微生物学的リスク評価事例

米国Food and Drug Administration (FDA)の "Quantitative Risk Assessment on the Public Health Impact of Pathogenic *Vibrio parahaemolyticus* in Raw Oysters"の紹介

米国FDAの"Quantitative Risk Assessment on the Public Health Impact of Pathogenic Vibrio parahaemolyticus in Raw Oysters"は、

生かきの摂食に関する V. parahaemolyticusの公衆衛生上のリスクに影響する因子を明らかにするための定量的リスク評価

1999年1月 作業開始

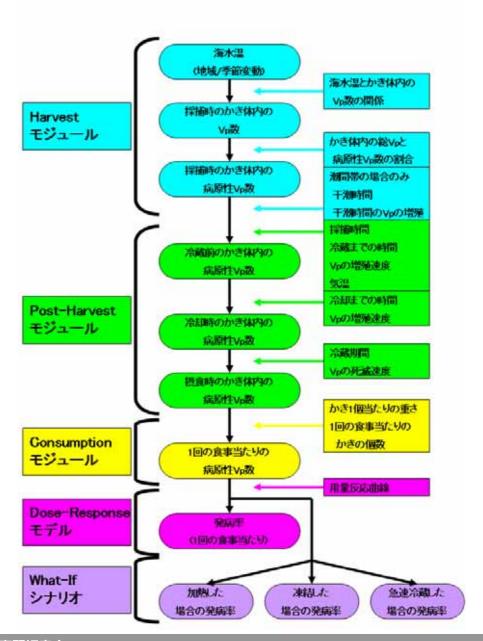
2000年12月 草稿公表

"Draft Risk Assessment on the Public Health Impact of *Vibrio parahaemolyticus* in Raw Molluscan Shellfish"

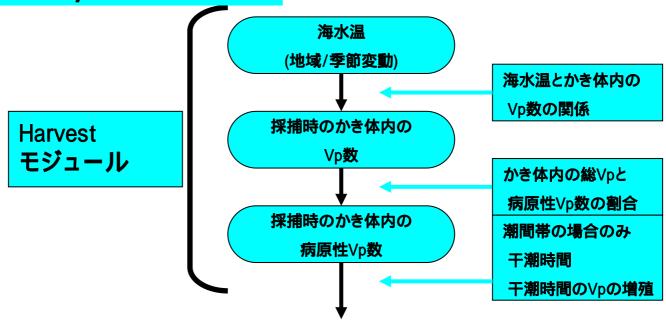
2005年7月 改訂版公表

"Quantitative Risk Assessment on the Public Health Impact of Pathogenic *Vibrio parahaemolyticus* in Raw Oysters"

全米を6つの地域・採捕方法に分け、 それぞれに春夏秋冬を考慮


6つの地域·採捕方法×春夏秋冬=24通りのシミュレーション

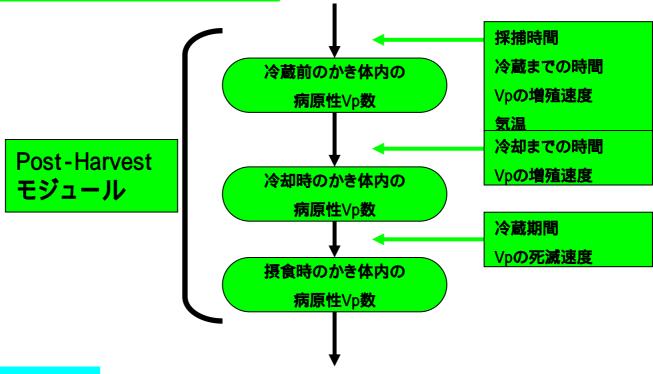
FDAのリスクアセスメント・モデルの主要部分


(メキシコ湾岸(ルイジアナ州)の夏)

	A	В	С	D	E	F	G	H	I	J	K	L	M	N.
1	Gulf Coast	Louisianna			Light green	cells conta	ain the 'no r	mitigation' c	alculation.					
2	Summer													
3	3				No mitigati	on			Water and	Vp density	Parameters	3		
4		Water parar	meters						a_w	0.985				
5		mean m			28.80128				b	0.0356				
6		mean s			1.537398				c	0.34				
7		Water tempe	erature		28.80128		degrees C		T_min		degree K			
8		Temperature		tics			4061000		T max		degree K			
9		intercept			-0.46834				a_vv_min	0.921	acerco K			
10		slope	`		0.093791				a_w_max	0.998				
11		sigma			0.724242				d_w_max		degree K			
		Sigma			0.724242									
12									lag	_	hours			
13									max density	, 6	log ofu/gra	m		
14					total Vp	pathogeni								
15								nic at harves	max density	3.277705	log ofu/gra	em .		
16		Log Vp leve			2.232971									
17		Log Vp leve	l in environ.	Trunc	2.232971	-0.489324	log counts/g			0				
18		Time on flat					hours	temp incres						
19		estimated gr							degrees C					
20		outgrowth o					log counts/g		rowth rate)					
21		Log Vp leve	on flats			-0.489324	log counts/	gram						
22		Harvesting p	parameters											
23		min time	on water		5									
24			ne on water		9							axenic to c	4.693387	
25			on water		11							landings	2,854,000	lbs
26		Time on the			8.666667		hours					Oysters pe		
27		Time unrefr			4.833333		hours					total raw s		
28		Air tempera		etero	4.000000		noars						0,200,100	
29		и прого	raio param	0.010	-1.66									
30		σ			1.33							Fraction pa	0.001995	
31		Ambient air	temp		27.14128		degree C					rraction pe	0.001030	
32		HIIIDICITE AII	септр		27.14120		degree O					counter	0	
		ant/may m	Annala vata		0.191458	0.191458						counter	244.1564	
33		sqrt(max gr	owth rate/		0.191406	0.191406						-1-1		
34		F			0.00051.4	0.00054.4		^				alpha	0.52	
<u>35</u>		Estimate gr	owth rate i	n oysters	0.203514	0.203514	log counts	/nr				beta	97862872	
36					0.000054	0.000054		074.0.00	10.70	_			E04E 00	
37		outgrowth1			0.983651	0.983651		6716.82	12.73	_			5.31 E-09	
38				t retrigera	t 3.216622	0.494327	log counts.			rapid cool				
39		Duration of			5		hours	Heat	Freeze	mitigation				
40		outgrowth2			0.610542				treatment					
41		Predicted c				1.104868		four.five log		0.121218				
42		Length of re	efrigeration	time	7.7		days	reduction	reduction					
43														
44		Predicted le	evel after d	ie off	3.330364			-3.891932	-1.391932	-0.375582				
45					2139.75	4.06	0							
46		Grams oyst	ters consun	ned	188.5006		grams							
47														
48		Vp exposur	e per meal		403344.9	764.5064	mean count	0.024176	7.645064	79.38356				
49		Pathogenic					counts	0						
50	İ		,				log mean c		·					
51		probability	of illness			4.06E-06		n n	4.25E-08	4.2E-07				
52		p. sedemity							1.202 00	1.22 01				
53														
53 54														
J4														

リスクアセスメント・モデルの構造

採捕時の病原性Vp数を求める

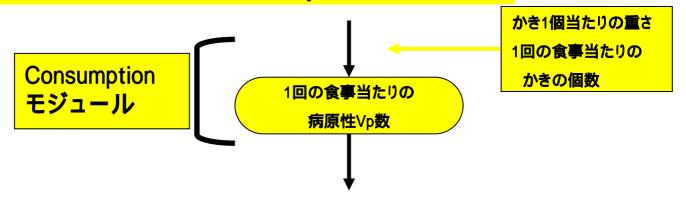


採捕時の総 Vp数*1 × 総 Vpに対する病原性 Vpの割合 *1採捕時の総 Vp数は海水温に比例

北西太平洋(潮間帯)の場合のみ、 上記 + 干潮中の病原性 l/p数の増殖*2

*²総 *Vp*の増殖速度*³ × (干潮時間 + 1) × 総 *Vp*に対する病原性 *Vp*の割合 *³総 *Vp*の増殖速度は気温に依存

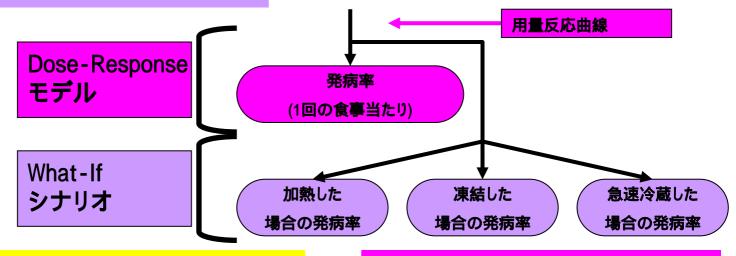
摂食時の病原性 Vp数を求める


<mark>採捕時の病原性 l/p数</mark> + 冷蔵前の病原性 l/pの増加*3 + 冷却中の病原性 l/pの増加*4 - 冷蔵中の病原性 l/pの死滅*5

- *3総 l/pの増殖速度×採捕時間×総 l/pに対する病原性 l/pの割合
- *4総 l/pの増殖速度×(冷却時間 + 1)/2×総 l/pに対する病原性 l/pの割合
- *5総 l/pの死滅速度×冷蔵時間×総 l/pに対する病原性 l/pの割合

北西太平洋(潮間帯)の場合、採捕時間から干潮時間を引いて計算

7


1回の食事で摂取される病原性 *Vp*数を求める

<mark>摂食時の病原性 1∕*p*数</mark> × 1回の食事当たりの生かきの個数 × かき1 個当たりの身の重量

実際の発病率を求める

シナリオ上の発病率を求める

<mark>1回の食事で摂取される病原性 *\/p*数</mark>から<mark>1回の食事当たりの発病率</mark> を推定

加熱した場合(総 l/p数が10^{4.5}減少) 凍結した場合(総 l/p数が10²減少) 採捕後、すぐに冷蔵した場合(冷蔵前の総 l/pの増加を考えない) の1回の食事当たりの発病率 を推定

それぞれの地域·採捕方法、季節における胃腸炎発症者数の予測 (発病率×採捕量で計算)

	Mean Annual Number of Illnesses ^a								
Region	Summer (July to Sept)	Fall (October to December)	Winter (January to March)	Spring (April to June)	Total				
Gulf Coast	1406	132	7	505	2,050				
(Louisiana)	(109, 4435)	(6, 468)	(0.2, 26)	(36, 1624)					
Gulf Coast	299	51	3	193	546				
(Non-Louisiana) ^b	(22, 985)	(2, 180)	(<0.1, 11)	(13, 631)					
Mid-Atlantic	7	4	<0.1	4	15				
	(0.36, 25)	(<0.1, 17)	(<0.01, <0.1)	(0.2, 15)					
Northeast Atlantic	14	2	< 0.1	3	19				
	(0.6, 53)	(0.1, 7)	(<0.01, <0.1)	(<0.1, 12)					
Pacific Northwest	4	< 0.1	< 0.1	0.42	4				
(Dredged)	(<0.1, 16)	(<0.01, <0.1)	(0, < 0.01)	(<0.1, 2)					
Pacific Northwest	173	1	< 0.01	18	192				
(Intertidal) ^c	(4,750)	(0.01, 4)	(<0.01, 0.01)	(<0.1, 81)					
TOTAL	1,903	190	10	723	2826				

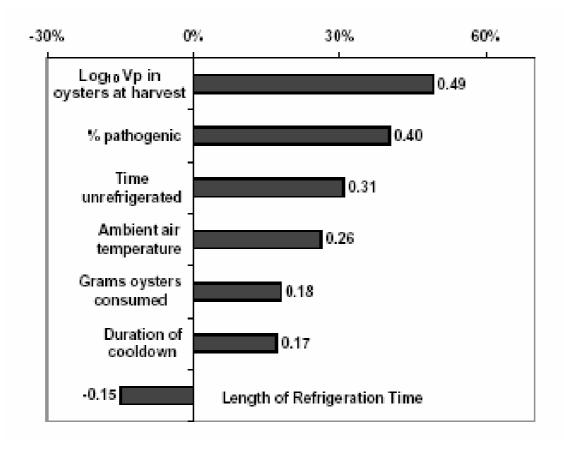
^a Mean annual number illnesses refers to predicted annual number of illnesses (gastroenteritis alone or gastroenteritis followed by septicemia) in the United States each year. Values in parentheses are the 5th and 95th percentiles of the uncertainty distribution. Note: Actual values for the illness predictions are provided in Appendix 7.

^bIncludes oysters harvested from Florida, Mississippi, Texas, and Alabama. The typical time from harvest to refrigeration of oysters for these states is shorter than for Louisiana.

^c Oysters harvested using intertidal methods are typically exposed to higher temperature for longer times before refrigeration compared with dredged methods.

それぞれの地域·採捕方法、季節における発症敗血症者数の予測 (胃腸炎から敗血症に進行する確率を0.0023と推定した場合)

5 5	Mean Annual Cases of Septicemia ^a						
Region	Summer (July to Sept)	Fall (October to December)	Winter (January to March)	Spring (April to June)	Total		
Gulf Coast (Louisiana)	3	<1	<1	1	4		
Gulf Coast (Non-Louisiana) ^b	<1	<1	<1	<1	1		
Mid-Atlantic	<1	<1	<1	<1	<1		
Northeast Atlantic	<1	<1	<1	<1	<1		
Pacific Northwest (Intertidal) ^c	<1	<1	<1	<1	<1		
Pacific Northwest (Dredged) ^c	<1	<1	<1	<1	<1		
TOTAL	4	<1	<1	2	7		


^a Calculated by multiplying the estimated probability of septicemia (0.0023; Table III-4) by the mean predicted number of illnesses (Table V-2). Note: Actual values for septicemia cases shown as <1 are provided in Appendix 7.

^b Includes oysters harvested from Florida, Mississippi, Texas, and Alabama. The typical time from harvest to refrigeration of oysters for these states is shorter than for Louisiana.

Oysters harvested using intertidal methods are exposed to higher temperature for longer times before refrigeration compared with dredged methods.

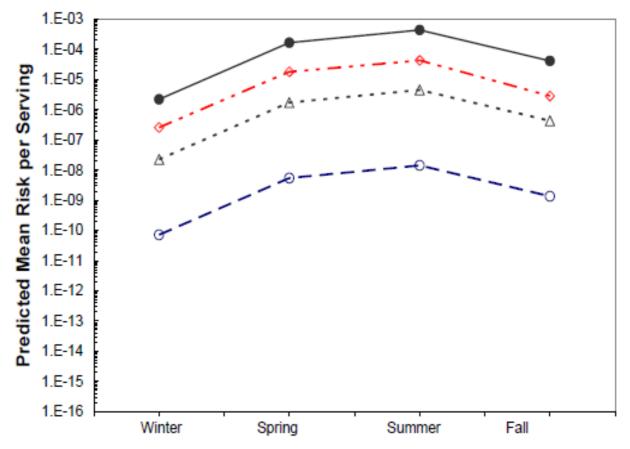
変動性因子の感度分析結果(tornado plot)

(メキシコ湾岸(ルイジアナ州)の夏の場合)

採捕時の総 l/p数 > 総 l/pに対する病原性 l/pの割合 > 非冷蔵の時間 > 気温 > 1回の食事当たりの生かきの重量 > 冷却にかかる時間 > > 冷蔵時間

12

不確実性因子の感度分析結果


(メキシコ湾岸(ルイジアナ州)の夏の場合)

Uncertainty Factor	Conditional Variance ^a	Importance ^b
Dose-response model	5.23x10 ⁻⁸	75.4%
Percentage pathogenic	1.77×10^{-7}	16.5%
Growth rate in oysters	1.83×10^{-7}	13.8%
Relationship of total <i>V. parahaemolyticus</i>		
levels and water temperature	1.89×10^{-7}	11.1%
Year-to-year water temperature variation	2.08×10^{-7}	2.0%

^a Conditional variance refers to the variance of the uncertainty distribution of the mean risk per serving conditional on the specified uncertainty factors being fixed to nominal (mean) values, one at a time. ^b Importance is based on a comparison to an unconditional variance of 2.12×10⁻⁷ for the distribution of mean risk per serving from a simulation in which all uncertainty factors vary.

Dose-Responseモデル > > 総 Vpに対する病原性 Vpの割合 > Vpの増殖速度 > 採捕時の総 Vp数と海水温の関係 > 海水温の年による変動

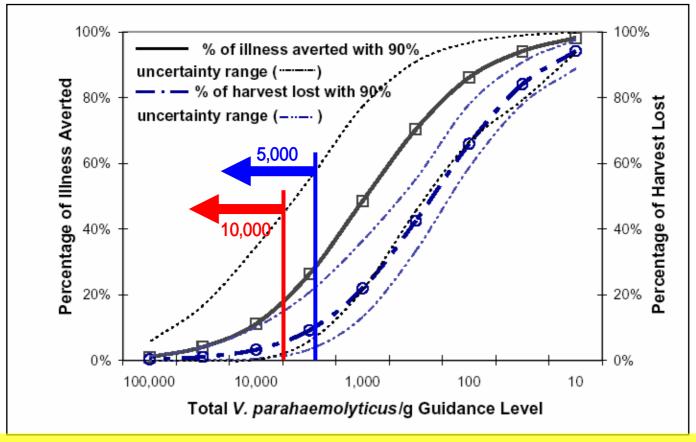
Vp数を減少させる対策を取った場合の 胃腸炎発症率の変化 (メキシコ湾岸(ルイジアナ州)の場合)

[No mitigation (\bullet); immediate refrigeration upon harvest (\Diamond); treatment resulting in a 2-log₁₀ reduction (Δ); treatment resulting in a 4.5-log₁₀ reduction (\Diamond).]

それぞれの地域·採捕方法、季節における Vp数を減少させる対策を取った場合の発症者数の変化

		Predicted Mean Number of Illnesses per Annum ^a						
Region	Season	Baseline	Immediate Refrigeration ^b	2-log ₁₀ Reduction ^c	4.5-log ₁₀ Reduction ^d			
Gulf Coast	Spring	505	54	5.2	<1.0			
(Louisiana	Summer	1,406	139	15	<1.0			
	Fall	132	8.8	1.3	<1.(
	Winter	6.7	<1.0	<1.0	<1.0			
Gulf Coast	Spring	193	29	2.0	<1.0			
(Non- Louisiana)	Summer	299	42	3.1	<1.0			
Louisiana)	Fall	51	7.7	<1.0	<1.0			
	Winter	2.9	<1.0	<1.0	<1.0			
Mid-	Spring	4.4	<1.0	<1.0	<1.0			
Atlantic	Summer	6.9	<1.0	<1.0	<1.0			
	Fall	3.8	<1.0	<1.0	<1.0			
	Winter	<1.0	<1.0	<1.0	<1.0			
Northeast	Spring	3.0	<1.0	<1.0	<1.0			
Atlantic	Summer	14	1.7	<1.0	<1.0			
	Fall	1.7	<1.0	<1.0	<1.(
	Winter	<1.0	<1.0	<1.0	<1.0			
Pacific	Spring	<1.0	<1.0	<1.0	<1.0			
Northwest (Dredged)	Summer	3.9	<1.0	<1.0	<1.0			
(Dieugeu)	Fall	<1.0	<1.0	<1.0	<1.0			
	Winter	<1.0	<1.0	<1.0	<1.0			
Pacific	Spring	18	10	<1.0	<1.0			
Northwest (Intertidal)	Summer	173	96	2.1	<1.0			
(ratertion)	Fall	1.0	<1.0	<1.0	<1.0			
	Winter	<1.0	<1.0	<1.0	<1.0			

^{*}Values rounded to significant digits. See Appendix 7 for actual values of numbers presented as <1.0.</p>
b Represents conventional cooling immediately after harvest, the effectiveness of varies both regionally

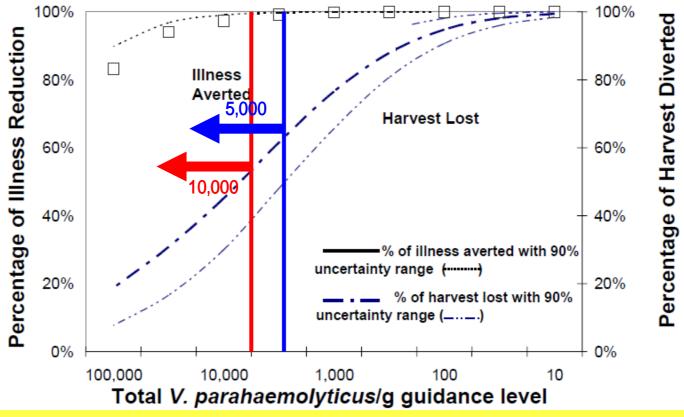

and seasonally and is typically approximately 1-log reduction.

*Represents any process which reduces levels of Vibrio parahaemolyticus in oysters 2-log, e.g., freezing.

⁴ Represents any process which reduces levels of Vibrio parahaemolyticus in oysters 4.5-log, e.g., mild heat treatment, irradiation, or ultra high hydrostatic pressure.

採捕時の総 Vp数に基準を設けた場合の発症者数の変化

とかきの排除率(メキシコ湾岸(ルイジアナ州)の夏の場合)


10,000個/g以上のかきを排除・・・発症者数16%減少、かきの廃棄率3%

5,000個/g以上のかきを排除・・・発症者数28%減少、かきの廃棄率6%

採捕後にVp数が著しく増加することも少なくないため、効果は限定的

<u>摂食時の</u>総 Vp数に基準を設けた場合の発症者数の変化

とかきの排除率(メキシコ湾岸(ルイジアナ州)の夏の場合)

10,000個/g以上のかきを排除・・・発症者数99%減少、かきの廃棄率43%

5,000個/g以上のかきを排除・・・発症者数ほぼ100%減少、かきの廃棄率70%

採捕時の規制よりも発症者数は著しく減少するが、同時にかきの廃棄率も著しく増加する

17