン
- 20 ガイドライン値なし。(~第3版)

- 22 (4)米国環境保護庁(US EPA)
- 23 Integrated Risk Information System (IRIS) (参照3)
- 24 EPA/IRIS では、化学物質の評価を、TDI に相当する経口リファレンスドース(経
- 25 口 RfD)として慢性非発がん性の情報を提供している。また、もう一方で、発がん
- 26 影響について、発がん性分類についての情報を提供し、必要に応じて、経口暴露に
- 27 よるリスクについての情報を提供している。
- 28 経口 RfD

影響 (Critical Effect)	用量	不確実係 数(UF)	修正係数 (MF)	参照用量 (RfD)
血清生化学値	NOAEL: 20 mg/L (飲水中) (雌 3.9 mg/kg 体重/日)	1000 **	1	4×10 ⁻³ mg/kg 体重/
マウス亜慢性飲水投与試験	0 0 1			日 日
(参照 27,17)	LOAEL: 200 mg/L(飲水中)			
	(44 mg/kg 体重/日)			

^{**} 種差×個体差×中期間の試験結果から生涯への外挿(10)

4

5

6

7

8

1

発がん性

発がん性分類

米国 EPA は、ヒトの発がん性データがなく実験動物での限られた証拠〔1 系統 のマウス(B6C3F₁)での肝細胞がん及び副腎褐色細胞腫が認められ、ラットで は発がん性が認められていないこと〕により、1,1,2-トリクロロエタンを「グル ープ C」(ヒト対して発がんの可能性がある: possible human carcinogen)に分 類した。さらに、1,1,2-トリクロロエタンは、ヒトに対して発がんの可能性の高 い物質である1.2-ジクロロエタンと構造的に関連があるとしている。

10 11 12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

経口暴露によるリスク

EPA は 1.1.2-トリクロロエタンによる発がんには閾値がないと仮定し、低濃度 暴露における過剰発がんリスクを数理モデル (線形マルチステージモデル) によ り推定した。 その際、 EPA は B6C3F1 マウスを用いた 1,1,2-トリクロロエタンの 経口投与試験(参照 15)の肝細胞がんのデータに基づいて、発がんリスクの定 量的評価を行った。その結果、当該物質に体重 1kg あたり 1mg の用量で生涯に わたり経口暴露した時にこの暴露に関係してがんが生じるリスク(経口傾斜係 数:Oral Slop Factor、高い方の95%信頼限界で表す)は7.5×10-2となった。

この値に基づき、成人体重を 70kg、1 日の飲水量を 2L と仮定して、飲料水ユ ニットリスク(当該物質を 1L あたり 1µg 含む飲料水を生涯にわたり摂取すると きの過剰発がんリスク)を算出したところ、1.6×10-6となる。また、この値に基 づき、摂取したときに一定のリスクレベルとなる飲料水中の濃度を算出すると下

表のようになる。 24

- ・経口傾斜係数 (Oral Slope Factor) : 5.7×10-2 / mg/kg 体重/日
- ・飲料水ユニットリスク: 1.6×10-6/µg/L
- ・リスクレベルと飲料水中濃度

リスクレベル	濃度
10-4 (1/10,000)	60 μg/L
10-5 (1/100,000)	6 μg/L
10-6 (1/1,000,000)	0.6 μg/L

28 29

30

31

(5)我が国における水質基準の見直しの際の評価(参照1)

1.1.2-トリクロロエタンは、ヒトの発がん性に関する疫学情報はなく、実験動

物に対する発がん性情報も限られたものしかなく、IARCでは、グループ3(ヒト発がん性に分類できない)に分類されている(参照4)。

日本及び EPA (参照 3) においては、NCI (参照 15) のマウスの肝発がん性に基づいてマルチステージモデルを用いた 10-5 発がんリスクとして:0.006 mg/L を算出した。なお、ラットでは発がん性は認められていない。

その後、評価値算出にかかわる新たな毒性情報は報告されていない。

平成4年の専門委員会以降、評価値算出にかかわる新たな知見は報告されていないので、評価値としては、現行値の基準値:0.006 mg/L を維持することが適切であると考えられる、とした。

表 8-1	各評価機関等による 1,1,2-トリクロロエタンの TDI 法によるリスク評価

根拠	NOAE	L LOAEL g/kg 体重/日)	不確実係数	TDI g/kg 体重/日)
WHO/DWGL 第3版 ガイドラ	イン値なし	5 NS (17 == 11)	34)	y 115 (11° ± 11°)
EPA/IRIS マウスを用いた 投与試験 血清生化学値 (参照 27,17)	90 日間の飲水 3.9	(雌) 44(雌	韭) 1000 10(種 差)× 10(個 体 差) ×10(亜急性	4

試験 a)

水道水 TDI を設定せず。

a: EPA/IRIS の原著(参照3)では、中期間試験との記載

表 8-2 モデル外挿法による過剰発がんリスクの定量的評価

	リスクレベル	濃度 (μg/L)	用量 (μg/kg 体重/日)
EPA/IRIS	10 ⁻⁴ (1/10,000)	60	1.75
	10 ⁻⁵ (1/100,000)	6	0.175
	10-6 (1/1,000,000)	0.6	0.018
水道水	10-5 (1/100,000)	6	0.25^{a}

 a 成人体重 50kg、1 日の飲水量を 2L と仮定し、飲料水ユニットリスク : 1.6×10^{-6} / μ g/L(当該物質を 1L あたり 1μ g 含む飲料水を生涯にわたり摂取するときの過剰発がんリスク)、経口傾斜係数 : 4.0×10^{-2} / μ g/kg 体重/日及び用量を算出。

3.暴露状況

平成 16 年の水質管理目標設定項目等基準化検討調査における 1,1,2-トリクロロエタンの水道水の検出状況(表 9)は、原水及び浄水において、すべて水道法水質管理目標値(0.006 mg/L)の 10%以下であった。

表 9 水質管理目標設定項目等基準化検討調査(原水・浄水)での検出状況(参照 20)

				基準値に対する度数分布表										
年度	浄水 / 原水 の別	水源種別	測定 地点 数	10% 以下 ~ 0.0006 (mg/L)	10% 超過 20% 以下 ~ 0.0012 (mg/L)	20% 超過 30% 以下 ~ 0.0018 (mg/L)	30% 超過 40% 以下 ~ 0.0024 (mg/L)	40% 超過 50% 以下 ~ 0.0030 (mg/L)	50% 超過 60% 以下 ~ 0.0036 (mg/L)	60% 超過 70% 以下 ~ 0.0042 (mg/L)	70% 超過 80% 以下 ~ 0.0048 (mg/L)	80% 超過 90% 以下 ~ 0.0054 (mg/L)	90% 超過 100% 以下 ~ 0.0060 (mg/L)	100% 超過 0.0061 (mg/L)
	原水	全体	1095	1095	0	0	0	0	0	0	0	0	0	0
		表流水	401	401	0	0	0	0	0	0	0	0	0	0
		ダム、湖沼水	107	107	0	0	0	0	0	0	0	0	0	0
		地下水	585	585	0	0	0	0	0	0	0	0	0	0
H16		その他	2	2	0	0	0	0	0	0	0	0	0	0
	浄水	全体	862	862	0	0	0	0	0	0	0	0	0	0
		表流水	292	292	0	0	0	0	0	0	0	0	0	0
		ダム湖沼	92	92	0	0	0	0	0	0	0	0	0	0
		地下水	450	450	0	0	0	0	0	0	0	0	0	0
		その他	28	28	0	0	0	0	0	0	0	0	0	0

. 食品健康影響評価

1,1,2-トリクロロエタンは、遺伝毒性試験の in vitro 試験では異数性誘発試験、細胞形質転換試験、DNA 損傷試験及び小核試験で陽性が疑われたが、前進突然変異試験、有糸分裂組換え試験では陰性であった。また、復帰突然変異試験では、ほとんどの試験で陰性の結果が得られており、変異原性の可能性は低いと考えられた。 in vivo 試験においては、DNA 及び RNA との結合が認められたが、UDS 試験では陰性であり、DNA 修復の対象となるような DNA 損傷は認められなかった。このことから、現時点では、遺伝毒性を示す十分な証拠はなく、遺伝毒性の可能性は低いと考えられた。一方、発がん性試験では、高用量でマウスで肝細胞と副腎皮質細胞に対する発がん性が認められたが、いずれも高用量での発生であり、遺伝毒性試験の成績から発生機序が遺伝毒性に起因するとは考え難く、遺伝毒性発がん物質の可能性は低いと考えられた。

以上、1,1,2-トリクロロエタンに遺伝毒性を示す十分な証拠がなく、遺伝毒性発がん物質の可能性が低いため、TDIを設定することが可能であると判断した。

各試験の毒性学的影響を表 10 に示した。

毒性学的影響において最も低い用量で被験物質投与の影響が認められた指標は、雌マウスを用いた 90 日間の飲水投与試験による血清生化学値の用量依存性の変化及び免疫系への影響であり、NOAEL が 3.9mg/kg 体重/日であった。これを根拠として、種差 10、個体差 10、亜急性毒性 10 の安全係数 1,000 で除した 3.9μg/kg 体重/日を耐容一日摂取量(TDI)と設定した。

TDI

3.9 μg/kg 体重/日

1	(TDI 設定根拠)	亜急性毒性試験
2	(動物種)	マウス
3	(期間)	90 日間
4	(投与方法)	飲水投与
5	(NOAEL 設定根拠	L所見) 血清化学値の用量依存性の変化及び免疫系への
6		影響
7	(無毒性量)	3.9 mg/kg 体重/日
8	(不確実係数)	1,000(個体差、種差各々:10、亜急性毒性試験:10)
9		
10		
11		
12	<参考>	
13	水質管理目標値の 10%で	『ある濃度 0.0006 mg/L の水を体重 53.3*kg の人が 1 日あ
14	たり 2 L 摂水した場合、1	日あたり体重 1kg の摂取量は、0.02 μg/kg 体重/日と考え
15	られる。この値は、TDI 3.	9 μg/kg 体重/日の 195 分の 1 である。
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		

*

^{*}国民栄養の現状 - 平成 10 年、11 年、12 年国民栄養調査結果 - 健康・栄養情報研究会編、2000 年、2001 年、2002 年 (平成 10 年、11 年、12 年の 3 ヶ年の平均体重)

表 10 各試験における NOAEL 等

	チェルケィエ	<u> </u>	衣 10 古武衆にのける 1		1045	/++ +~
	動物種・	試験種	エンドポイント	NOAEL	LOAEL	備考
号				mg/kg 体重/	mg/kg 体重/	
	性・			日	日	
	動物数/群					
亜	マウス	14 日間強	血液, SGPT レベルに影響な	38(T)		投与量にお
	CD-1 雌	制経口投	l L	, ,		いて、毒性
	雄 11-12	与 溶媒:	ヒツジ赤血球に対する液性/			認められ
	~ _ · · · _	Emulphor	細胞性免疫反応に影響なし			ず。
	マウス	90 日間飲	Ht・Hb の軽度減少(雌 384)、			, , , , , , , , , , , , , , , , , , ,
	CD-1 雌	水投与	白血球軽度増加(雌384)、プロ	雌 3.9(A)		
	-	小拉一	` ,	` '	μ Α 44/ Λ \	
	雄 32-48		トロンビン時間減少(雌 44 -)、	雄 4.4(A)	雌 44(A)	
			GSH 減少(雄 46-)、GSH 増加・		雄 46(A)	
			ALT 増加(雌 384)、CYP、アニリン			
			ヒドロキシラーゼ活性の減少(雌			
			44-)、脾臓絶対重量増加(雌			
			384)			
				雌 3.9	雌 44(T)	
				雄 4.4(T)	雄 46	
	マウス	90 日間飲	血球凝集反応力価の用量依	, ,		
	CD-1 雌	水投与	存的低下(雄 46,雌 44)、腹膜			
	雄	5 1022 5	大食細胞への影響(雄 305)、			
	ч		網膜内皮系固定大食細胞機			
			能活性変化(雌 384)			
倡	マウス	週 5 日 78		毒性影響:		投与量にお
IX	B6C3F1	週間強制	いて毒性影響なし	390 (T)		いて、毒性
	雌雄 50	経口投与		390 (1)		認められ
			(ただし発がん性あり)			
	(対照	+13 週観察				ず。
	20)	溶媒:コーンオ				
		加		20(T)		
	ラット	週 5 日 78		92(T)		投与量にお
	OM 雌雄	週間強制	いて毒性影響なし			いて、毒性
	50(対照	経口投与				認められ
	20)	+35 週観察				ず。
		溶媒:コーンオ				
		イル				
神	マウス	強制経口	サッカリンに対する用量依存的な	30 mg/kg	100 mg/kg	
	CD-1 雄	投与	味覚嫌悪	(T)	(T)	
	7	溶媒:水	$(ED_{50} = 32 \text{ mg/kg})$	` ′	, ,	
4	マウス	妊娠 8-12	母動物体重減少(350).	350 (T)		
	ICR/SIM	日強制経	1 腹あたりの吸収児数・平均			
	雌 30	口投与	生存児数、新生児生存率に			
	MH JU					
<u>_</u>	,再会州丰			<u> </u> ≐-+1 E-2	 一片 枯、 珍	┃ ═┟┼ ╘ ┼⋿ ╱
曲	:亜急性毒	溶媒:水 性試験 慢	影響なし. : 慢性毒性試験 神:神経毒性	<u> </u> 試験 生:	 生殖・発生書	

亜:亜急性毒性試験 慢:慢性毒性試験 神:神経毒性試験 生:生殖・発生毒性試験

A:著者 T:ATSDR 無印:食品安全委員会

1 2 2

3

本評価書中で使用した略号については次にならった

ALT アラニンアミノトランスフェラーゼ,グルタミン酸ピルビン酸トランス

[^] アミナーゼ

AP、ALP アルカリフォスファターゼ

AST アスパラギン酸アミノトランスフェラーゼ ,グルタミン酸オキサロ酢酸

¹³¹ トランスアミナーゼ

AUC 血中薬物濃度 - 時間曲線下面積

BUN 血液尿素窒素

BMDL₁₀ 10%の影響に対するベンチマーク用量の 95%信頼下限値

CHL チャイニーズハムスター肺由来細胞株

CHO チャイニーズハムスター卵巣由来細胞株

C_{max} 最高血(漿)中濃度

COHb 一酸化炭素ヘモグロビン

CPK クレアチンフォスフォキナーゼ

CYP シトクロム P 4 5 0

GSH グルタチオン

Hb ヘモグロビン(血色素)

Ht ヘマトクリット

LC₅₀ 半数致死濃度

LD₅₀ 半数致死量

LDH 乳酸脱水素酵素

LOAEL 最小毒性量

LOEL 最小作用量

MCV 平均赤血球容積

MLA マウスリンフォーマ試験

NOAEL 無毒性量

NOEL 無作用量

T_{1/2} 消失半減期

TBIL 総ビリルビン

TDI 耐容一日摂取量

TG トリグリセリド

T_{max} 最高血(漿)中濃度到達時間

UDS 不定期 DNA 合成

- 1 <参照>
- 2 1 厚生労働省:水質基準の見直しにおける検討概要 平成15年4月、厚生科学審議会、生活環境
- 3 水道部会、水質管理専門委員会 2003
- 4 2 ATSDR: Toxicological Profile for 1,1,2-trichloroethane. U.S. Department of Health and
- 5 Human Services, Public Health Service, Agency for Toxic Substances and Disease
- 6 Registry 1989
- 7 3 U.S. EPA (Environmental Protection Agency) Integrated Risk Information System (IRIS).
- 8 1,1,2-Trichlroethane (CASRN 79-00-5) Oral RfD Last Revised 02/01/1995,
- 9 Carcinogenicity Assessment for Lifetime Exposure Last Revised 02/01/1994, Washington,
- DC.1994/1995; Available online at http://www.epa.gov/iris/
- 4 IARC 1,1,2-Trichloromethane. In: IARC monographs on the evaluation of the
- carcinogenic risk of chemicals to humans. Vol. 71. Re-evaluation of some organic
- chemicals, hydrazine and hydrogen peroxide (part three). Lyon, France, International
- 14 Agency for Research on Cancer 1999; 1153-1161
- 5 Yllner S: Metabolism of 1,1,2-trichloroethane-1,2-(14)C in the mouse. Acta Pharmacol
- 16 Toxicol 1971; 30:248-256
- 6 Ivanetich KM, Van Den Honert LH: Chloroethanes: Their metabolism by hepatic
- cytochrome P-450 in vitro. Carcinogenesis 1981; 2: 697-702
- 7 Mazzullo M, Colacci A, Grilli S, Prodi G, Arfellini G: 1,1,2-Trichloroethane: Evidence of
- 20 genotoxicity from short-term tests. Jpn J Cant Res 1986; 77: 532-539
- 21 8 Xia L, Yu T: Study of the relationship between the hepatotoxicity and free radical
- 22 induced by 1,1,2-trichloroethane and 1,1,1-trichloroethane in rat. Biomed Environ Sci
- 23 1992; 5:303-313
- 9 Ikeda M, Ohtsuji H: A comparative study of the excretion of Fujiwara reaction-positive
- 25 substances in urine of humans and rodent given trichloro- or tetrachloro-derivatives of
- 26 ethane and ethylene. Br J Ind Med I 1972; 29:99-104
- 27 10 Takahara K: Experomental study on toxicity of trichloroethane. II. 1,1,1- and
- 28 1,1,2-trichloroethane in expired air and in urine of mice. Okayama Igakkai Zasshi
- 29 (Japanese). 1986; 98: 1091-1097
- 30 11 Smyth HF Jr, Carpenter CP, Weil CS, Pozzani UC, Striegel JA, Nycum JS:
- Range-Finding Toxicity Data: List VII. Am Ind Hyg Assoc J 1969; 30: 470-476
- 32 12 White KL Jr, Sanders VM, Barnes DW, Shopp GM Jr, Munson AE: Toxicology of 1,1,2-
- trichloroethane in the mouse. Drug Chem Toxicol 1985; 8: 333-356
- 34 13 Wright WH, Schaffer JM: Critical anthelmintic tests of chlorinated alkyl hydrocarbons

- and a correlation between the anthelmitic eficacy, chemical structure and physical
- 2 properties. Am J Hyg 1932; 16: 325-426
- 3 14 Sanders VM, White KL Jr, Shopp GM Jr, Munson AE: Humoral and cellmediated
- immune status of mice exposed to 1,1,2-trichloroethane. Drug Chetn Toxico1 1985; 8:
- 5 357-372

- 6 15 NCI: Bioassay of 1,1,2-trichloroethane for possible carcinogenicity. Report. ISS
- 7 DHEW/PUB/NIH-78-1324. NCI-CG-TR-74. PB-283337. 1978
- 8 16 Norpoth K, Heger M, Muller G, Mohtashamipur E, Kemena A, Witting C: Investigations
- 9 on metabolism and carcinogenicity of 1,1,2-trichloroethane. J Cancer Res Clin Oncol.
- 10 1988; 114(2): 158-62
- 17 Borzelleca JF. A review of volatile organic contaminant data. Proc AWWA Water Qua1
- 12 Technol Conf 1983; 225-244.
- 13 18 Kallman MJ, Lynch MR, Landauer MR: Taste aversions to several halogenated
- 14 hydrocarbons. Neurobehav Toxico1 Teratol 1983; 5: 23-27
- 15 19 Seidenberg JM, Anderson DG, Becker RA: Validation of an in vivo developmental
- toxicity screen in the mouse. Teratogen Carcinogen Mutagen 1986; 6: 361-374
- 17 20 日本水道協会:水道統計 平成 16 年度版 2005