(案)

添加物評価書

ケイ酸カルシウム

2007年5月

食品安全委員会 添加物専門調査会

目次

審議の経緯	1
食品安全委員会委員名簿	1
食品安全委員会添加物専門調査会専門委員名簿	1
ケイ酸カルシウムを添加物として定めることに係る食品健康影響	評価につい
T	2
【要約】	2
1.はじめに	3
2.背景等	3
3.添加物指定の概要	3
4.名称等	4
(1) ケイ酸カルシウム	4
(2) 上記以外のケイ素含有物質	4
5.安全性	6
(1) 体内動態	6
吸収、代謝、尿中排泄	6
吸収の機構	8
ケイ素の血中の化学形、血中濃度及びその変動	8
尿中ケイ素濃度のバックグランド値	9
ケイ酸塩の物質収支に関する研究	9
シリカ尿路結石症の生成機構	9
組織内分布	10
(2) 毒性	10
急性毒性	
反復投与毒性 <u>及び発がん性</u>	
- 発がん性	
— 生殖発生毒性	
— 遺伝毒性	
一般薬理	
ヒトにおける知見	
6.国際機関等における評価	
(1) JECFA における評価	
(2) 米国食品医薬品庁 (FDA) における評価	
(3)- <mark>欧州連合(EU)<mark>欧州食品科学委員会(SCF)</mark>における評価</mark>	
7 . <u>摂取量の推定一日摂取量の推計等</u>	
(1) 海外における使用状況と一日推定摂取量	
(2) 日本における一日推定摂取量	
【引用文献】	<u>1918</u>
【ケイ酸カルシウム安全性試験結	
果】 <u>25</u> 27	

1	審議の経緯	
2 3		生労働大臣から添加物の指定に係る食品健康影響 価について要請、関係書類の接受
4		107回食品安全委員会(要請事項説明)
5		41回添加物専門調査会
6	平成19年3月23日 第	
7		43回添加物専門調査会
8 9	<u>平成19年5月29日 第</u>	<u>44回添加物専門調査会</u>
10	食品安全委員会委員	
11	平成18年6月30日まで	平成18年12月20日まで
	寺田 雅昭(委員長)	寺田 雅昭(委員長)
	寺尾 允男(委員長代理)	見上 彪 (委員長代理)
	小泉 直子	小泉 直子
	坂本 元子 中村 靖彦	長尾 拓 野村 一正
	本間清一	畑江 敬子
12	見上彪	本間 清一
13	平成18年12月21日から	
	見上 彪 (委員長)	
	小泉 直子(委員長代理*)	
	長尾が拓	
	野村 一正 畑江 敬子	
	廣瀬 雅雄**	
	本間清一	
	*平成19年2月1日から	
	**平成19年4月1日から	
14		*****
15	食品安全委員会添加物専門調査会	等的多具
16 17	福島 昭治(座 長) 山添 康(座長代理)	
18	石塚 真由美	
19	井上 和秀	
20	今井田 克己	
21	江馬 真	
22 23	大野 泰雄 久保田 紀久枝	
23 24	中島恵美	
25	西川、秋佳	
26	林 真	
27	三森国敏	
28	吉池 信男	

1 1.はじめに

- 2 ケイ酸カルシウムは、ケイ酸塩類の1つであり、その構成成分であるケイ素はほ
- 3 とんど全ての動植物及び水に含まれている。これらの品目は粉末状または顆粒状食
- 4 品の固結防止剤、錠剤・カプセル食品の製造用剤(賦形剤、分散剤)として、広く
- 5 欧米諸国などにおいて食品添加物として用いられている。ケイ酸塩類としては、我
- 6 が国では微粒二酸化ケイ素等が既に指定されている。
- 7 米国では、一般に安全とみなされる物質(GRAS 物質)として、固結防止等の目
- 8 的で適正使用規範 (GMP; Good Manufacturing Practice) のもと、卓上塩に対し 2%
- 9 以下、ベーキングパウダーに対し5%以下等の基準に基づき、使用が認められている
- 10^{40} 。ケイ酸カルシウムは、直接添加物としても食品への使用が認められている $^{5)}$ 。
- 11 また、欧州連合(EU)では、スライス又は裁断したプロセスチーズ、プロセスチー
- 12 ズ類似品及びチーズ類似品に対して 10 g/kg 以下、食塩及び代替塩に対して 10 g/kg
- 13 以下、dietary food supplement に対して必要量等の基準に基づき、使用が認められて
- 14 いる⁴⁾。

15

16 2.背景等

- 17 厚生労働省は、2002年7月の薬事・食品衛生審議会食品衛生分科会での了承事項
- 18 に従い、 FAO/WHO 合同食品添加物専門家会議(JECFA)で国際的に安全性評価
- 19 が終了し、一定の範囲内で安全性が確認されており、かつ、 米国及び EU 諸国等
- 20 で使用が広く認められていて国際的に必要性が高いと考えられる食品添加物 46 品
- 21 目については、企業等からの指定要請を待つことなく、指定に向けた検討を開始す
- 22 る方針を示している。この方針に従い、アルミノケイ酸ナトリウム、ケイ酸カルシ
- 23 ウム、ケイ酸カルシウムアルミニウム及びケイ酸マグネシウムについて評価資料が
- 24 まとまったことから、食品添加物指定等の検討を開始するに当たり、食品安全基本
- 25 法に基づき、厚生労働省から食品安全委員会に食品健康影響評価が依頼されたもの
- 26 である。(2005年8月15日、関係書類を接受)
- 27 その後、第 67 回 JECFA (2006 年 6 月) においてアルミニウムの暫定週間耐容摂
- 28 取量 (PTWI) が見直されたことに伴い、食品安全委員会では、第 41 回添加物専門
- 29 調査会(2007年2月28日)において、アルミニウムを含む2品目(アルミノケイ
- 30 酸ナトリウム、ケイ酸カルシウムアルミニウム)については JECFA の評価レポート
- 31 等が正式に公表された段階で検討することとされ、それ以外の2品目(ケイ酸カル
- 32 シウム、ケイ酸マグネシウム)とは別に議論することとされた。
- 33 _ また、ケイ酸マグネシウムについては、厚生労働省に補足資料の提出を依頼した
- 34 ところであり、別途議論することとされた。

35

36

3.添加物指定の概要

- 37 今般、ケイ酸カルシウムの使用基準及び成分規格について検討した上で、新たに
- 38 添加物として指定しようとするものである。使用基準案は次のとおり。

- ・固結防止若しくは食品の成型に必要な場合(錠剤、カプセル食品の賦型剤等) 1 2 以外は食品に使用してはならない。食品中2%以下。但し、微粒二酸化ケイ素 を併用する場合は、併せて2%以下。 3
 - ・母乳代替食品および離乳食品に使用してはならない。

4 5

6

12 13

14

15

16 17

18

20

21 22

23

19

- 4. 名称等
- (1) ケイ酸カルシウム Calcium silicate ^{7), 24), 29), 34), 70), 74), 81)}
- 8 CAS 番号: 1344-95-2

構造式又は示性式:酸化カルシウム(CaO)と二酸化ケイ素(SiO₂)と水とが様々 9 10 いるいるな割合で結合した組成物のものの総称で、下記などの化学形態が知ら れている。 11

- ・メタケイ酸カルシウム (Calcium metasilicate) CaSiO₃ (式量 116.17)
- ・オルトケイ酸カルシウム (Calcium orthosilicate) Ca₂SiO₄ (式量 172.25) 窯業での慣用名 ケイ酸二石灰
- ・ケイ酸三カルシウム (Tricalcium silicate) Ca₃SiO₅ (式量 228.32) 窯業での慣用名 ケイ酸三石灰

性状等:本品は、白~淡黄色の微粉末で、吸湿性がある⁴。水、エタノールに不 溶でありアルカリとは反応しない。フッ化水素酸(侵される)以外の酸には比 較的安定である 1.。

含量:本品は、二酸化ケイ素 SiO₂ として 50.0~95.0%, 酸化カルシウム CaO とし て 3.0~35.0%を含む ²⁹⁷)。

なお、組成物の酸化カルシウムについては JECFA において「ADI not limited」 と評価されており、かつ、わが国では既存添加物である焼成カルシウム(主成分 は酸化カルシウム)として使用が認められている化学物質である。

24 25 26

- (2) 上記以外のケイ素含有物質 ^{1), 6), 8), 9), 16), 25), 26), 30), 34), 70), 74), 81), 82), 83)}
- 27 本評価書に掲載される上記以外のケイ素を含有する物質について、通称名、由 28 来、化学組成等を以下に記す。

29

31

- ケイ酸マグネシウム(合成品) Magnesium silicate(Synthetic)^{9), 25)} 25) 34), 70), 74), 81) 30 CAS 番号: 1343-88-0
- 性状:本品は、白色で微細な無臭の粉末である⁹。水、エタノールに不溶であ 32 リ、容易に無機酸(鉱酸)で分解する⁹⁾。 33
- 含量:本品は、強熱後、酸化マグネシウム (MgO = 40.30) として 15.0%以上、 34 35 二酸化ケイ素として 67.0%以上を含む ^{9).25)}。

36

37 三ケイ酸マグネシウム (Magnesium trisilicate、2MgO・3SiO2・XH2O) は、化 学形態上はケイ酸マグネシウムの一種であるが、成分規格上異なる物質であり、 38

1	評価依頼品目であるケイ酸マグネシウムに含まれない。
2	
3	アルミノケイ酸ナトリウム Sodium aluminosilicate ^{6),26),30), 34), 70)}
4	(別名:ケイ酸アルミニウムナトリウム)
5	CAS 番号:1344-00-9
6	構造式又は示性式:ケイ酸塩のケイ素の一部がアルミニウムで置換されている
7	組成物である。一般式は、 $xNa_2O \cdot yAl_2O_3 \cdot zSiO_2 \cdot nH_2O$ で表わされる(x 、 y 、
8	z の比率は通常 1:1:13)。以下の天然物及び合成品がある。
9	・オルトケイ酸アルミニウムナトリウム (Sodium aluminium orthosilicate)
10	NaAlSiO4(式量 142. <mark>0</mark> 6)、別名 カスミ石
11	・ソウチョウ石(Sodium aluminium silicate)
12	Al ₂ O ₃ ・Na ₂ O・6SiO ₂ (式量 524.48)
13	性状等:本品は、白色の微粉末又は顆粒である [⊷] 。水、エタノールに不溶であ
14	り、一部、強酸、強アルカリ溶液に溶解する [©] 。
15	含量:本品を乾燥したものは、二酸化ケイ素 SiO_2 として $66.0 \sim 76.0\%$ 、酸化ア
16	ルミニウム Al_2O_3 として $9.0 \sim 13.0\%$, 酸化ナトリウム Na_2O として $4.0 \sim 7.0\%$
17	を含む ²⁶⁶⁾ 。
18	
19	ケイ酸カルシウムアルミニウム Aluminium calcium silicate 8), 30), 34), 70)
20	CAS 番号: 1327-39-5
21	構造式又は示性式:多くの化学形態が知られている。一般式は wNa2O・xCaO・
22	$yAl_2O_3 \cdot zSiO$ で表わされる。一般的なものとして以下のアルミノジケイ酸ア
23	ルミニウムカルシウムが知られている。
24	・アルミノジケイ酸アルミニウムカルシウム(別名オルトケイ酸アルミニウ
25	ムカルシウム、Calcium aluminium orthosilicate、天然品はカイチョウ石と呼
26	ばれる) $CaAl_2Si_2O_8$ (式量 278.22)
27	ほかに、以下の2つの組成物が知られている。
28	・ジアルミノオルトケイ酸カルシウム (Calcium dialumino orthosilicate)
29	$Ca_3Al_2SiO_3$
30	・ジアルミノメタケイ酸カルシウム(Calcium dialumino metasilicate)
31	$(AlOOCa)_2SiO_3$
32	性状等:本品は、細かい白色の流動性がある粉末である。水、エタノールに
33	不溶である ⁸ 。
34	含量:本品は、二酸化ケイ素(SiO ₂)44.0~50.0%、酸化アルミニウム(Al ₂ O ₃)
35	3.0~5.0%及び酸化カルシウム(CaO)32.0~38.0%及び酸化ナトリウム(Na ₂ O)
36	0.50~4.0%を含む ⁸⁾ 。
37	

カオリン:天然物、別名 白陶土、主成分は含水ケイ酸アルミニウム。鉱物学

上カオリナイト、ナクライト等を 1 種又は 2 種類以上含む粘土 $\frac{74}{}$ 。化学組成は SiO_2 $42 \sim 46\%$ 、 Al_2O_3 $37 \sim 40\%$ 、その他、鉄、カルシウムなど微量の各種金属酸 化物を含む $\frac{74}{}$.82。 わが国では既に既存添加物名簿に収載されている。

本評価書の5.安全性 (1) 体内動態 (b) 参考のケイ酸アルミニウムで取り上げた、カオリンは、JECFA 報告において 1969 年会議では hydrated aluminium silicate と記されているので 1) 、ケイ酸アルミニウムとして扱った 4)。

— ゼオライト:天然物、別名 沸石、主成分は結晶性アルミノケイ酸塩。化学組成は $M_{2/n}O$ 、 Al_2O_3 、y SiO_2 、 wH_2O (M はアルカリ金属若しくはアルカリ土類金属、n はその価数、y は 2 若しくは 2 以上)。天然の鉱物由来品と合成物の両方ある。 食品添加物。 ゼオライト A は合成アルミノケイ酸ナトリウム $Na_{12}[(AlO_2)_{12}(SiO_2)_{12}] \cdot 27H_2O$ である $\frac{14),70),74),82)}{6}$ 。 わが国では既に既存添加物名簿に収載されている。

__ タルク:天然物、別名 滑石、カンラン岩、輝石、又はドロマイトなどから 混在物を除き、微粉末化したもの。主成分は含水ケイ酸マグネシウム。代表的 な化学組成は、SiO₂ 61.7%、MgO 30.5%、その他、微量の各種金属酸化物を含 む ^{30),70),82)}。

本評価書の5.安全性 (1) 体内動態 (b) 参考のケイ酸マグネシウムで取り上げたタルクは、JECFA 報告において magnesium silicates と記されているので 1), 16)、ここではケイ酸マグネシウムの項で扱った。わが国では既に既存添加物名簿に収載されている。

— 二酸化ケイ素: 化学組成 SiO₂。多種類の立体構造(三次元網目構造)、結晶形があり、また、天然物(例、水晶、石英、けい砂)及び合成物[例、シリカゲル、ケイ酸(メタケイ酸、H₂SiO₃)を乾燥し脱水したもの。乾燥剤として使用される]がある。二酸化ケイ素は、シリカ、ケイ酸(一定組成を有さない水和物の場合など)と呼ばれることがある 30,70,70,74,000 わが国では指定添加物リスト(食品衛生法施行規則別表第1)既に既存添加物名簿に収載されている。

 _ ケイ酸:狭義にはオルトケイ酸 $[Si(OH)_4]$ (モノマー)を指すが、その縮合酸類(分子中の酸素原子を共有してオルトケイ酸分子同士が繋がったもの、例えばメタケイ酸、 H_2SiO_3 など)を含めた名称。一般的な化学組成は、 $SiO_2 \cdot nH_2O$ で表される。縮合酸類は水に不溶であるが、オルトケイ酸は若干溶ける 30 .70。

- 36 5.安全性
- 37 (1) 体内動態
- 38 吸収、代謝、尿中排泄

(a) ケイ酸カルシウム

ネコにケイ酸カルシウム (5 g) を牛乳 20 ml と共に強制経口投与したところ、投与後 120 時間以内の尿中から 37.2 mg の SiO_2 が検出された。一方無処置群では 8.6 mg SiO_2 が検出されている 61 。

1 2

(b) 参考 (類縁物質)

(ケイ酸マグネシウム)

ネコに三ケイ酸マグネシウム (5g) を牛乳 20 ml と共に強制経口投与したところ、投与後 120 時間以内の尿中から 34.1 mg SiO_2 が検出された。またタルク (主成分:含水ケイ酸マグネシウム) (5g) を同様に投与したところ、9.2 mg SiO_2 が検出された。一方無処置群では 8.6 mg SiO_2 が検出された 61 。

ビーグル犬(雌 12 匹)に三ケイ酸マグネシウム(20 mg/kg)を単回経口投与し、 血清中のケイ素濃度を調べたが、ベースラインと比べて統計 $\frac{\textbf{y}}{2}$ 的有意差はなかった 64 。

ラット(雄 4 匹)に三ケイ酸マグネシウム(40、200、1,000 mg/kg 体重/日)を経口投与し、ケイ素の尿中排泄量を三日間にわたり調べた。投与後 24 時間以内に最高値に達し、消失半減期は 16-20 時間であった。投与量に対する尿中からの回収率は、40 mg/kg 体重/日投与群で 16.8%であった ⁶⁵⁾。

通常食下の健康な被験者二人(男 1 名、女 1 名)に三ケイ酸マグネシウムを間隔を設けて 2、5、10 g (男)、2.5、5、7.5、10 g (女)をそれぞれ単回経口投与し、尿中のケイ素を測定した。その結果からは、両者共に体内に取り込まれたケイ素の大部分が 24 時間以内に尿中に排泄されたものと考えられる。 $\frac{\text{女性に 7.5 g}}{\text{を投与した場合 7.5 g を服用した女性では、投与~24 時間以内の測定値が高く、ケイ素は投与前 24 時間以内 <math>(0.28 \text{ mmol})$ 、以下同様)、投与 $\frac{\text{24}}{\text{24}}$ 時間後 (0.48)、投与 $\frac{\text{48}}{\text{24}}$ 72 時間後 (0.32) であった $\frac{\text{48}}{\text{36}}$ 。

(アルミノケイ酸ナトリウム)

ビーグル犬 (各群雌 12 匹) にアルミノケイ酸ナトリウム (16 mg/kg 体重/日) 及びゼオライト A (合成アルミノケイ酸ナトリウム) (30 mg/kg 体重/日)を単回経口投与し、血清中のケイ素濃度を調べたところ、コントロールと比べて統計学的有意差(p<0.05)があったのはゼオライト A の平均 AUC (血中濃度 時間曲線下面積) のみであった 64 。

ラット(各群雄 4 匹)にアルミノケイ酸ナトリウム又はゼオライト A(40、200、1,000 mg/kg 体重/日)を強制経口投与し、尿中のケイ素及びアルミニウムの排泄量を三日間にわたり調べた。ケイ素の尿中からへの回収率は、40 mg/kg 投与群でアルミノケイ酸ナトリウムでは 1.2%と少なく、ゼオライト A では 12.1%と高い値が得られた。アルミニウムの尿中排泄については、両化合物共に投与後 72 時間以内にバックグランド値以上のアルミニウムは検出されなかったベースラインと比

<u>べて統計学的に有意な上昇はみられなかった</u>。一方で $\frac{P}{P}$ に有意な上昇はみられなかった。一方で $\frac{P}{P}$ にから両化合物は消化管でアルミニウムの部分とケイ酸の部分に分解された後にケイ酸部分のみが吸収されると判断される $\frac{65}{9}$ 。

1 2

(ケイ酸アルミニウム)

ネコにカオリン(ケイ酸アルミニウム)(5g)を牛乳 20 ml と共に強制経口投与したところ、投与後 120 時間以内の尿中から 7.6 mg SiO_2 が検出された。一方無処置群では 8.6 mg SiO_2 が検出されていることから投与したカオリンに含まれている二酸化ケイ素 SiO_2 は殆ど吸収されないと思われる610。

吸収の機構

固体のシリカ、例えば石英は、結晶構造を壊し水と反応したのちは僅かに水に溶け、オルトケイ酸となる $^{43), 47), 59)}$ 。オルトケイ酸の溶解度は概略 100 ppm 程度と考えられている。このケイ酸は希薄水溶液中では可溶性のモノマー(オルトケイ酸 $Si(OH)_4$)として存在するが、濃度が濃くなるにつれ、オリゴマー、ポリマー(コロイド状)といった化学形をとる $^{66), 67)}$ 。そして、この順に体内吸収は減少する $^{66)}$ 。

Yokoi と Enomoto ⁶⁶⁾はラットを用い、ケイ酸塩の腸管吸収に及ぼすケイ酸のポリマー化の影響を詳細に調べた。これによれば、ケイ酸塩は胃液中の塩酸と反応すると種類によってモノマーからポリマーまでの種々の反応物質を生じる。そしてその比率も種類により異なる。ここでモノマーを生じる割合が高ければ高いほど吸収され易い。腸で吸収されるケイ酸量は胃で生成したケイ酸の濃度に比例する。中性の溶液状態でケイ酸の濃度が増加すると、ポリマー化が進行し、吸収量は急激に減少する。このことがケイ酸の投与量を増やしても、ある一定の濃度で尿中排泄量が頭打ちになる原因である。実際にケイ酸カルシウムアルミニウムは酸と反応して可溶性の部分とコロイド状のケイ酸とに分解する³⁾。このコロイド状のケイ酸はアルカリ性の腸液に送られ、可溶性のケイ酸に変化する。またケイ酸マグネシウムも胃酸と反応してゼラチン状のケイ酸を生ずる。従って、ケイ酸塩が吸収されるか否かは胃の酸により分解されるか否かによる⁴⁸⁾。

その他、<u>ヒツジの実験による報告であるが、</u>吸収に影響を及ぼす他の因子としてケイ酸塩の溶解度がある食餌中の含量と溶解度が報告されている ^{g)48)}。ケイ酸塩は一般的には難溶—不溶性である。

ケイ素の血中の化学形、血中濃度及びその変動

ヒトが摂取したオルトケイ酸は腸管から速やかに吸収される。<u>なお、</u>血中のケイ素はモリブデン酸と反応することから、可溶性のオルトケイ酸として存在し、たんぱく質等の高分子化合物とは結合していない^{45),47)}。

向がみられている 57 。 $<u>また</u>、ケイ素の血中濃度と尿中排泄量との間には相関性が認められている<math>^{43}$ 。

尿中ケイ素濃度のバックグランド値

動物の尿中のバックグランド値は二酸化ケイ素として次のとおりである(mg $SiO_2/100 \text{ ml}$)。イヌ:0.7-2.7(n=6)、ラット:3.0-5.7(n=2);ネコ:0.3-0.8(n=6)、ウサギ:7.2-27.2(n=7)、モルモット:8.2-28.6(n=6)、ヒツジ:11.9-17.2(n=3) 60 。

ヒトにおけるケイ素の血中濃度は 100 μg/mdl 45)であり、血清濃度は 0.50 μg/mdl

^{45), 46)}、また、0.15-2 μg/ mdl (n=15) ⁵⁷⁾であるとの報告がある。二酸化ケイ素として

は、100 μg SiO₂/ mell 以下であるとの報告がある ⁵⁹⁾。ケイ素化合物を投与した時は

一時的には増加するが、比較的狭い範囲で一定に保たれている 460。一般成人の血

清中二酸化ケイ素濃度ヒトの血清中コントロール値では、加齢と共に増加する傾

健康な被験者の尿中へ排泄されるケイ素のバックグランド排泄量は 20.12 ± 6.40 mg Si/日(n=8) 56 、。 $_{-8.7\pm4.2}$ mg Si/日 56 、 $_{-8.7\pm4.2}$ mg Si/日 56 、 $_{-8.7\pm4.2}$ mg Si/日 56 、 $_{-8.7\pm4.2}$ mg Si/日 56 である $_{-8.7\pm4.2}$ co 報告がある。 また、オルトケイ酸として 10-30 mg Si(OH) $_{4}$ /日 15 である $_{-8.7\pm6.40}$ との報告もある。

ケイ酸塩の物質収支に関する研究

動物実験では投与したケイ酸塩の殆ど大部分は吸収されず、腸管を通り糞として排泄される。少量であるが、吸収された大部分のケイ素は尿中に排泄される。しかし吸収された残りのケイ素がどこに行ったのかの分布を明示してある報告はない。ラット、鳥等ケイ素を必須とする動物では僅かながら一部、大動脈、気管、腱等の結合組織に蓄積される。しかしヒトを含め一般動物では、脂溶性化学物質とは異なり低分子の水溶性オルトケイ酸としてしか吸収されないことから、肝臓、腎臓への大きな蓄積は起きない 45)。また、JECFAにより、三ケイ酸マグネシウム及びケイ酸ナトリウムを除くケイ酸塩類は、吸収されたとしても腎を介して排泄され、有害な蓄積性はないと報告されている 15)。

シリカ尿路結石症の生成機構

牧草はシリカ(二酸化ケイ素)を多く含んでおり、牧草以外の飼料を与えたウシにおける尿量は 10-20 ml/分であるのに対し、牧草を食するウシにおける尿量は 2 ml/分と少なくなり、シリカ(二酸化ケイ素)尿路結石症に罹ったウシの尿の排泄量は 2 ml/分と少なかった。このことが尿中のケイ酸濃度がを飽和(190 μg/ml)以上に高めることとなり、場合によっては 100 mg/mdl となることもある(飽和溶液の 5-10 倍)。尿量の低下の原因として牧草の低タンパク、低ミネラルが挙げられる。過飽和状態にある尿中のケイ酸のポリマー化は濃度の 2 乗に比例して進行ポリマー化し、残りのケイ酸の濃度が飽和に達するまで進行する。この時ポリマー化により生成したゾル(コロイド溶液)が電解質の存在下において凝集し、これが更にタンパク質と結合してシリカ尿路結石となると報告されているして観察

されるとしている⁴²⁾。

自然環境においてシリカ尿路結石はウシ以外にもイヌ、ラマ及びヒトコブラクダ等に現れる。またイヌの場合はコーンに由来する餌の摂取に原因があったとされている 400。ケイ酸による尿路結石は他の結石と異なり、尿中でゲル状態として析出する尿から沈殿する 490。ヒト以外の動物における結石の存在生成場所は腎臓、膀胱及び尿道である 500。これらの結石の成分は 100%ケイ酸によるものもあれば、ケイ酸塩とリン酸カルシウムあるいはシュウ酸カルシウム、鉄、アンモニウム、リン酸等と共存している場合もある 490,500,540。

組織内分布

肺以外の臓器のケイ素含量は一生を通じて大きく変わらない。肺のみが塵埃の 吸入により大量のケイ素を蓄積する 44,600。

(2) 毒性

遺伝毒性については評価品目の報告があるが、その他の毒性項目については一部のみで、特に2年間の反復投与毒性試験についてはラット及びマウスによる二酸化ケイ素の報告しかない。体内動態の研究から、水に不溶性のケイ酸塩類及び二酸化ケイ素は、オルトケイ酸の形で腸管から吸収されることから、二酸化ケイ素及び一部のケイ酸塩のデータを評価の参考に用いた。

急性毒性

(a) ケイ酸カルシウム

ケイ酸カルシウムについては、ラット(各群雌雄各 $10 \, \text{ m}$)及びマウス(各群雌雄各 $10 \, \text{ m}$)に 3,200、4,000、 $5,000 \, \text{mg/kg}$ 体重の用量で単回経口投与したところ、ラットの全投与群及びマウスの $5,000 \, \text{mg/kg}$ 体重投与群で投与直後に僅かな自発運動の低下を認めたが、何れの群も $10 \sim 30 \, \text{分以内に回復した。全投与群に死亡例や剖検時の異常を認めず、本試験における <math>\text{LD}_{50}$ 値はラット及びマウスとも $5,000 \, \text{mg/kg}$ 体重以上と考えられる 17,18。

また、ラット(各群雄 10 匹)に 24.1%(W/V)の懸濁液としたケイ酸カルシウム (5,000~mg/kg)を単回経口投与し、7 日間観察したが、毒性徴候や行動異常、死亡例あるいは剖検による異常は観察されず、本試験における LD_{50} 値は 5,000~mg/kg 体重以上と考えられる 14 。

一方、ラット(各群雄 10 匹)にケイ酸カルシウム(100、500、1,000、2,000、3,000、4,000、5,000 mg/kg 体重)を単回経口投与したところ、5,000 mg/kg 体重投与群で全動物が 24 時間以内に死亡し、剖検の結果、胃は拡張するとともに胃粘膜は出血し、胸水や肺の充血が観察された。本試験における LD_{50} 値は 3,400 mg/kg 体重と考えられる 14 。

(b) 参考 (類縁物質)

(アルミノケイ酸ナトリウム)

アルミノケイ酸ナトリウムの単回経口投与による LD_{50} 値は、ラットで 1,050 mg/kg 体重である $^{27)}$ 。

1 2

反復投与毒性及び発がん性

- 発がん性

(a) ケイ酸カルシウム (非経口投与)

ラットにケイ酸カルシウム (25 mg) を単回腹腔内投与し、生涯にわたり発がん性につき観察したところ、陰性であった $^{21)}$ 。

ラットにケイ酸カルシウム (10 mg/m^3)を 1 年間吸入暴露したところ、肺線維症とともに肺に 1 例の扁平上皮癌と 1 例の良性腺腫が発生した 21 。

(ba) 参考 (類縁物質)

(二酸化ケイ素)

ラット(各群雄 10 匹)に二酸化ケイ素の微粉末化したもの(0、0.2、1.0、2.5%; 0、100、500、1,250 mg/kg 体重/日 1)を 28 日間混餌投与した結果、2.5%投与群で有意な体重増加抑制、1%投与群でにおいても体重増加抑制がみられたが、死亡率数や剖検時の肉眼的検査において異常は認められなかった 15 。

ラット(各群雌雄各 15 匹) に純度 99.8%の無水二酸化ケイ素 (50 mg/日; 125 mg/kg 体重/日 1) を 1) を 1 0 を 1 2 が 1 2 が 1 2 が 1 3 が 1 3 が 1 4 が 1 5 で 1 5 が 1 5 で 1 5 で

ラット(各群雌雄各 15 匹)に二酸化ケイ素(0、1.0、3.0、5.0%; 0、500、1,500、2,500 mg/kg 体重/日 1)を、陽性対照として化粧品用のタルク(3.0%)を 90 日間混餌投与した結果、生存率、体重及び摂餌量に被験物質投与による影響は認められなかった。 ず、 高用量である 5%投与群においても二酸化ケイ素の明らかな沈着は確認されず、肉眼的及び病理組織学的検査においても二酸化ケイ素に起因すると考えられる病変は観察されなかった 15 。

ラット(各群雌雄各 20 匹)に二酸化ケイ素(100 mg/kg 体重/日)を 2 年間経口投与した結果、 $\frac{2 + 60 + 72 + 72}{2 + 72}$ 年間経過に明らかな影響はみられず、被験物質投与群で観察された病変は対照群と同様であった。また、発がん性は認められなかった 15 。

JECFA で用いられている換算値を用いて摂取量を推定 a)

種	最終体重 (kg)	摂餌量 (g/動物/日)	摂餌量 (g/kg 体重/日)
マウス	0.02	3	150
ラット	0.4	20	50

マウス(各群雌雄各 $38 \sim 40$ 匹)に二酸化ケイ素(0、1.25、2.5、5.0%; 0、1,875、3,750、7,500 mg/kg 体重/日 1) を 93 週間混餌投与した。その結果、一般状態や死亡率に明らかな影響は認められていないが、5%投与群において摂餌量の増加に伴い体重増加抑制がみられたなかった。血液学的検査や臓器重量においては散発的に有意<u>な変化</u>差が認められているが、被験物質投与に関連した用量相関性のある変化は認められなかった。組織学的検査においては<mark>偶発的な腫瘍の発生が散見されたが、用量相関的ではなく、被験物質投与に起因した</mark>腫瘍の誘発は観察されなかった 58 。

同様の試験がラットにおいても実施されている。各群雌雄各 $40 \sim 41$ 匹に二酸化ケイ素 $(0, 1.25, 2.5, 5.0\%; 0, 625, 1,250, 2,500 \,\mathrm{mg/kg}\, 体重/日 ^1)$ を 103 週間混餌投与した。その結果、行動や一般状態には明らかな影響は観察されず、体重、摂餌量、死亡率、血液学的検査及び血液生化学的検査成績において、統計学的な有意差が散発的に認められているが、被験物質投与に関連した生物学的意義のある変化は認められなかった。12 及び 24 ヶ月目 の検査において、雌の 2.5 及び 5.0% 投与群で統計学的に有意な肝重量の減少が認められているが、投与量に相関したものでは萎縮は認められなかった。組織学的検査においても偶発的な腫瘍の発生が散見されたが、用量相関的ではなく、被験物質投与に起因した腫瘍の誘発は観察されなかった 580。

(二酸化ケイ素及び一部のケイ酸塩)

ラット(各群雌雄各 15 匹)及びビーグル犬(各群雌雄各 $6\sim9$ 匹)に二酸化ケイ素(0.8 g/kg 体重/日)、ケイ酸アルミニウム(1.3 g/kg 体重/日)、ケイ酸ナトリウム(2.4 g/kg 体重/日)又は三ケイ酸マグネシウム(1.8 g/kg 体重/日)を 4 週間混餌投与した。その結果、ケイ酸ナトリウム、三ケイ酸マグネシウムを摂取した数匹のラットが断続的に多飲、多尿、軟便を示したが、体重や摂餌量、血液、尿検査では異常は認められず、腎臓の組織学的検査でも被験物質投与による病変は観察されなかった。一方ビーグル犬では、ケイ酸ナトリウム又は三ケイ酸マグネシウムを摂取した数匹が試験期間中多飲、多尿、軟便を示したが、ラットと同様、体重や摂餌量、血液、尿検査では異常は認められなかった。しかし、腎臓の病理組織学的検査ではケイ酸ナトリウム又は三ケイ酸マグネシウムを摂取した総ての動物で被験物質投与に起因した尿細管の変性や間質への細胞浸潤が観察された 15),22。

なお、上記の試験でみられた三ケイ酸マグネシウム投与によるイヌの腎障害に基づき、JECFA は 1973 年の会議において、ケイ酸マグネシウムについて" ADI not limited "を"暫定 ADI not limited"に変更している ²¹。

(a) ケイ酸カルシウム

マウス及びラットの妊娠 $6\sim15$ 日、ハムスターの妊娠 $6\sim10$ 日にケイ酸カルシウム (1,600 mg/kg 体重/日まで) を経口投与したところ、催奇形性は認められなかった $^{27)}$ 。

ウサギの妊娠 $6 \sim 18$ 日にケイ酸カルシウム (0, 250, 500, 750, 1,000, 1,250, 1,500 及び 1,600 mg/kg 体重/日)を経口投与した後、妊娠 29 日に帝王切開し、黄体数、着床痕数、吸収胚数、生存胎児数及び死亡胎児数、又、生存胎児の体重を記録するとともに、母動物の泌尿生殖器や全ての胎児を肉眼的に詳細に検査した。その結果、1,600 mg/kg 体重/日投与群で 13 日間投与された後においてもにもかかわらず、胚の着床や母動物あるいは胎児の生存率に明らかな影響は認められず、骨格及び内臓の異常胎児数も対照群と比べて差は認められなかった 14,270。

(b) 参考 (類縁物質)

(アルミノケイ酸ナトリウム)

妊娠マウス及びラット(1,600 mg/kg 体重/日まで)、妊娠ハムスター(1,200 mg/kg 体重/日まで)、妊娠ウサギ(900 mg/kg 体重/日まで)にアルミノケイ酸ナトリウムを経口投与したところ、何れの動物においても催奇形性は認められなかった 27 。

(二酸化ケイ素)

— 遺伝毒性

(a) ケイ酸カルシウム

宿主経由試験では、S. typhimurium TA1530 及び G46 並びに S. cerevisiae D3 を用いて、15、150、1,500、5,000 mg/kg 体重の用量でそれぞれ単回投与および 5 連続投与を行った。その結果、いずれも陰性であった。なお、同じ菌株を用いた in vitro 試験でも陰性であった 38 。

ラットを用いた染色体異常試験 (15、150、1,500、5,000 mg/kg 体重をそれぞれ 単回投与及び 5 連続投与) では、最終投与 6、24、48 時間後に骨髄の分裂中期像 を検索した結果、いずれも有意な染色体異常の誘発は認められなかった 38 。

ヒト組織由来の培養細胞 (WI-38) を用いた染色体異常試験 (1.0、10.0、100.0 μg/ml) では、有意な染色体異常の誘発は認められなかった ³⁸⁾。

優性致死試験(15、150、1,500、5,000 mg/kg 体重をそれぞれ雄ラットに交配前単回及び5 連続胃内投与)を行ったところ、いずれも有意な優性致死の誘発は認

められなかった ³⁸⁾。 1

2 ヒト末梢血培養リンパ球を用いた染色体異常及び姉妹染色分体交換試験(0.1 ~ 100 µg/ml で 48 又は 72 時間処理) において、10 及び 100 µg/ml の高用量では対 3 照群と比較して有意に染色体異常の増加が認められた。ギャップが主で染色体型 4 よりも染色分体型のものが多く、高用量では細胞分裂の遅延が認められた。なお、 5 6

ギャップ以外の異常は全て切断で、交換型異常は認められなかった 20)。

7 8

9

10

11

(b) 参考(類縁物質)

(ケイ酸マグネシウム)

細菌(S. typhimurium TA98, TA100, TA1535, TA1537, TA1538 及び E. coli WP2)を 用いた復帰突然変異試験(0.033~10 mg/plate)では、S9 mix の有無にかかわらず、 陰性であった¹⁹⁾。

12 13 14

15

16

17

18

19

20

21

22

23

24 25

26

27

28

29

(アルミノケイ酸ナトリウム)

細菌(Salmonella. typhimurium TA98, TA100, TA1535, TA1537, TA1538, Escherichia. coli WP2)を用いた復帰突然変異試験(0.033~10 mg/plate)において、S9 mix の 有無にかかわらず、突然変異の誘発は認められなかった¹⁹⁾。

宿主経由試験では、S. typhimurium TA1530 及び G46 並びに Saccharomyces. cerevisiae D3 を用いて、4.25、42.5、425.0、5.000 mg/kg 体重の用量でそれぞれ単 回及び5連続投与を行った。その結果、いずれも陰性であった。なお、同じ菌株 を用いた in vitro 試験でも陰性であった ³⁷⁾。

ラットを用いた染色体異常試験(4.25、42.5、425.0、5,000 mg/kg 体重をそれぞ れ単回投与及び5連続投与)では、最終投与6、24、48時間後に骨髄の分裂中期 像を検索した結果、いずれも有意な染色体異常の誘発は認められなかった³⁷⁾。

ヒト組織由来の培養細胞(WI-38)を用いた染色体異常試験(1.0、10.0、100.0 $\mu g/m l$) では、有意な染色体異常の誘発は認められなかった $^{37)}$ 。

優性致死試験(4.25、42.5、425.0、5,000 mg/kg 体重をそれぞれ雄ラットに交配 前単回及び5連続胃内投与)を行ったところ、いずれも有意な優性致死の誘発は 認められなかった³⁷⁾。

30 31

32

33

34

(ケイ酸カルシウムアルミニウム)

細菌(S. typhimurium TA98, TA100, TA1535, TA1537, TA1538 及び E. coli WP2)を 用いた復帰突然変異試験(0.033~10 mg/plate)では、S9 mix の有無にかかわらず、 陰性であった¹⁹⁾。

35 36

— 一般薬理

ケイ酸塩類について、一般薬理試験に関する報告は見当たらない。

— ヒトにおける知見

1

2

3 4

5

7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

6

今回の評価品目について、経口投与によるヒト対象試験の報告は見当たらないが、次のような関連データがある。

消泡もしくは固結防止の目的で無晶形無定形のケイ酸塩が食品添加物として過去数十年間に亘って使用されているが、それによる有害影響は知られていない 41)。

胃炎あるいは腸炎の患者に 12% 無晶形 無定形 ケイ酸 60-100 g/日を 3-4 週間経口投与したところ、全例に医学的に異常所見が認められず、摂取した量の 1/1000 が尿中に検出された 15 。

12 人の志願者に無<u>無足形</u>二酸化ケイ素 2.5 g を単回経口投与したところ、 尿中の二酸化ケイ素量が排泄の極めて僅かにな増加したがみられた 15)。

 $\frac{2}{\sqrt{2}}$ 人の患者の皮膚にケイ酸マグネシウムアルミニウム $\frac{2}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ 週間塗布したところ、影響はみられなかった $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$

一ケイ酸カルシウム、カルボキシメチルセルロース、抗生物質を含んだ食品添加物の袋づめ作業に従事していた 23 才の男性が、作業 3 日目に顔、頚部及び前腕の皮膚に発疹を生じた。発疹は作業中止により翌朝までに回復したが、作業の再開により同様の発疹が生じた。作業場の床には添加物による白く薄い粉の層ができていた。いずれの成分についてもパッチテストは陰性、分析の結果、縁の鋭いケイ酸カルシウム粒子を認め、空気を介した刺激性接触が原因と判断された 149。

三ケイ酸マグネシウムの服用履歴のある 16 才の男性、30 才の女性がシリカ結石を発症した $4^{9),53}$ 。また、シリカ結石を発症した 20 人の患者のほとんどは数年に渡って三ケイ酸マグネシウムを服用していた 500。

三ケイ酸マグネシウムの服用履歴のない 64 才と 75 才の日本人女性がシリカ結石を発症した 例も報告されている 51 。

日本において<u>は、10 ヶ月の乳児 1 人がシリカ結石を発症した</u>という報告がある。 ミルクを希釈した湧き水 (172 mg Si/l) が原因と推察されている 54 。

2627

28

32

6.国際機関等における評価

(1) JECFA における評価

31 ケイ酸マグネシウムを含む。)、アルミノケイ酸ナトリウム、ケイ酸アルミニウム

カルシウム*)の経口投与による有害影響を各種毒性試験データに基づき評価し、

- 33 生物学的に不活性であると判断して ADI を "not limited (限定しない)"とした 1)。
- 34 (*ケイ酸アルミニウムカルシウムは、1985年の第29回会議において、ケイ酸カル
- 35 シウムアルミニウムと同じ物質であることを確認している³⁾。)
- 36 1973年の第17回会議において再評価が行われ、ケイ酸マグネシウムについては、
- 37 三ケイ酸マグネシウムによるイヌの腎障害の解明が必要であることから、暫定 ADI
- 38 として的に、ADI を "not limited (限定しない) "限定しないを設定とした (JECFA

- 1 は後に "ADI not limited" (ADI を限定しない)という用語を "ADI not specified"
- 2 (ADI を特定しない)に変更している。)^{2), 15)}。その後、1982年の第 26 回会議に
- 3 おいて、ケイ酸マグネシウムに関する毒性試験データを調査したが新しい知見が得
- 4 られていないことから、三ケイ酸マグネシウムを除いて、ケイ酸マグネシウムの ADI
- 5 を特定しないとした³⁹⁾。
- 6 なお、ケイ酸塩類の評価について、<u>"</u>ADI not specified<u>"</u>(ADI を特定しない)が
- 7 適当であるとしている理由として、ケイ酸のアルミニウム、アンモニウム、カルシ
- 8 ウム、鉄、マグネシウム、カリウム及びナトリウムの塩は水に不溶で、食事への混
- 9 入は少ないと予測されるためとしている³⁾。

一方、アルミニウム化合物に関する評価について、1986 年の第 30 回会議で、食品に添加する全てのアルミニウム塩に対し、暫定 ADI 0-0.6 mg/kg 体重(アルミニウムとして)を設定した。その後、1988 年の第 33 回会議においてさらに詳細な検討が行われ、添加物も含めアルミニウムについて PTWI 7.0 mg/kg 体重を設定した。2006 年 6 月の第 67 回会議において再評価が行われ、生殖器系と発達中の神経系への影響の可能性から、アルミニウムを含む全ての化合物に対し PTWIを 1.0 mg/kg体重と設定した。その設定に当たっては、最小影響量(LOEL)50~75 mg/kg体重/日の下限 50 mg/kg 体重/日に不確実係数 100 を適用し、さらに適切な毒性学的エンドポイントを有する長期毒性試験や無作用量(NOEL)のデータがないことから追加の不確実係数 3 を適用した。また、生物濃縮の可能性から許容摂取量を PTWIとして表すべきであるとした。等。

JECFA は、長期毒性試験や NOEL のデータの欠損から、食品中に存在する不溶性 アルミニウム化合物は生物学的利用率が低い可能性を予測できるとしている。また、 この PTWI は、アルミニウム含有食品添加物を含む食品を目常的に摂取しているグ ループ (特に子供など)では大幅に超過する可能性があるとしており、豆乳ベース のミルクを飲んでいる乳児ではアルミニウム暴露量が非常に高いと注記している。。 但し、その詳細はまだ報告されていない。

26 27 28

29

30

31

3233

25

10

11

12 13

14

15

16

17

18

19

20

21

22

2324

* JECFA における「ADI を特定しない」の定義の概略は以下のとおり a)。

入手可能な試験データに基づき、非常に毒性の低い物質に対して適用される 用語。適正に使用される範囲においては、健康に危害を示さないものであり、 数値の形で表現される ADI の設定の必要はないと考えられる。この基準に適合 する添加物は、技術的に有効なものでなければならず、かつ、この効果を達成 するのに必要最小限の濃度で使用され、食品の劣悪な品質や粗悪品を隠したり、 栄養上のアンバランスを生じるようなことがあってはならない。

3536

- (2) 米国食品医薬品庁 (FDA) における評価
- 37 FDA は固結防止剤として使用されるケイ酸カルシウムアルミニウム、ケイ酸カル
- 38 シウム、ケイ酸マグネシウム、アルミノケイ酸ナトリウム、アルミノケイ酸ナトリ

ウムカルシウム、三ケイ酸カルシウム等を GRAS 物質に指定している。1979 年に 1 2 FDA は 1978 年までに公表されている関連文献に基づいてこれらの物質の安全性に ついての見解を次のように述べている²⁷。 3

二酸化ケイ素および各種ケイ酸塩類は地球上に広く分布し、天然水、動植物体内 Lも含まれる(地殻を構成している物質の25%)。したがって、ケイ酸塩類は、食 品中にも含まれ、添加物として加えられるケイ酸塩類の量は食品からの全摂取量の ごく一部に過ぎない。

毒性試験データによると、水溶性のケイ酸塩を経口投与すると生体に軽度な毒性 8 を示すが、水に不溶性もしくは難溶性のケイ酸塩類は生体に対し不活性とみなされ 9 10 | る²⁷⁾。

既存の科学的情報の中には、ケイ酸カルシウムアルミニウム、ケイ酸カルシウム、 12 / ケイ酸マグネシウム、ケイ酸ナトリウム、ケイ酸カリウム、アルミノケイ酸ナトリ ウム、アルミノケイ酸ナトリウムカルシウム、三ケイ酸カルシウムが現在使用され ている条件で摂取された場合、ヒトに対して有害性を示すという事実はない²⁷⁾。

15 16

17

18

19

20

21

22

23 24

25 26

27

28

29

30

31

32

33

34

11

13

14

4

5

6 7

(3) 欧州連合 (EU) 欧州食品科学委員会 (SCF) における評価

欧州食品科学委員会 (SCF) は 1990 年に、ケイ酸カルシウム及びケイ酸マグネシ ウムについていずれも「ADI を「特定しない(ADI not specified)」と評価している。 その後、欧州食品安全機関(EFSA)において、食品から摂取されるケイ素化合物 (二酸化ケイ素及びケイ酸塩類)について、ヒトに対して有害影響を及ぼさない上 限量は、現状の知見からは算定することはできないが、ケイ素換算で1日1人(60kg 体重) 当り20-50 mg、すなわち0.3-0.8 mg/kg 体重/日の摂取ならばヒトに対して 有害影響を示さないと結論づけている。なお、この数値は摂取量調査から概算した 英国における平均摂取量であり、このうち、水、ビール、コーヒー等の飲料からの 摂取が 55%を占める ⁴¹⁾。 <u>二酸化ケイ素の含有量は、ビール 131 ppm、コーヒー8.2 ppm、</u> ミネラルウォーター 22.5ppm、飲料水 2.0 ppm (欧州)、7.1 ppm (米国)との報告 がある ⁵⁹⁾。

一方、ケイ酸塩のうちアルミニウムを含む化合物(アルミノケイ酸ナトリウム及 びケイ酸カルシウムアルミニウム) については、アルミニウムを含む 9 種類の食品 添加物と併せ、アルミニウムに対し PTWI 7.0 mg/kg 体重を設定している ⁶⁹⁾。また、 使用が認められている全ての食品に最高許容濃度で含まれていると仮定した場合、 アルミニウム化合物由来のアルミニウム摂取量は、PTWI 7.0 mg/kg 体重に対して最 大6-624%である。使用が認められている食品に当該食品添加物が含まれる割合、 実使用濃度の調査など、今後摂取量の精査が必要な添加物群のひとつとされている 73)

35 36

38

37

7. 摂取量の推定一日摂取量の推計等

(1) 海外における使用状況と一日推定摂取量

米国における NAS/NRC 生産量調査報告 (1979 年)²⁷⁾では、評価品目に係る 1 2 一日摂取量が次のように記されている。 3 4 ケイ酸カルシウム (ケイ酸三カルシウム) 3 mg/ヒト/日 ケイ酸マグネシウム(三ケイ酸マグネシウム) 0.5 mg/ヒト/日 5 (参考)アルミノケイ酸ナトリウム 18 mg/ヒト/日 6 7 * 上記データは、1975年分、人口2.15億人として算出された値である。 8 9 英国における食品添加物の摂取量調査(英国政府農林水産省食糧省、1984 -1986 年調査) 77) では、評価品目に係るケイ酸塩類の一日摂取量が以下のよう 10 に報告されている。(ヒトー人当たりの体重は 60 kg) 11 12 ケイ酸カルシウム 9.8 mg/ヒト/日 13 14 ケイ酸マグネシウム(タルクを含む) 7.3 mg/ヒト/日 (参考) アルミノケイ酸ナトリウム 0.5 mg(Al として)/ヒト/日 15 16 17 米国の住民を対象とした疫学調査においては、食餌からのケイ素の1日あた りの摂取量は、男性 30 及び 33 mg、女性 24 及び 25 mg という報告がある ⁵²⁾。 18 19 EU欧州連合は、食事由来の摂取量に関しては、1987 - 1999 年に欧州連合 20 の各国が実施した食品添加物の摂取量調査において、ケイ酸カルシウム及びケ 21 イ酸マグネシウムは「ADI を特定しない」区分の食品添加物であることから、 22 実摂取量算定の優先順位は低いと報告している 73)。 23 24 25 ケイ酸カルシウム及びケイ酸マグネシウムはいずれも水に不溶性で、腸管から の吸収率が低いことも考慮すると、腸管からの吸収を通じて生体内に取り込まれ 26 27 る添加物由来のケイ素の量は、天然の飲料水および食品由来のケイ素の量に比し 著しく低いと考えられる。 28 29 30 (2) 日本における一日推定摂取量 日本における申請されたケイ酸塩類の日本における摂取量の報告はなく、また、 31 及び食品からのケイ素摂取量の報告はもない。平成 16 年度厚生科学研究では、食品 32 向け出荷量を基に、微粒二酸化ケイ素のヒトー日当たりの摂取量を 0.31 mg と推定 33 している ^{f)}。なお、水道水質基準はないが、わが国の河川水の平均的含有量は 20 mg/L 34 程度とされている h)。 35

39 【引用文献】

- 1 1) Thirteenth Report of the JECFA. Specifications for the identity and purity of food
- additives and their toxicological evaluation. WHO Technical Report Series 445, FAO
- 3 Nutrition Meetings Report Series 46. (1970).
- 4 2) Seventeenth Report of the JECFA. Toxicological evaluation of certain food additives
- 5 with a review of general principles and of specification. WHO Technical Report Series
- 6 539, FAO Nutrition Meetings Report Series 53. (1974).
- 7 3) Twenty-ninth Report of the JECFA. Evaluation of certain food additives and
- 8 contaminants. WHO Technical Report Series 733. (1986).
- 9 4) Office for Official Publications of the EC. European parliament and council directive No
- 10 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners.
- 11 CONSLEG: 1995L0002-17/07/2003, pp.1-7, 30-44.
- 12 5) Food and Drug Administration, HHS. 21CFR, Subpart E -Anticaking Agents, §172.410
- Calcium Silicate. 21CFR Ch I. (4-1-04 Edition).
- 14 6) Compedium of sodium aluminosilicate. Prepared at the 17th JECFA (1973), Published in
- 15 FNP 4 (1978) and in FNP 52 (1992).
- 7) Compedium of calcium silicate. Prepared at the 17th JECFA (1973), Published in FNP 4
- 17 (1978) and in FNP 52 (1992).
- 18 8) Compedium of calcium aluminium silicate. Prepared at the 28th JECFA (1984),
- 19 Published in FNP 31/2 (1984) and in FNP 52 (1992).
- 20 9) Compedium of magnesium silicate (synthetic). Prepared at the 61th JECFA (2003),
- 21 Published in FNP 52 Add 11 (2003).
- 22 10) Yuasa H, Asahi D, Takashima Y, Kanaya Y, Shinozawa K. Application of calcium
- silicate for medicinal preparation. I. Solid preparation adsorbing an oily medicine to
- calcium silicate. Chemical & Pharmaceutical Bulletin. (1994) 42: 2327-2331.
- 25 11) 医薬調合におけるケイ酸カルシウムの応用().ケイ酸カルシウムへの油状薬
- 26 剤吸着による固形剤化 (Yuasa H, Asahi D, Takashima Y, Kanaya Y, Shinozawa K.
- Application of calcium silicate for medicinal preparation. I. Solid preparation adsorbing
- an oily medicine to calcium silicate. Chemical & Pharmaceutical Bulletin. (1994) 42:
- 29 2327-2331.要約)
- 30 12) Asano T, Tsubuku S, Sugawara S, Miyajima M, Sato H, Yuasa H, Kanaya Y. Changes
- in volume and compression energy upon compression of calcium silicate tablets. *Drug*
- 32 Development and Industrial Pharmacy. (1997) 23: 679-685.
- 33 13) Yuasa H, Takashima Y, Omata T, Kanaya Y. Studies on stress dispersion in tablets III.
- 34 Suppression of fracture of coated film by an excipient during the preparation of tablets
- 35 containing coated particles. S.T.P. Pharma Sciences. (2001)11: 221-227.
- 36 14) Cosmetic Ingredient Review Expert Panel. Final report on the safety assessment of
- aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate,
- 38 magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite,

- bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium
- 2 magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite. *International*
- 3 *Journal of Toxicology.* (2003) 22: 37-102.
- 4 15) JECFA. Toxicological evaluation of some food additives including anticaking agents,
- 5 antimicrobials, antioxidants, emulsifiers and thickening agents. WHO Food Additives
- 6 Series 5. (1974): 21-30.
- 7 16) JECFA. Toxicological evaluation of some food colours, emulsifiers, stabilizers,
- 8 anti-caking agents and certain other substances. FAO Nutrition Meetings Report Series
- 9 46A WHO/FOOD ADD/70.36. (1969).
- 10 17) 生活科学研究所. フローライト R のラットにおける急性経口毒性試験. (株)ユニ
- 11 チカ環境技術センター 報告書 No. T-01085. (平成元年 11 月 20 日).
- 12 18) 生活科学研究所. フローライト R のマウスにおける急性経口毒性試験. (株)ユニ
- 13 チカ環境技術センター 報告書 No. T-01084. (平成元年 11 月 9 日).
- 14 19) Prival MJ, Simmon VF, Mortelmans KE. Bacterial mutagenicity testing of 49 food
- ingredients gives very few positive results. *Mutation Research*. (1991) 260: 321-329.
- 16 20) Aslam M, Rahman O. Cytotoxic and genotoxic effects of calcium silicates on human
- 17 lymphocytes in vitro. *Mutation Research*. (1993) 300: 45-48.
- 18 21) Bolton RE, Addison J, Davis JM, Donaldson K, Jones AD, Miller BG, Wright A. Effects
- of the inhalation of dusts from calcium silicate insulation materials in laboratory rats.
- 20 Environmental Research. (1986) 39: 26-43.
- 21 22) Newberne PM, Wilson RB. Renal damage associated with silicon compounds in dogs.
- *Proceedings of the National Academy of Sciences.* (1970) 65: 872-875.
- 23 23) 犬におけるシリコン化合物から連想する腎障害. (Newberne PM, Wilson RB.
- Renal damage associated with silicon compounds in dogs. *Proceedings of the National*
- 25 Academy of Sciences. (1970) 65: 872-875.要約)
- 26 24) Institute of Medicine of the National Academies. FCC V Monographs /Calcium Silicate.
- Food Chemicals Codex: 80-82.
- 28 25) Institute of Medicine of the National Academies. FCC V Monographs /Magnesium
- 29 Silicate. Food Chemicals Codex : 263-265.
- 30 26) Institute of Medicine of the National Academies. FCC V Monographs /Sodium
- 31 Aluminosilicate. Food Chemicals Codex: 401-403.
- 32 27) FDA. Evaluation of the health aspects of certain silicates as food ingredients. National
- Technical Information Service (NTIS), PB-301402. FDA Contract No.223-75/2004.
- 34 (1979).
- 35 28) FDA. Poundage and technical effects update of substances added to food. National
- 36 Technical Information Service (NTIS), PB91-127266. (1987): 330, 34, 340, 95,
- 37 659-662...
- 38 29) Official Journal of the European Communities. Commission Directive 2000/63/EC of

- October 2000. Amending directive 96/77/EC/ laying down specific purity criteria on
- 2 food additives other than colours and sweeteners (抜粋). O J L277/1-4, L277/37-38.
- 3 30) アルミノケイ酸塩、カオリナイト、滑石、ケイ酸、ケイ酸塩、沸石. 理化学辞
- 4 典 第4版.(株)岩波書店(1987): 51, 206-207, 239, 373-374, 495, 1107.
- 5 31) 金沢孝文(監修). 食塩の固結と防止対策. 粉粒体の固結現象と防結対策. (1996):
- 6 127-148.
- 7 32) 野口達彦. 紛粒体の固結と防結のはなし-固結トラブルとの出会いから商品開発
- 8 へ-. 粉体と工業. (1988) 20: 34-43.
- 9 33) 江崎茂、杉山幹雄、小林秀雄、山本秀夫. 食塩の固結防止剤の選定. 日本塩学会
- 11 34) 化学大辞典編集委員会編. メタケイ酸カルシウム, メタケイ酸マグネシウム,
- 12 ケイ酸アルミニウムカリウム,ケイ酸アルミニウムカルシウム,ケイ酸アルミニ
- 13 ウムナトリウム,ケイ酸カルシウム,ケイ酸三石灰,ケイ酸二石灰,ケイ酸マグ
- 14 ネシウム. 化学大辞典 9.(1993): 103, 104, 302, 303, 306-311.
- 15 35) 保健機能食品であって、カプセル、錠剤等通常の食品形態ではない食品中にお
- 16 ける添加物の安定性.(㈱トクヤマ 自社試験データ).(平成 15 年 9 月 12 日).
- 17 36) 日本薬局方解説書編集委員会編. ケイ酸マグネシウム Magnesium Silicate. 第
- 18 十四改正 日本薬局方解説書. (2001): 1195-1197.
- 19 37) Litton Bionetics, Inc. Mutagenic evaluation of compound FDA 71-45, synthetic silica
- sodium silicoaluminate. National Technical Information Service (NTIS), PB-245468.
- 21 (1974).
- 22 38) Litton Bionetics, Inc. Mutagenic evaluation of compound FDA 71-41, calcium silicate.
- National Technical Information Service (NTIS), PB-245457. (1974).
- 24 39) Twenty-sixth Report of the JECFA. Evaluation of certain food additives and
- contaminants (抜粋). WHO Technical Report Series 683. (1982).
- 26 40) Food and Drug Administration, HHS. 21CFR, Subpart C -Anticaking Agents.
- §182.2122 Aluminum calcium silicate, §182.2227 Calcium silicate, §182.2437
- Magnesium silicate, §182.2727 Sodium aluminosilicate. 21CFR Ch.I (4-1-03 Edition).
- 29 41) European Food Safety Authority (EFSA). Opinion of the scientific panel on dietetic
- products, nutrition and allergies on a request from the commission related to the tolerable
- 31 upper intake level of silicon. *The EFSA Journal*. (2004) 60: 1-11.
- 32 42) Baily CB. Silica metabolism and silica urolithiasis in ruminants: A review. Canadian
- *Journal of Animal Science.* (1981) 61: 219-235.
- 34 43) Bellia JP, Birchall JD, Roberts NB. Beer: a dietary source of silicon. *The Lancet*. (1994)
- 35 343: 235.
- 36 44) Carlisle EM. Silicon: an essential element for the chick. *Science*. (1972) 178: 619-621.
- 37 45) Carlisle EM. Silicon. Biochemistry of the Essential NY: Plenum Press. (1984):
- 38 257-291.

- 1 46) Carlisle EM. Silicon as a trace nutrient. The Science of the Total Environment. (1988)
- 2 73: 95-106.
- 3 47) Calomme MR, Vanden Berghe DA. Supplementation of calves with stabilized
- 4 orthosilicic acid. Effect on the Si, Ca, Mg, and P concentrations in serum and the
- 5 collagen concentration in skin and cartilage. *Biological Trace Element Research*. (1997)
- 6 56: 153-165.
- 7 48) Dobbie JW, Smith MB. Silicate nephrotoxicity in the experimental animal: the missing
- 8 factor in analgesic nephropathy. *Scottish Medical Journal*. (1982) 27: 10-16.
- 9 49) Farrer JH, Rajfer J. Silicate urolithiasis. *The Journal of Urology*. (1984) 132: 739-740.
- 10 50) Haddad FS, Kouyoumdjian A. Silica stones in humans. Urologia Internationalis.
- 11 (1986) 41: 70-76.
- 12 51) Ichiyanagi O, Sasagawa I, Adachi Y, Suzuki H, Kubota Y, Nakada T. Silica urolithiasis
- without magnesium trisilicate intake. *Urologia internationalis*. (1998) 61: 39-42.
- 14 52) Jugdaohsingh R, Anderson SH, Tucker KL, Elliott H, Kiel DP, Thompson RP, Powell JJ.
- Dietary silicon intake and absorption. *The American Journal of Clinical Nutrition*. (2002)
- 16 75: 887-893.
- 17 53) Lee MH, Lee YH, Hsu TH, Chen MT, Chang LS. Silica stone development due to
- long time oral trisilicate intake. Scandinavian Journal of Urology and Nephrology.
- 19 (1993) 27: 267-269.
- 20 54) Nishizono T, Eta S, Enokida H, Nishiyama K, Kawahara M, Nakagawa M. Renal silica
- calculi in an infant. *International Journal of Urology*. (2004) 11: 119-121.
- 22 55) Popplewell JF, King SJ, Day JP, Ackrill P, Fifield LK, Cresswell RG, di Tada ML, Liu K.
- 23 Kinetics of uptake and elimination of silicic acid by a human subject: a novel application
- of 32Si and accelerator mass spectrometry. *Journal of Inorganic Biochemistry.* (1998) 69:
- 25 177-180.
- 26 56) Reffitt DM, Jugdaohsingh R, Thompson RP, Powell JJ. Silicic acid: its gastrointestinal
- 27 uptake and urinary excretion in man and effects on aluminium excretion. Journal of
- 28 *Inorganic Biochemistry.* (1999) 76: 141-147.
- 29 57) Saldanha LF, Gonick HC, Rodriguez HJ, Marmelzat JA, Repique EV, Marcus CL.
- 30 Silicon-related syndrome in dialysis patients. *Nephron.* (1997) 77: 48-56.
- 31 58) Takizawa Y, Hirasawa F, Noritomi E, Aida M, Tsunoda H. Oral ingestion of SYLOID
- 32 to mice and rats and its chronic toxicity and carcinogenicity. Acta Medica et Biologica.
- 33 (1988) 36: 27-56.
- 34 59) Baumann H. Verhalten der kieselsäure im menschlichen blut und harn. Z Physiol
- 35 *Chemie*. (1960) 320: 11-20.
- 36 60) King EJ, Stantial H, Dolan M. The biochemistry of silicic acid. . The presence of
- 37 silica in tissues. *The Biochemical Journal.* (1933) 27: 1002-1006.
- 38 61) King EJ, McGeorge M. The biochemistry of silicic acid. : The solution and excretion

- of silica. The Biochemical Journal. (1938) 32: 426-433.
- 2 62) Reimann HA, Imbriglia JE, Ducanes T. Enteric entry of microcrystals. *Proceedings of*
- 3 the Society for Experimental Biology and Medicine. (1965) 119: 956-958.
- 4 63) Reimann HA, Imbriglia JE, Ducanes T. Crystal-induced myocarditis and pericarditis.
- 5 The American Journal of Cardiology. (1966) 17: 269-272.
- 6 64) Cefali EA, Nolan JC, McConnell WR, Walters DL. Pharmacokinetic study of zeolite A,
- 7 sodium aluminosilicate, magnesium silicate, and aluminum hydroxide in dogs.
- 8 *Pharmaceutical Research.* (1995) 12: 270-274.
- 9 65) Benke GM, Osborn TW. Urinary silicon excretion by rats following oral administration
- of silicon compounds. Food and Cosmetics Toxicology. (1979) 17: 123-127.
- 11 66) Yokoi H, Enomoto S. Effect of degree of polymerization of silicic acid on the
- gastrointestinal absorption of silicate in rats. Chemical & Pharmaceutical Bulletin.
- 13 (1979) 27: 1733-1739.
- 14 67) Meyers P. Behavior of silica technologies available and how they rate. Water
- 15 *Conditioning & Purificationl* (2004) 46: 22-24.
- 16 68) King EJ, Stantial H, Dolan M. The biochemistry of silicic acid. : The excretion of
- administered silica. *The Biochemical Journal.* (1933) 27: 1007-1014.
- 18 69) Commission of the EC. Food-science and techniques. Reports of the scientific
- committee for food (Twenty-fifth series). (1990).
- 20 70) Calcium Aluminosilicate, Calcium Silicate, Kaolin, Magnesium Silicate, Silicon
- Dioxide, Talc, Zeolites. THE MERCK INDEX, Thirteenth Edition. (2001):277, 284, 945,
- 22 1017-1018, 1523-1524, 1613, 1808.
- 23 71) ケイ酸塩類試薬 (Wako). Wako Chemicals, 33rd Edition, 2004.
- 24 72) ケイ酸塩類試薬 (SIGMA). シグマ総合カタログ, 2002-2003.
- 25 73) EU Commission. Report from the commission on dietary food additive intake in the
- European Union.
- 27 http://europa.eu.int/comm/food/food/chemicalsafety/additives/flav15 en.pdf.
- 28 74) 化学工業日報社. ケイ酸カルシウム(Calcium Silicate) ,シリカゲル(Silica Gel) ,
- 29 ゼオライト (Zeolite), ケイ酸マグネシウム(Magnesium Trisilicate), 微粒二酸化ケ
- 30 **イ**素 (Silicon Dioxide (Fine)), カオリン (Kaolin). 14705 の化学商品. (2005): 16-17,
- 31 101-103, 184, 1383-1384, 1727.
- 32 75) Food and Drug Administration, HHS. 21CFR, Subpart A-General Provisions, §182.1
- 33 Substances that are generally recognized as safe. 21CFR Ch.I (4-1-03 Edition).
- 76) WA SALT SUPPLY. Salt Products Table Salt. http://www.wasalt.com.au/Table.html.
- 35 77) Ministry of Agriculture, Fisheries and Food. Dietary Intake of Food Additives in the
- 36 UK: Initial Surveillance. Food Surveillance Paper No.37.
- 37 78) Advanced Solutions for Food Additives. HUBER カタログ.
- 38 79) 厚生労働省. 二酸化ケイ素の使用基準改正. 厚生労働省 告示第1号(平成3年

- 1 1月17日)
- 2 80) CODEX Alimentarius Commission 28th Session. Draft revised standard for processed cereal-based food for infants and young children. ALINORM 05/28/26.
- 4 81) (株)アサヒテクノリサーチ. ケイ酸カルシウム及びケイ酸マグネシウムの pH 溶 解性試験.(株)トクヤマ 社内資料 No.Q-0456).
- 6 82) 日本食品添加物協会. 既存添加物名簿収載品目リスト注解書(カオリン、ゼオ ライト、タルク). (1999): 130, 316, 340.
- 8 83) THE MERCK INDEX, Eleventh edition. Kaolin, Zeolites. (1989): 832, 1596-1597.
- 9 a) Principles for the safety assessment of food additives and contaminants in food.
 10 Environmental Health Criteria 70. IPCS in cooperation with the JECFA. World Health
 11 Organization, Geneva. (1987).
- 12 b) 松田りえ子、佐々木久美子、酒井洋、青柳由美子、佐伯政信、長谷川康行、日高 13 利夫、石井敬子、望月恵美子、山本敬男、宮部正樹、田村征男、堀伸二郎、池辺 14 克彦、辻元宏、小嶋美穂子、佐伯清子、松岡幸恵、西岡千鶴、藤田久雄、城間博 15 正、大城善昇、豊田正武. 食品からのアルミニウムの一日摂取量の推定. 食品衛 16 生学雑誌 (2001) 42: 18-23.
- 17 e) Thirtieth Report of the JECFA. Evaluation of certain food additives and contaminants.
 18 WHO Technical Report Series No.751 (1987)
- d) Thirty-third Report of the JECFA. Evaluation of certain food additives and contaminants.
 WHO Technical Report Series No.776 (1989)
- 21 e) Summary and conclusions of the sixty-seventh meeting of the JECFA issued 7 July 2006.
- 22 f) 平成 16 年度厚生労働科学研究費補助金(食品の安全性高度化推進事業)「国際 23 的動向を踏まえた食品添加物の規格の向上に関する調査研究」主任研究者:四方 24 田千佳子、分担研究「わが国における食品添加物生産量統計とその国際比較」. 25 生産量統計を基にした食品添加物の摂取量の推定 その1 指定添加物品目.
- g) SECTION 9: Reactions to Environmental Agents. HANDBOOK OF PHYSIOLIGY,
 American Physiological Society, BETHESDA, MARYLAND (1977): 362.
- 28 h) 眞柄泰基 監修. *水道水質事典. 日本水道新聞社* (2002): 239.

ケイ酸塩類 安全性試験結果

試験 種類	動物種	試験 期間	投与方法	動物数/群	投与物質 ²	投与量又は濃度	試験結果	文献 No
	マウス	単回	経口	雄雌各 10	ケイ酸カルシ ウム	3.2, 4, 5 g/kg 体重	5 g/kg 体重群:投与直後に僅かな自発運動の低下を認めるも、10~30 分以内に回復。LD ₅₀ =5 g/kg 体重以上	18
急	ラット	単回	経口	雄雌各 10	ウム	3.2, 4, 5 g/kg 体重	全群で投与直後に僅かな自発運動の低下を認めるも、 $10\sim30$ 分以内に回復。 $\mathrm{LD}_{50}=5~\mathrm{g/kg}$ 体重以上	
性毒		単回	経口	雄 10	ウム	濁液	7日間観察するも、毒性徴候、行動異常、死亡例、剖検による異常はない。 $\mathrm{LD}_{50} = 5~g/\mathrm{kg}$ 体重以上	
性 			経口	雄各 10	ウム	0.1, 0.5, 1, 2, 3, 4, 5g/kg 体重	5 g/kg 体重群:全動物が24時間以内に死亡、 剖検の結果、胃が拡張、胃粘膜出血、胸水、 肺の充血が観察された。LD ₅₀ =3.4 g/kg	14
	ラット	単回	経口		アルミノケイ 酸ナトリウム		LD ₅₀ = 1.05 g/kg 体重	27
		28日間		雌雄各 10		mg/kg 体重/日 ¹⁾)	1%, 2.5%投与群:体重増加抑制。死亡 <mark>率数</mark> 、 剖検時の肉眼的検査においては異常なし。	15
	ラット	3 ヶ月 間	強制経口	雌雄各 15	二酸化ケイ素	50 mg/日 (125 mg/kg 体重/日 ¹)	死亡生存率、体重、肉眼的、病理学的検査において病変は観察されない。	15
		90日間		雌雄各 20		0, 1.0, 3.0, 5.0 % (0、500、1,500、2,500 mg/kg 体重/日 ¹)		
		2 年間		雌雄各 20		100 mg/kg 体重/日	生存率 100%。 行動、一般状態、体重増加に影響なし。病変は対照群と同様。発がん性は認められない。	
反 復 投	マウス	21 ヶ月	混餌	雌雄各 38 ~40		0, 1.25, 2.5 5.0 % (0、1,875、3,750、 7,500 mg/kg 体重/日 ¹)	5 g/kg 体重群:体重増加抑制。 一般状態、死亡率、血液学的検査、臓器重量 に影響は認めない。組織学的検査でも腫瘍の 誘発は観察されない。	
与毒性	ラット	24ヶ月 間	混餌	雌雄各 40 ~41	二酸化ケイ素	mg/kg 体重/日 ¹)	行動、一般状態、体重、摂餌量、死亡率、血液学的検査、血液生化学的検査において影響なし。組織学的検査でも腫瘍の誘発は観察されない。雌,2.5,5.0%投与群:12,24ヶ月目に肝重量減少が認められるが用量相関性なし。	
	ラット			雌雄各 15	三ケイ酸 Mg、 二酸化ケイ素、	0.8 g/kg 体重/日 1.3 g/kg 体重/日 0.8 g/kg 体重/日 1.3 g/kg 体重/日	ケイ酸 Na、三ケイ酸 Mg 摂取群:数匹が断続的に多飲、多尿、軟便を示したが、体重、摂餌量、血液、尿検査、腎の組織学的検査で異常なし。 二酸化ケイ素、ケイ酸 AI 群:異常、病変なし。	22
		4 週間		雌雄各6~ 9			ケイ酸 Na、三ケイ酸 Mg 摂取群: 数匹が多飲、 多尿、軟便を示したが、体重、摂餌量、血液、 尿検査で異常なし。腎の組織学的検査では、 総ての動物に尿細管の変性や間質への細胞浸 潤が観察された。 二酸化ケイ素、ケイ酸 AI 群: 異常、病変なし。	
発が	ラット	単回	腹腔内		ケイ酸カルシ ウム		生涯にわたり観察した結果、陰性。	21
発がん性	ラット	1 年間	吸入暴露		ケイ酸カルシ ウム	10 mg/m ³	1 例の肺線維症と肺に扁平上皮がん。 1 例の良性腺腫。	21
集	マウス	妊娠 6 ~15日			ケイ酸カルシ ウム	1600mg/kg	催奇形性は認められなかった。	27
生殖発生毒性	ラット	妊娠 6 ~15日	経口		ケイ酸カルシ ウム	1600mg/kg	催奇形性は認められなかった。	27
黄性	ハムス ター				ケイ酸カルシ ウム	1600mg/kg	催奇形性は認められなかった。	27

試験 種類	動物種	試験 期間	投与方法	動物数/群		投与量又は濃度	試験結果	文献 No
生殖	ウサギ	妊娠 6 ~18日			ケイ酸カルシ ウム	0, 250, 500, 750, 1,000, 1,250, 1,500, 1,600mg/kg	黄体数、着床痕数、吸収胚数、生存胎児数、 死亡胎児数、生存胎児の体重、母動物の泌尿 生殖器、胎児の肉眼的検査において影響はみ とめられない。骨格、内蔵の異常胎児数も対 照群との間に差なし。	
発	マウス	妊娠 6 ~15日			アルミノケイ 酸ナトリウム	1600mg/kg	催奇形性は認められなかった。	27
生毒	ラット	妊娠 6 ~15日			アルミノケイ 酸ナトリウム	1600mg/kg	催奇形性は認められなかった。	27
性	ハムス ター		経口		アルミノケイ 酸ナトリウム	1600mg/kg	催奇形性は認められなかった。	27
へ 続	ウサギ	妊娠 6 ~18日	経口		アルミノケイ 酸ナトリウム	1600mg/kg	催奇形性は認められなかった。	27
き)	ラット					100mg/kg 体重/日	親の世代の雄 1 匹と雌 5 匹を交配。第一世代として 25 匹得られ、そのうち雄 1 匹と雌 5 匹を交配。第二世代として 21 匹が得られる。これらの動物において奇形や副作用は認められなかった。	
	マウス In vitro	由試験	TA1530 G46 D3		ケイ酸カルシ ウム	15, 150, 1,500, 5,000 mg/kg を単回および 5 連続投与		38
	In vitro	異常試	ヒト組織 由来の培 養 細 胞 WI-38		ケイ酸カルシ ウム	1, 10., 100μg/ml	有意な染色体異常の誘発は認められない。	38
	ラット	染色体 異常試 験			ケイ酸カルシ ウム	mg/kg を単回および	最終投与後、6,24,48 時間後に骨髄の分裂中期 像を検索した結果、有意な染色体異常の誘発 は認められなかった。	
	ラット	優性致 死試験			ケイ酸カルシ ウム	15, 150, 1,500, 5,000 mg/kg を単回および 5 連続胃内投与	いずれも有意な優性致死の誘発は認められなかった。	38
遺伝		染 異 妹 会 会 矣 矣 矣 矣 矣 矣 矣 矣 矣 矣 矣 矣 矣			ウム	又は72時間処理	10及び100µg/mlの高用量では対照群と比較して有意に染色体異常の増加が認められた。ギャップが主で染色体型よりも染色分体型のものが多く、高用量では細胞分裂の遅延が認められた。なお、ギャップ以外の異常は全て切断で、交換型異常は認められなかった。	20
毒 性	In vitro	(+/ COmiv)	TA98 TA100 TA1535 TA1537 TA1538 WP2		ケイ酸マグネ シウム	0.033 ~ 10 mg/プレ ート	S9mix の有無にかかわらず、すべて陰性。	19
	In vitro	(+/ S9mix)	TA100 TA1535 TA1537 TA1538 WP2		酸ナトリウム	7	S9mix の有無にかかわらず、すべて陰性。	19
	マウス In vitro	宿主経 由試験	TA1530 G46 D3			4.25, 42.5, 425.0 5,000 mg/kg を単回 投与および 5 連続投 与	すべて陰性。	37
	In vitro	異常試	ヒト組織 由来の培 養 細 胞 WI-38		アルミノケイ 酸ナトリウム	1, 10., 100μg/ml	有意な染色体異常の誘発は認められない。	37

験類	動物種	試験 期間	投与方法	動物数/群	投与物質 ²	投与量又は濃度	試験結果	文献 No
遺伝	ラット	染色体 異常試 験			アルミノケイ 酸ナトリウム	5,000 mg/kg を単回	最終投与後、6,24,48 時間後に骨髄の分裂中期 像を検索した結果、有意な染色体異常の誘発 は認められなかった。	37
毒性(優性致 死試験			酸ナトリウム	5,000 mg/kg を単回 投与および5連続胃 内投与		37
続 き)	In vitro	然変異 試験 (+/ S9mix)	TA100 TA1535 TA1537 TA1538 WP2		ケイ酸カルシ ウムアルミニ ウム	_ +	S9mix の有無にかかわらず、すべて陰性。	19
	ヒト	3~4週 間	経口		12% <u>無晶</u> 無定 形ケイ酸	60~100 g/日	摂取量の 1/1000 が尿中に検出。 有害事象は認 められなかった。	15
	ヒト	経口	単回	12人	二酸化ケイ素	2.5 g	尿中排泄の極めて僅かな増加がみられた。	15
	\	<u>—週間</u>	皮膚塗布		<u>ケイ酸マグネ</u> <u>シウムアルミ</u> <u>ニウム</u>	2∌ 目	影響はみられなかった。	<u>14</u>
ヒトにおける知見	<u>男性</u> (23歳)	3 日間	空気を介 した刺激 性接触		ケイ酸カルシ ウム ウム 三ケイ酸マグ ネシウム		ケイ酸カルシウム、カルボキシメチルセルロニス、抗生物質を含んだ食品添加物の袋づめ作業に従事。作業3日目に顔、頚部及び前腕の皮膚に発疹を生じた。発疹は作業中止により翌朝までに回復したが、作業の再開により同様の発疹が生じた。作業場の床には添加物による白く薄い粉の層ができていた。いずれの成分についてもパッチテストは陰性、分析の結果、縁の鋭いケイ酸カルシウム粒子を認め、空気を介した刺激性接触が原因と判断された。	50
					ホンソム		る。この場合、大部分の患者は数年に渡って 三ケイ酸マグネシウムを服用していた。	53
	r L						稀ではあるが、制酸剤服用の履歴がないシリカ結石の報告例がある。この場合、原因は不明。また日本において、水が原因で10ヶ月の乳児で発症した例がある。	

[」] JECFA で用いられている換算値を用いて摂取量を推定 ^{a)}

種	最終体重 (kg)	摂餌量 (g/動物/日)	摂餌量 (g/kg 体重/日)
マウス	0.02	3	150
ラット	0.4	20	50

 $^{^2}$ 投与物質に網掛け(oxtime) がされているものは、今回の評価品目である。