清涼飲料水に係る汚染物質の食品健康影響評価 番号12 1,4-ジオキサン(案)

. 当該化学物質の概要

厚生労働省 2003. 水質基準の見直しにおける検討概要 46 を基にその概要を整理した。

1.物質特定情報46

名称 : 1,4-ジオキサン

CAS No. : 123-91-1

分子式 : C₄H₈O₂

分子量 : 88.1

2.物理化学的性状46

物理的性状 : 特徴的な臭気のある、無色の液体

融点(): 11.8

沸点(): 101

比重(水=1): 1.03

水への溶解度 (mg/L ()): 水に混和する 水オクタノール分配係数 (log Pow): -0.42

蒸気圧(kPa(20)): 4.1

引火点(): 12

爆発温度(): 180

3. 主たる用途46

溶剤や1,1,1-トリクロロエタン安定剤などの用途に使用されるほか、ポリオキシエチレン系非イオン界面活性剤及びその硫酸エステルの製造工程において副生し、洗剤などの製品中に不純物として存在している。

4.現行規制等46

(1)法令の規制値等

水質基準値 (mg/L): 0.05

(12)1,4-ジオキサン

環境基準値 (mg/L): なし

その他基準 (mg/L): 給水装置の構造及び材質の基準 0.005

労働安全衛生法:作業環境評価基準 10ppm

(2)諸外国等の水質基準値又はガイドライン値

WHO (mg/L) : 0.05 (第3版)

EU(mg/L) :なし

USEPA (mg/L): なし

. 毒性に関する科学的知見

1 体内動態及び代謝

(1)吸収

1,4-ジオキサンは、経口及び吸入経路で容易に吸収される。雄の Sprague-Dawley ラットでは、1,000 mg/kg までの経口暴露で、95%以上が消化管から取り込まれた(Young et al. 1978 ⁴⁴)。50 ppm(180 mg/m³)での 6 時間の吸入暴露において、ヒトではほぼ吸収されるのに対し、ラットでは完全な吸収が認められた。体重 1 kg 当たりの取り込み量は、ラットでは、71.9mg/kg 体重、ヒトでは、5.4mg/kg 体重であった(Young et al. 1977 ⁴⁵, Young et al. 1978 ⁴⁴)。

1,4-ジオキサンのヒトの皮膚からの取り込みに関するデータは得られていないが、ヒト以外の霊長類においては 24 時間の非閉塞塗布により 1,4-ジオキサンの 3%近くが吸収された (Marzulli et al. 1981 22)。ヒトの皮膚を用いた *in vitro* の試験では、閉塞塗布の場合は塗布量の 3.2%が皮膚を透過し、非閉塞塗布の場合は 0.3%であった。この相違は、1,4-ジオキサンの高い揮発性により説明できると考えられる (ECETOC 1983 5)。

(2)分布

SD ラットの単回腹腔内投与試験から、1,4-ジオキサンは血液、肝臓、腎臓、脾臓、肺、結腸及び骨格筋に分布し、腎臓における最初の 2 時間後までの計測を除くと、放射能比 (nmoles/g wet weight)は、 ほぼ同用量であった。組織中の巨大分子との結合は、肝臓や脾臓、結腸における方が他の組織よりも有意に高いことが見出された (Woo et al. 1997b⁴¹

a) Reitz らによる生理学的薬物動態 (PBPK) モデルから、ヒトの肝臓での AUC 値は、気中又は水中の低濃度の 1,4-ジオキサンに連続的に暴露されたラット又はマウスの値より低いことが推測された。PBPK モデルにおいてラットに対して得られた代謝速度定数は、Km=29.4 mg/L 及び Vmax=13.7 mg/kg 体重/hr であった。ヒトに対する値は、Km=3.0 mg/L及び Vmax=6.35 mg/kg 体重/hr であった (Reitz et al. 1990 31)。

(3)代謝

動物とヒトにおける主要な代謝物は、 -ヒドロキシエトキシ酢酸 (HEAA) である。動物 試験で確認された他の代謝物としては、1,4-ジオキサン-2-オン、 -ヒドロキシエトキシアセトアルデヒド、ジエチレングリコール、シュウ酸及び CO_2 がある(ATSDR 2004^{-1} , DeRosa et al. 1996^{-4} 、WHO 2005^{-41})。

(4)排泄

未変化の 1,4-ジオキサンは、尿や呼気中に排泄される (DeRosa et al. 1996 ⁴)

Young らは、ラットにおける 1,4-ジオキサンの薬物動態が用量に依存することを示した。 雄の SD ラットに 10、100、1,000 mg/kg の 14 C で放射能標識した 1,4-ジオキサンを経口投与すると、尿中には放射能標識のある代謝物がそれぞれ、98.74、85.52、75.74%、呼気中には 1,4-ジオキサンとして、それぞれ、0.43、4.69、25.25%排泄された。糞中への排泄(1~2%)及び呼気中の CO_2 (2~3%)は、用量により左右されなかった。3 及び 10 mg/kg の低用量の静脈内投与では、血漿からの 1,4-ジオキサンの排泄は直線的であり半減期は 1.1 時間であった。低用量と高用量の間で、肺および腎臓からのクリアランス速度は大きく異ならなかったため、飽和は排泄よりむしろ生物学的変換(代謝)と関係していると考えられる。 Young らは、ラットにおける 1,4-ジオキサンの代謝は 100 μ g/mL 以上の血漿レベルで飽和に達すると推定している (Young et al. 1978 44)。

雄の Sprague-Dawley ラットに 50 ppm の 1,4-ジオキサンを 6 時間吸入暴露すると、およそ 99%が HEAA として排泄された (Young et al. 1978 ⁴⁴)。ヒトにおいて、50ppm の 1,4-ジオキサンを 6 時間吸入暴露した終了時の血漿からの 1,4-ジオキサンの排泄半減期は 59 分であった。HEAA の排泄半減期は 2.7 時間であり、腎臓クリアランスは 121 mL/分であった。

1,4-ジオキサンの腎臓クリアランスは $0.34\,$ mL/分であり、代謝クリアランスは $75\,$ mL/分であった。 $50\,$ ppm の吸入における定常状態の血漿中濃度は、ヒトとラットにおいて同様であり、それぞれ $10\,$ μg/mL、 $7.3\,$ μg/mL のレベルであった。 $50\,$ ppm で $1\,$ 日 $8\,$ 時間の毎日の反復暴露をシミュレートしたところ、1,4-ジオキサンは $8\,$ 時間の単回暴露後に到達する濃度以上には決して蓄積しないことが示された(Young et al. 1977^{45})。

2. ヒトへの影響

(1)急性影響

1,4-ジオキサンへの職業暴露(吸入)による 2 人の死亡例が報告されている。主な影響として出血性腎炎、小葉中心性の肝細胞壊死、激しい心窩部痛、痙攣、昏睡が認められた。 1 例では暴露量や期間を推定することができなかった。もう 1 例では、作業者は 208 ~ 650 ppm の 1,4-ジオキサンに 1 週間暴露されていた (DeRosa et al. 1996⁴)。

ボランティアによる短時間の吸入暴露研究(4試験区 200・300 ppm: 各 15 分間、1,600 ppm: 10 分間、5,500 ppm: 1 分間)において、眼、鼻、喉における粘膜刺激が臨床症状として認められた(DeRosa et al. 1996 ⁴)。1,4-ジオキサン(50 ppm)の6時間の吸入暴露で唯一認められた影響は、軽度の眼の刺激性のみであり、胸部 X 線、心電図、呼吸機能検査、血液検査、尿検査において影響は認められなかった(Young et al. 1977 ⁴⁵、DeRosa et al. 1996 ⁴)。

(2)慢性影響

推定暴露濃度が $0.02 \sim 48 \text{ mg/m}^3$ ($0.006 \sim 13.3 \text{ ppm}$) の1,4-ジオキサンに、平均25 年間にわたり暴露された作業者 (24 名)についてのコホート研究では、化学物質暴露に関係した臨床症状又は死亡例は認めらなかった。6 名の作業者において、末梢リンパ球における染色体異常は、対照群と比較して増加していなかった。また、8 名に血清トランスアミナーゼ (AST、ALT、-GTP)の高値が認められた。しかし、Thiess らは、これらの変化は習慣性飲酒による可能性があると結論した (Thiess et al. 1976^{36})。

0.36~61 mg/m³ [WHO による数値]の1,4-ジオキサンに、最低1か月から約20年間に

わたって暴露された職業コホート (165 名) 研究では、がんによる死亡例数は推計値と異ならなかった (Buffler et al. 1978^2)。

デンマークにおける比較死亡率研究が、がん登録簿にある19,000例について実施された。1,4-ジオキサンを取り扱う企業の男性作業員では、肝がんの標準化羅患率比(SPIRS:standardized proportional incidence ratio=164)が有意に高かった。アルコール摂取の関連も疑われ、この増加を説明することはできなかったが、1,4-ジオキサン以外の化学物質との混合暴露および暴露期間や暴露量に関する調整は行われていない(Hansen 1993¹⁰)。

3.実験動物等への影響

(1)急性毒性試験

DeRosa らの総説によると、経口 LD $_{50}$ 値は、ラットで $5,400 \sim 7,300$ mg/kg 体重、マウスで 5,900 mg/kg 体重、モルモットで $3,300 \sim 4,000$ mg/kg 体重、ウサギで 2,000 mg/kg 体重である (DeRosa et al. 1996^4)。 2 時間の吸入 LC $_{50}$ 値は、ラットで 46 g/m 3 、マウスで 37 g/m 3 である (RTECS 2000 32)。ウサギにおける経皮 LD $_{50}$ 値は 7,600 mg/kg 体重であったが、 8,300 mg/kg 体重で暴露された Wistar ラットにおいては同等の毒性影響は認められなかった。実験動物(ラット、マウス、モルモット、ウサギ、イヌ)における致死量付近での主な急性影響は、中枢神経系の抑制(昏睡等)及び重度の胃、肝、腎の病変であると報告されている (DeRosa et al. 1996^4)。

(2)短期毒性試験

1)ラット(2週間 飲水投与)

F344 ラット(雌雄各群 10 匹)における 1,4-ジオキサン(1,100、3,330、10,000、30,000、90,000ppm) の 2 週間飲水投与試験を行った。雌雄ともに 10,000ppm(ATSDR 換算によると、雄 1,010、雌 1,040mg/kg 体重/日相当)群以上に嗅上皮細胞の核肥大が、30,000ppm 群で肝臓の小葉中心性の肝細胞腫脹および小葉中心性の空胞変性、腎臓の近位尿細管の水腫様変性、脳の空胞変性が認められた。さらに、剖検において、1,100ppm 群以上で肝臓および腎臓に貧血様色調がみられた(JBRC 1990⁴⁷)。

ATSDR では、NOAEL を、嗅上皮細胞の核肥大に基づき、雄:370 mg/kg 体重/日、雌:400mg/kg

体重/日(試験中濃度:3,330ppm 群に相当)とした(ATSDR 20041)。

2) ラット(67日間 飲水投与)

ラット(系統・性別不明、1群6匹)における1,4-ジオキサン(50,000 ppm:5% by volume、WHO 換算によると7,230mg/kg 体重/日相当)の67日間飲水投与試験を行った。死亡例(3/6)が認められ、重度の肝臓及び腎臓の病変(細胞変性等)も認められた(Fairley et al. 1934⁶)。

3) ラット(11週間 飲水投与)

SD ラット(雄各群 4 匹)における 1,4-ジオキサン(0、10、1,000 mg/kg 体重/日)の 11 週間飲水投与試験において、生存動物の病理組織学的検査を行った。1,000 mg/kg 体重/日において相対肝重量の増加及び肝臓病変(小葉中心性の肝細胞の軽微な腫脹を伴う肝 DNA 合成の有意な増加)が認められた。しかし、10 mg/kg 体重/日においてはこれらの所見は認められなかった(Stott et al. 198135)。

4) ラット(13週間 飲水投与)

F344 ラット(雌雄各群 10 匹)における 1,4-ジオキサン(640、1,600、4,000、10,000、25,000ppm)の 13 週間飲水投与試験を行った。雌雄の鼻腔に、1,600ppm(ATSDR 換算によると雄 150、雌 200mg/kg 体重/日相当)群以上で呼吸上皮細胞の核肥大の発生が増加し、4,000ppm 群以上で嗅上皮細胞核肥大の発生の増加がみられた。また肝臓において、小葉中心性の肝細胞腫脹が、雄の 1,600ppm 群以上および雌の 10,000ppm 群以上でみられた(JBRC 1990⁴⁷)。

ATSDR では、2 週間の試験と同様に、嗅上皮細胞の核肥大に基づき、NOAEL を雄: 60 mg/kg体重/日、雌: 100mg/kg体重/日(試験中濃度: 640ppm 群に相当)とした(ATSDR 2004¹)。

5)マウス(2週間 飲水投与)

 $Crj:BDF_1$ マウス(雌雄各群 10 匹)における 1,4-ジオキサン(1,100、3,330、10,000、30,000、90,000ppm)の 2 週間飲水投与試験を行った。雌雄ともに 30,000ppm(ATSDR 換算によると、雄:2,550、雌:3,230mg/kg 体重/日相当)群では、肝臓の小葉中心性の肝細胞腫脹がみられた(JBRC 1990⁴⁷)。雄 1,380mg/kg 体重/日~雌 1,780mg/kg 体重/日(試験中濃度:10,000ppm 群に相当)においては、有意な影響はみられなかった(ATSDR 2004¹)。

6)マウス(67日間 飲水投与)

マウス(系統・性別不明、1群6匹)における1,4-ジオキサン(50,000 ppm:5% by volume、WHO 換算によると9,812mg/kg 体重/日相当)の67日間の飲水投与試験を行った。組織学的検査において、重度の肝臓及び腎臓の病変(細胞変性等)が、認められた(Fairley et al. 1934⁶)。

7)マウス(13週間 飲水投与)

Crj:BDF₁マウス(雌雄各群 10 匹)における 1,4-ジオキサン(640、1,600、4,000、10,000、25,000ppm)の 13 週間飲水投与試験を行った。気管支上皮細胞の核肥大が雄の 4,000ppm 群以上、雌の 1,600ppm (ATSDR 換算によると 410 mg/kg 体重/日相当)群以上にみられた。肝臓における小葉中心性の肝細胞腫脹が雌雄の 4,000ppm 群以上でみられた。さらに、雄の 4,000ppm 群以上の腎臓において、近位尿細管の空胞化が減少した(JBRC 1990⁴⁷)。

ATSDR では、NOAEL を雌の気管支上皮細胞の核肥大に基づき、170 mg/kg 体重/日(試験中濃度:640ppm 群に相当)とした(ATSDR 20041)。

(3)長期毒性試験

1)ラット(716日間=2年間 飲水投与)

Sherman ラット(雌雄各群 60 匹)における 1,4-ジオキサン(0、0.01、0.1、1.0% [114~198 日目の平均摂取量は、雄:0、9.6、94、1,015mg/kg 体重/日、雌:0、19.0、148、1,599mg/kg 体重/日])の 716 日間の飲水投与試験が行われた。1.0%投与群では、体重増加抑制や、生存率、飲水量の低下を示した。病理組織学的検査では、0.1%投与群以上で尿細管上皮及び肝細胞の変性と壊死を示した。 Kociba らは、NOAEL を雄:9.6 mg/kg 体重/日、雌:19 mg/kg 体重/日とした (Kociba et al. 1974¹⁹)。

2)ラット(104週間=2年間 飲水投与)

F344/DuCrj ラット(雌雄各群 50 匹)における 1,4-ジオキサン(200、1,000、5,000 ppm。 ATSDR 換算によると、雄;16、81、398mg/kg 体重/日。雌;21、103、514mg/kg 体重/日)の 104 週間の飲水投与試験が行われた。雌雄の 1,000ppm 群以上で、肝臓の過形成の増加が認められ、また、雌雄の 5,000 ppm 群に肝海綿状変性の増加が認められた (Yamazaki et al.1994

⁴²)。この試験における 200ppm は、16~21mg/kg 体重/日に相当する (WHO 2005⁴¹)。

3)ラット(2年間 吸入暴露)

Wistar ラット(雌雄各 96 匹)における 1,4-ジオキサン(0.4 mg/L; WHO 換算によると 105 mg/kg 体重/日相当) の蒸気を <math>2 年間 $(1 日 7 時間、週 5 日) 吸入暴露した。病理組織学的検査において化学物質暴露に起因した病変は認められなかった(Torkelson et al. <math>1974^{38}$)。

4)マウス(104週間=2年間 飲水投与)

Crj:BDF1 マウス(雌雄各群 50 匹)における 1,4-ジオキサン(0、500、2,000、8,000 ppm。 ATSDR 換算によると、雄;66、251、768mg/kg 体重/日、雌;77、323、1,066mg/kg 体重/日)の 104 週間飲水投与試験を行った。雌雄の 2,000ppm 群以上で嗅上皮細胞の核肥大が、8,000ppm 群で、嗅上皮の萎縮、呼吸上皮の核肥大がみられた。これらの所見は、1,4-ジオキサンによる変化と考えられた。肝臓では、雄の 8,000ppm 群に血管拡張の増加がみられたが、ラットで観察された過形成の増加は認められなかった。血液生化学的検査では、雌雄の 2,000ppm 群以上で、AST、ALT、LDH、ALP の増加が認められた。また、気管の核増大が雄の 8,000ppm 群、気管支の核増大が雌雄の 2,000ppm 以上の群に観察され、これに伴って気管 や気管支の上皮の萎縮や泡沫状細胞の肺胞への出現がみられた(JBRC 1990 48)。

(4)生殖・発生毒性試験

1)ラット(妊娠6~15日 強制経口投与)

SD ラット(雌、各群 18~20 匹)における 1,4-ジオキサン(0.25、0.5、1.0 mL/kg 体重/日; 比重または WHO 換算によると 258、516、1,033 mg/kg 体重/日相当。)の妊娠 6~15日〔WHOでは、妊娠 5~14日(精子確認日=妊娠 0日)としている〕の強制経口投与試験を行った。投与期間中の摂餌量の低下というような母動物毒性が、1.0 mL/kg 体重/日群において観察された。着床数や生存胎児数、あるいは着床後胚損失や奇形胎児の発生率における有害影響は認められなかったが、1.0 mL/kg 体重/日群において、胎児の体重減少及び胸骨分節の骨化遅延が認められた(Giavini et al. 1985⁸)。

WHO では、生殖・発生毒性の NOAEL を、母動物の摂餌量減少や胎児の体重減少及び骨化遅延に基づいて、516 mg/kg 体重/日とした(WHO 2005⁴¹)。

(5)遺伝毒性試験

1,4-ジオキサンの遺伝毒性試験の結果を表 1、表 2 に示す (ATSDR 2004 ¹)。

1) in vitro 試験

1,4-ジオキサンは、代謝活性化の有無によらず、大腸菌 K-12 uvrB/recA において DNA 修復を誘発せず(Hellmér & Bolcsfoldi 1992 ¹²)、サルモネラ菌(Stott et al. 1981 ³⁵, Haworth et al. 1983 ¹¹, Khudoley et al. 1987 ¹⁶)又は L5178Y マウスリンパ腫細胞(McGregor et al. 1991 ²⁴)を用いた試験において変異原性を示さなかった。チャイニーズハムスターCHO 細胞において、1,4-ジオキサンは染色体異常を誘発しなかったが、代謝活性化の非存在下で姉妹染色分体交換の軽微な増加を引き起こした(Galloway et al. 1987 ⁷)。また、1,4-ジオキサンはBALB/3T3 マウス細胞の形質転換を起こすことが報告された(Sheu et al. 1988 ³³)。

Morita & Hayashi による 1,4-ジオキサンの遺伝毒性を調べた *in vitro* の試験(サルモネラ菌を用いた復帰突然変異試験、マウスリンパ腫細胞を用いたマウスリンフォーマ tk 試験、チャイニーズハムスターCHO 細胞を用いた染色体異常試験、姉妹染色分体交換試験、小核試験)は、陰性であった(Morita & Hayashi 1998 ²⁸)。

2) in vivo 試験

ショウジョウバエを用いた遺伝毒性試験では、伴性劣性致死変異の誘発は認められなかったが(Yoon et al. 1985 43) 減数不分裂に対しては陽性反応が認められた(Muñoz & Barnett 2002^{29})。

2,550 または 4,200 mg/kg の 1,4-ジオキサンを SD ラットに 2 回経口投与した試験では、肝細胞に用量に依存して DNA 鎖切断が認められた。しかし、840 mg/kg 以下の投与では有意な影響は認められなかった(Kitchin & Brown 1990 ¹⁸)、1,000 mg/kg の 1,4-ジオキサンの SD ラットへの単回強制経口投与では、肝に DNA のアルキル化や修復はみとめられなかった(Stott et al. 1981 ³⁵)。Fischer344 ラットへの 1,4-ジオキサン 1,000 mg/kg の単回経口投与試験や、2%の 1,4-ジオキサンの 1 週間にわたる飲水投与試験では、肝細胞の DNA 修復の誘発は認められなかった(Goldsworthy et al. 1991 ⁹)。また、1%の 1,4-ジオキサンを 8 日間投与後、1,4-ジオキサンを 1,000 mg/kg で単回経口投与した試験においても、ラットの鼻上皮細胞での DNA 修復の誘発は認められなかった(Goldsworthy et al. 1991 ⁹)。 Uno らはFischer 344 ラットへの 1,4-ジオキサン 2,000 mg/kg の単回経口投与で肝細胞の複製 DNA 合成の誘発は認められなかったと報告しているが(Uno et al. 1994 ⁴⁰)、同じグループによる

その後の研究で、試験条件を変えることにより、1,4-ジオキサンの複製 DNA 合成の誘発が 検出されたとの報告がある (Miyagawa et al. 1999 ²⁷)。

骨髄の小核試験について、3 つの研究が報告されている。雄の C57BL/6 及び CBA マウスに 1,4-ジオキサンをそれぞれ 3,600mg/kg、1,800mg/kg 単回経口投与した試験においては陰性であった (Tinwell & Ashby 1994 37)。雄の B6C3F₁ マウスを用いた試験では明確な結論が得られなかった (McFee et al. 1994 23)。雌雄の C57BL/6 マウスに 1,4-ジオキサンを最高用量 5,000mg/kg で経口投与した試験では明らかな陽性を示し、雄の BALB/c マウスに 5,000mg/kg を経口投与した試験に対しては陰性であった。これらの結果から、マウスの骨髄の小核試験における感受性は、系統特異的な可能性が示唆された (Mirkova 1994 26)。

Morita & Hayashi は 1,4-ジオキサンの遺伝毒性を $in\ vivo$ においても検討している。マウスの末梢血を用いた小核試験では最高用量 3,000mg/kg においても陰性であったが、マウスの肝細胞を用いた小核試験では 2,000mg/kg 以上で、陽性であった。 Morita & Hayashi は、この陽性反応は非遺伝毒性のメカニズム(例:肝細胞再生の助長)によるものであろうと結論付けている(Morita & Hayashi 1998 28)。

ATSDR は、得られている情報は、1,4-ジオキサンは遺伝毒性をもたず、もしあったとしても弱い遺伝毒性物質であることを示唆している、としている(ATSDR 2004^{-1})。

(6)発がん性試験

標準的経口発がん性試験

1)ラット(716日間=2年間 飲水投与)

Sherman ラット(雌雄各群 60 匹)における 1,4-ジオキサン(0、0.01、0.1、1.0% [114~198 日目の平均摂取量は、雄 9.6、94、1,015mg/kg 体重/日、雌 19.0、148、1,599mg/kg体重/日])の 716 日間飲水投与試験を行った。1.0%群に肝細胞がんや胆管細胞腺腫、鼻腔扁平上皮がんが観察された。Kociba らは、発がん性の NOAEL を、雄 94 mg/kg 体重/日、雌 148 mg/kg 体重/日とした (Kociba et al. 1974 19)。

2) ラット(104週間=2年間 飲水投与)

F344/DuCrj ラット(雌雄各群 50 匹)における 1,4-ジオキサン(0、200、1,000、5,000

ppm)の104週間飲水投与試験を行った。肝細胞腺腫の発生率が増加した(対照、低用量、中用量、高用量群において、雄:0/50、2/50、4/50、24/50、雌:1/50、0/50、5/50、38/50。)。 さらに、高用量群の雌雄においては、肝細胞がんも増加し(対照~中用量群;雌雄ともに0/50、高用量群;雄:14/50、雌:10/50)、腹膜中皮腫(雄)皮下線維腫(雄)乳腺線維腺腫(雄)鼻腔腫瘍(雌雄)及び乳腺腺腫(雌)も増加した(Yamazaki et al. 1994 ⁴²)。 WHO では、肝細胞腫瘍の NOAEL は 200 ppm (16~21 mg/kg 体重/日)よっての腫瘍に対する LOAEL は 1,000 ppm (81~103 mg/kg 体重/日)とした(WHO 2005⁴¹)。

3) ラット(110週間=約2年間 飲水投与)

Osborne-Mendel ラット(雌雄各群 35 匹)における 1,4-ジオキサン(雄:0、240、530 mg/kg体重/日、雌:0、350、640 mg/kg体重/日)の 110 週間飲水投与試験を行った。ラットの試験における鼻腔扁平上皮がんの発生率は、雌雄において有意に増加した(雄:0/33、12/33、16/34、雌:0/34、10/35、8/35)。また、雌において、用量依存性の肝腺腫の有意な増加がみとめられた (0/31、10/33、11/32)(NCI 1978 ³⁰)。

4)マウス(90週間 飲水投与)

B6C3F₁マウス(雌雄各群 50 匹)における 1,4-ジオキサン(雄:0、720、830 mg/kg 体重/日、雌:0、380、860 mg/kg 体重/日)の 90 週間飲水投与試験を行った。雌雄ともに、用量に依存して肝細胞腺腫またはがんの発生率が増加した(雄:8/49、19/50、28/47、雌:0/50、21/48、35/37)(NCI 1978 30)。

5)マウス(104週間=2年間 飲水投与)

Crj:BDF1 マウス(雌雄各群 50 匹)における 1,4-ジオキサン(0、500、2,000、8,000 ppm)の 104 週間飲水投与試験を行った。肝細胞がんの発生率は、雄の高用量群と、雌の投与群全てにおいて、有意に増加した(雄:15/50、20/50、23/50、36/50;雌:0/50、6/50、30/50、45/50)。また、雄の 8,000ppm 群において、鼻腔神経上皮腫が 1 例みられ、雌の 8,000ppm 群には、鼻腔の腺がんが 1 例に見られた (Yamazaki et al. 1994 ⁴²)。

WHO では、この試験では肝細胞腫瘍の NOAEL は求められず、すべての腫瘍に対する LOAEL を 500 ppm (66~77 mg/kg 体重/日) とした (WHO 2005⁴¹)。

その他の発がん性試験

6)マウス(8週間 経口投与)

A/Jマウス(雌雄、11~16 匹/群)における 1,4-ジオキサン(総用量 24,000 mg/kg)の 8 週間(週3回)の経口投与を行い、24 週目まで、肺腫瘍数を調べた。肺腫瘍の発生率の 増加は認められなかった (Stoner et al. 1986³⁴)。

7)マウス(8週間 腹腔内投与)

A/J マウス(雌雄、11~16 匹/群)における1,4-ジオキサン(総用量4,800、12,000、24,000mg/kg、溶媒;蒸留水)の8週間(週3回)の腹腔内投与を行い、24週目まで、肺の腺腫を調べた。12,000 mg/kg 群の雄で肺腫瘍の発生率の有意な増加が認められたが、雄の他の2群(4,800、24,000 mg/kg 体重/日)及び雌の全用量群では、肺腫瘍の発生率の増加は認められなかった(Stoner et al. 1986³⁴)。

8)マウス(8週間 腹腔内投与)

A/J マウス(雄各群 30 匹)における 1,4-ジオキサン(400、1,000、2,000 mg/kg、溶媒: 生理食塩液)の 8 週間(週3回)腹腔内投与試験を行った。2,000 mg/kg 群で、個体あた りの肺腫瘍数が有意に増加した(溶媒対照群:動物あたり 0.28、高用量群:動物あたり 0.97) (Maronpot et al. 1986 ²¹)。

9)ラット(2年間 吸入暴露)

Wistar ラット(雌雄各群 96 匹)における 1,4-ジオキサン (0.4 mg/L; WHO 換算によると 105 mg/kg 体重/日相当)の 2 年間 (1日 7 時間、週 5日)吸入暴露試験を行った。肝臓や鼻およびその他の器官にも暴露と関連する有意な発がん性は認められなかった (Torkelson et al. 1974³⁸)。

10)マウス(経口投与、イニシエーション作用)

SENCAR マウス(雌)における 1,4-ジオキサンの皮膚発がんに対するイニシエーション作用を検討するための試験を行った。イニシエーターとして 1,000 mg/kg の 1,4-ジオキサンを経口投与した後、1 μ g の 12-0-テトラデカノイルフォルボール-13-アセテート (TPA)

を週3回、20週にわたり皮膚に塗布した。対照群には、1,4-ジオキサンの代わりにアセトンを投与した。対照群と比較して、皮膚の乳頭腫の発生頻度の上昇は認められず、本試験条件下では1,4-ジオキサンに皮膚発がんに対するイニシエーション作用がないことが示された(Bull et al. 1986³)。

11) ラット(経口投与、プロモーション作用)

SD ラット (雄各群 8~11 匹) における 1,4-ジオキサンの肝発がんに対するプロモーション作用を検討するための試験を行った。肝発がんを惹起 (イニシエーション) するために肝の 2 / 3 の部分切除及びジエチルニトロソアミン (DEN、30 mg/kg (単一用量)) 腹腔内投与の前処理を行い、その 5 日後から、1,4-ジオキサンを 100 又は 1,000 mg/kg の用量 (溶媒;生理食塩液)で 1 日 1 回、週 5 日、7 週間にわたり強制経口投与した。肝病巣は、DEN のイニシエーション処理のみでは 1.3/cm² であったのに対して、高用量の 1,4-ジオキサン処理群では 4.7/cm² まで増加した。肝の部分切除又は DENA のイニシエーションを施さなかった場合、1,4-ジオキサン単独の 100 又は 1,000 mg/kg 体重/日投与群では、病巣は誘発されなかった (Lundberg et al. 1987 20)。

12)マウス(経皮膚投与、プロモーション作用)

 $50 \mu g$ のジメチルベンズアントラセン (DMBA) による惹起後、Swiss-Webster マウス (雄 4 匹、雌 5 匹) の皮膚に 1,4-ジオキサンの誘導体と考えられるジオキサンのアセトン溶液を週 3 回、59 週にわたり 0.2μ ずつ塗布したところ、皮膚や肺、腎臓での腫瘍の数が増加した (King et al. 1973^{17})。

. 国際機関等の評価

1 . International Agency for Research on Cancer (IARC)

グループ2B:ヒトに対し発がん性の可能性がある物質(IARC 1999¹³)。

1,4-ジオキサンは、ヒトに対する発がん性の証拠は不十分であり、実験動物に対する十分な発がん性の証拠がある。

2 . Joint Expert Committee on Food Additives (JECFA) Monographs and Evaluations 評価書なし。

3. WHO 飲料水質ガイドライン 第3版(WHO 2005⁴¹)

1,4-ジオキサンは、実施されたほとんどの長期経口試験において、げっ歯類に肝臓及び 鼻腔の腫瘍を引き起こした。また、高用量を投与したラットでは腹膜や皮膚、乳腺におけ る腫瘍も観察された。肺腫瘍は腹腔内投与で特異的に認められた。労働者に関するコホー ト研究ではがんによる死亡率の上昇は認められなかったが、肝がんの有意な増加が死亡率 の比較研究で見出された。しかし、サンプル数が少なく、暴露データが欠如しているため、 これはヒトの発がん性評価のためには不十分である。

1,4-ジオキサンには弱い遺伝毒性がある可能性があることが示唆されているが、本物質は明らかに様々な器官に複数の腫瘍を誘発するため、発がんリスクを推定するために線形多段階モデルが採用された。最も感受性の高い部位について計算した結果、ラットの飲水投与試験から得られた鼻腔がん(NCI 1978 30)及び肝腫瘍(Yamazaki et al. 1994 42)のデータから、体表面積補正なしで 10^{-5} の生涯発がん過剰リスクに対応する飲料水中の濃度として、88 及び 54 μ g/L が導かれた。

一方、1,4-ジオキサンは低用量においてヒトに対し遺伝毒性をもたないと仮定すると、ガイドライン値の算出に TDI のアプローチを用いることもできる。非発がんエンドポイントを指標とすると、ラットの長期飲水試験(Kociba et al. 1974 ¹⁹)から得られた NOAELである 9.6 mg/kg 体重/日に不確実係数 100(種差び個人差)を適用することにより、TDIとして 96 μg/kg 体重/日が求められた。発がんエンドポイントを指標とすると、ラットの長期飲水投与試験(Yamazaki et al. 1994 ⁴²)から得られた NOAELである 16 mg/kg 体重/日に不確実係数 1000(種差及び個人差に対し 100、非遺伝毒性発がん性に対し 10)を適用することにより、TDIとして 16 μg/kg 体重/日が求められた。

[参考]

発がんエンドポイントを指標として求められた低い方の TDI に 10%の配分率を適用し、同等の飲料水中の濃度として 48 μ g/L が算出された。

54 と 48 μ g/L という類似した値が 2 つの異なるアプローチから導かれた。端数処理した 50 μ g/L が 1,4-ジオキサンの適切なガイドライン値であると考えられる (WHO 2005 41)。

4.米国環境保護庁(US EPA)

Integrated Risk Information System (IRIS) (U.S. EPA 1990³⁹)

EPA/IRISでは、化学物質の評価を、TDI に相当する経口リファレンスドース(経口 RfD) として慢性非発がん性の情報を提供するとともに、もう一方で、発がん影響について、発がん性分類についての情報を提供し、必要に応じて、経口暴露によるリスクについての情報を提供している。

(1)経口RfD

評価書なし

(2)発がん性

米国 EPA は、複数種のラットでの鼻腔がん及び肝臓がん、マウスでの肝臓がん、モルモットでの胆嚢がんの誘発を示す十分な証拠により、1,4-ジオキサンをグループ B2(ヒトに対して発がんの可能性が高い:probable human carcinogen)に分類した。

経口暴露によるリスク

EPA は 1,4-ジオキサンによる発がんには閾値がないと仮定し、低濃度暴露における過剰発がんリスクを数理モデル(線形多段階モデル)により推定した。その際、EPA は Osborne-Mendel ラットを用いた 1,4-ジオキサンの飲水投与試験における鼻甲介腫瘍データ (NCI 1978 30) に基づいて、発がんリスクの定量的評価を行った。その結果、当該物質に体重 1 kg あたり 1 mg の用量で生涯にわたり経口暴露した時にこの暴露に関係してがんが生じるリスク (経口傾斜係数: Oral Slop Factor、高い方の 95%信頼限界で表す)は 1.1 $\times 10^{-2}$ となった。

この値に基づき、成人体重を 70kg、1日の飲水量を 2L と仮定して、飲料水ユニットリスク(当該物質を 1L あたり 1µg 含む飲料水を生涯にわたり摂取するときの過剰発がんリスク)を算出したところ、3.1×10⁻⁷ となる。また、この値に基づき、摂取したときに一定のリスクレベルとなる飲料水中の濃度を算出すると下表のようになる。

- ・経口傾斜係数 (Oral Slope Factor): 1.1×10⁻²/mg/kg 体重/日
- ・飲料水ユニットリスク: 3.1×10⁻⁷/µg/L
- ・リスクレベルと飲料水中濃度

リスクレベル	濃度
10 ⁻⁴ (1/10,000)	300 μg/L
10 ⁻⁵ (1/100,000)	30 μg/L
10 ⁻⁶ (1/1,000,000)	3 μg/L

5. 我が国における水質基準の見直しの際の評価(厚生労働省 200346)

1,4-ジオキサンには弱い遺伝毒性の可能性しか示唆されなかったが、その化合物は様々な器官で多数の腫瘍を明らかに誘発する。IARC は、1,4-ジオキサンを Group 2 B (ヒトへの発がん性の可能性)に分類している(IARC 1999¹³)。

雌雄 F344/DuCrj ラットに 1,4-ジオキサンを 200、1,000、5,000ppm の濃度で 104 週間飲水投与した結果、肝細胞腫瘍の発生率は、最低用量の 200ppm 以上から用量依存的に増加した。また、最高用量では、腹膜中皮腫、皮下線維腫、乳腺線維腺腫、鼻腔腫瘍、乳腺腺腫の発生も対照群に比べ増加していた (Yamazaki ら 1994⁴²)。

弱い遺伝毒性しか示されてないが、多臓器での腫瘍を誘発することより、閾値なしのアプローチによる評価値の算定が妥当であると考えられた。ラットの肝細胞腫瘍の増加に基づく、線形マルチステージモデルによる 10⁻⁵ 発がんリスクに相当する飲水濃度は、0.054mg/L と計算された。したがって、評価値は、0.05mg/L が妥当であると考えられる。

. 食品健康影響評価

WHO飲料水水質ガイドライン(第3版) 我が国の水質基準見直しの際の評価等に基づき、当該物質に係る食品健康影響評価を行った。

評価に供した毒性試験は、ヒトへの健康影響として、職業暴露、吸入暴露研究、実験動物試験として、急性毒性試験(ラット、マウス、モルモット、ウサギ)、短期毒性試験(ラット、マウス)、生殖・発生毒性試験(ラット)、遺伝毒性試験、発がん性試験(ラット、マウス)等である。各試験における NOAEL 等を表 4 に示した。

1.有害性の確認

(1)ヒトへの影響

1)急性影響

1,4-ジオキサンの職業暴露(吸入)による死亡例の報告があり、主な影響として出血性腎炎、肝細胞壊死、心窩部痛、痙攣、昏睡が認められた。ボランティアによる短期吸入暴露研究において、眼、鼻、喉における粘膜刺激が認められた。

2)慢性影響

1,4-ジオキサンに、慢性暴露された作業者についてのコホート研究では、暴露に関係した臨床症状又は死亡例は認められず、別の職業コホート研究においても、がんによる死亡例数は推計値と異ならなかった。

デンマークにおける比較死亡率研究において、1,4-ジオキサンを取り扱う作業員では、 肝がんの標準化羅患率比が有意に高かったが、1,4-ジオキサン以外の化学物質との混合 会暴露および暴露期間や暴露量に関する調整は行われていない。

IARC (1999 ¹³) は、1,4-ジオキサンをグループ 2B " ヒトに対して発がん性の可能性 がある物質 " に分類しているが、ヒトに対する発がん性の証拠は不十分としている。 ヒトに対して、1,4-ジオキサン暴露と発がん性の明らかな関連を示唆する報告はない。

(2)実験動物等への影響

1)急性毒性試験

現時点で入手可能な知見から、1,4-ジオキサンの経口 LD₅₀ は、ラットで 5,400~7,300 mg/kg 体重、マウスで 5,900 mg/kg 体重、モルモットで 3,300~4,000 mg/kg 体重、ウサギで 2,000 mg/kg 体重である。主な急性影響は、中枢神経系の抑制(昏睡等)及び、胃、肝、腎の病変である。

2)短期毒性試験

現時点で入手可能な知見から、ラットの NOAEL は、11 週間飲水投与で得られた相対肝重量増加、肝臓病変をエンドポイントとし、10mg/kg 体重/日とも判断できるが、この試験においては、10mg/kg 体重/日の次に多い用量が 1,000mg/kg 体重/日であり、公比が 100 と大きく、NOAEL として設定するには不適当な試験であると判断した。よって、ラットの NOAEL は、13 週間の飲水投与で得られた呼吸上皮細胞の核肥大、肝細胞腫脹をエンドポイントとした 60mg/kg 体重/日と判断できる。マウスの NOAEL は、13 週間の飲水投与で得られた気管支上皮細胞の核肥大をエンドポイントとし、170mg/kg体重/日と判断できる。

3)長期毒性試験

現時点で入手可能な知見から、ラットの NOAEL は、2 年間の飲水投与で得られた尿 細管上皮及び肝細胞の変性と壊死をエンドポイントとした 9.6mg/kg 体重/日と判断できる。マウスの NOAEL は、2 年間の飲水投与で得られた、嗅上皮細胞の核肥大、AST・ALT・

LDH・ALP 増加、気管支の核増大をエンドポイントとした 66 mg/kg 体重/日と判断できる。

4)生殖・発生毒性試験

現時点で入手可能な知見から、NOAEL は、ラットの妊娠 6~15 日の強制経口投与で得られた母動物毒性(摂餌量減少) 胎児体重減少、胸骨骨化遅延をエンドポイントとし、516mg/kg 体重/日と判断できる。

5)遺伝毒性試験・発がん性試験

遺伝毒性に関して、現時点で入手可能な知見から、1,4-ジオキサンは、ほとんどの試験で陰性であった。Morita & Hayashi がおこなった *in vitro* の 5 試験及び *in vivo* の 2 試験のうち、*in vivo* の 1 試験(マウスの肝細胞を用いた小核試験)では陽性であったが、この陽性反応は非遺伝毒性のメカニズムによるものであろうと結論付けられている。ラットを用いた DNA 合成、DNA 修復試験では、1,000mg/kg 以下では陰性との報告のみである。1988 年の EPA では、RfD を設定できないとしているが、それ以後に報告されている遺伝毒性試験においては、陰性が多い。また、ATSDR(2004 ¹)では、得られている情報は、1,4-ジオキサンは遺伝毒性をもたず、もしあったとしても弱い遺伝毒性物質であることを示唆している、としている。

発がん性に関して、現時点で入手可能な知見から、ラット、マウスの飲水投与試験において、肝細胞腺腫およびがんの発生率の増加が報告されている。また、マウスの皮膚塗布時においては、皮膚・肺・腎臓のがん発生に対しプロモーション作用があるとの報告があるが、マウスの経口投与時のイニシエーション作用については、皮膚に乳頭腫の頻度の増加はないとの報告がある。1,4-ジオキサンの発がんのメカニズムは、明確になっていない為、実験動物での結果がヒトに外挿できるかどうか、判断できない。しかし、高用量においては、ラット・マウスの両動物に、様々な器官への発がん性が報告されている為、実験動物での発がん結果を考慮する必要がある。また、IARC(1999¹³)では、ラットに鼻腔等の臓器でがんの発生がみられていることから、実験動物に対する十分な発がん性の証拠があるとし、1,4-ジオキサンが Group 2 B (ヒトに対し発がん性の可能性がある物質)として分類している。

以上のことから、現時点においては、1,4-ジオキサンによるラット・マウスの発が ん性が、明らかに遺伝毒性を介したものとは考えられない。

0 P -

2.用量反応評価

水質基準の見直しの際の評価においては、1,4-ジオキサンには、TDIを設定せず線形マルチステージモデルを用いた定量的評価を採用しているが、1,4-ジオキサンは低用量においてヒトに対し遺伝毒性をもたないとすると、ガイドライン値の算出に TDI 法を用いることができる。TDI 設定の根拠となる毒性試験のまとめの表 4 より、ラットの長期飲水試験(Kociba et al. 1974¹⁹)から得られた尿細管上皮、肝細胞の変性及び壊死をエンドポイントとして NOAEL9.6 mg/kg 体重/日と判断できる。

また、この試験で得られた NOAEL9.6mg/kg 体重/日は、発がんエンドポイントではないが、他の実験において、自然発生の少ないと考えられる鼻腔腫瘍を含む様々な器官で、1,4-ジオキサンによる腫瘍誘発が報告されていることから、本評価においては、発がん性を考慮して、不確実係数に 10 を加えることとする。

3 . T D I の設定

(1) NOAEL 9.6 mg/kg 体重/日

<根拠>ラットの2年間飲水投与試験(Kociba et al.1974¹⁹)で得られた尿細管上皮、 肝細胞の変性・壊死。

(2) 不確実係数として、1000

(個体差、種差各々:10、非遺伝毒性発がん性の疑い:10)

(3)以上を適用して、TDIは、9.6 μg/kg 体重/日

. まとめ

物質名:1,4-ジオキサン

耐容一日摂取量 : 9 . 6 µg/kg 体重/日

根拠 ラットの2年間飲水投与試験(Kociba et al.1974¹⁹)で得られた尿細管上皮、 肝細胞の変性・壊死。

NOAEL: 9.6 mg/kg 体重/日

不確実係数 : 1000

OP -

2.用量反応評価

水質基準の見直しの際の評価においては、1,4-ジオキサンには、TDIを設定せず線形マルチステージモデルを用いた定量的評価を採用しているが、1,4-ジオキサンは低用量においてヒトに対し遺伝毒性をもたないとすると、ガイドライン値の算出にTDI法を用いることもできる。TDI設定の根拠となる毒性試験のまとめの表4より、ラットの長期飲水試験(Kociba et al. 1974 ¹⁹)から得られた尿細管上皮、肝細胞の変性及び壊死をエンドポイントとしてNOAEL9.6 mg/kg 体重/日と判断できる。しかし、この試験における文献は、1974年発表であり比較的古いこと、Sherman ラットという珍しい種で行われていること、また公比10等から、信頼性に多少問題が残るため、1994年に発表されている Yamazakiの F344ラットへの2年間の飲水投与試験(表4:長)において、肝臓での過形成増加からNOAEL16mg/kg 体重/日を導く方が適当と判断できる。

また、この試験において、自然発生の少ないと考えられる鼻腔腫瘍を含む様々な器官で、1,4-ジオキサンによる腫瘍誘発が報告されており、WHOでは、肝細胞腫瘍の NOAEL を 16 ~ 21mg/kg 体重/日としている。本評価においては、発がん性を考慮して、不確実係数に 10 を加えることとする。

3. TDIの設定

(1) NOAEL 16 mg/kg 体重/日

<根拠>ラットの2年間飲水投与試験(Yamazaki et al.1994^{42,48})で得られた肝臓で の過形成の増加、及び肝腫瘍の増加。

(2)不確実係数として、1000

(個体差、種差各々:10、非遺伝毒性発がん性の疑い:10)

(3)以上を適用して、TDIは、16 µg/kg体重/日

. まとめ

物質名:1,4-ジオキサン

耐容一日摂取量 : 1 6 μ g/kg 体重/日

根拠 ラットの2年間飲水投与試験(Yamazaki et al.1994 ^{42,48})で得られた肝臓で の過形成の増加、及び肝腫瘍の増加。 NOAEL : 16mg/kg体重/日

不確実係数 : 1000

表1. 1,4-ジオキサン In Vitro 遺伝毒性 (ATSDR 2004 ¹)

		結果		
試験系	指 標	代謝活性 代謝活性		著者
		有	無	
サルモネラ菌 (TA98,TA100,	復帰突然変異	-	-	Haworth et al. 1983、
TA1530, TA1535, TA1537, TA1538)				Stott et al. 1981,
				Nestmann et al. 1984、
				Khudoley et al.1987、
				Morita & Hayashi 1998
Photobacterium phosphoreum	DNA損傷	NT	-	Kwan et al.1990
大腸菌 K-12 uvrB/recA	DNA損傷	-	-	Hellmer & Bolcsfoldi 1992
大腸菌(WP2,WP2 uvrA)	遺伝子突然変異	-	-	
				Morita & Hayashi 1998
酵母 (D61M)	染色体分離異常	NT	_	Zimmermann et al. 1985
マウスリンパ腫細胞	遺伝子突然変異	-	_	Morita & Hayashi 1998
チャイニーズハムスターCHO	· 是因了天然复典 · · · · · · · · · · · · · · · · · · ·	-	-	MOTITA & Hayasiii 1990
デャイニースパムスター C H O	朱巴体兵市 姉妹染色体交換	-	-	
		-	-	
= I 0T/m 0/a	小核	-	-	0-1-1
ラット肝細胞	DNA修復	-	-	Goldsworthy et al. 1991
CHO-W-B1 細胞	染色体異常	-	-	Galloy et al. 1987
	姉妹染色体交換	-	±	
マウスリンパ腫細胞	遺伝子突然変異	-	-	McGregor et al.1991
BALB/3T3細胞	細胞形質転換	NT	+	Sheu et al.1988

^{-:} 陰性、+:陽性、±:弱い陽性、NT:試験せず

表2. 1,4-ジオキサン *In Vivo* 遺伝毒性 (ATSDR 2004¹)

	<u> </u>	指標	結果	著者	
試験系		指作		有白	
			(用量mg/kg)		
ヒト 末梢リン	ノパ球	染色体異常	-	Thiess et al. 1976	
ラット	肝細胞	DNA修復	- (1000または2%	Goldsworthy et al. 1991	
			の飲水投与)	·	
	鼻上皮細胞	DNA修復	-(1000または1%		
			の飲水投与)		
マウス	肝細胞	小核	+ (2000 ~)	Morita & Hayashi 1998	
	末梢血	小核	- (3000)		
ラット肝細胞		DNAアルキル化または複製	- (1000)	Stott et al.1981	
= I BT/m P/a		 DNA損傷	+ (2550 ~)	Kitchen & Brown	
ラット肝細胞		DNAf其l笏	-(840)	1990,1994	
マウス骨髄細胞	5	小核	- (1800または	Tinwell & Ashby 1994	
マン人育腿細が	면		3600)		
マウス骨髄細	(C57BL6)	小核	+ (5000)	Mirkova 1994	
胞	(BALB/c)	小核	- (5000)	MITROVA 1994	
マウス骨髄細胞		小核	不確か	McFee et al.1994	
ショウジョウバエ(food)		伴性劣性致死	-	Yoon et al.1985	
ショウジョウバエ(food)		減数不分裂	+	Muñoz and Barnett 2002	

^{-:} 陰性、+: 陽性、 DNA = deoxyribonucleic acid ATSDR表中では、-(陰性)となっているが、ATSDR文章と原著より、不確かと判断。

表3-1 WHOによる1,4-ジオキサンのTDI法によるリスク評価

WHO/DWGL 第3版(遺伝毒性をもたないと仮定した場合の評価) TDI 根拠 NOAEL 不確実係数 (mg/kg 体重/日) (μg/kg 体重/日) 非発がん ラットの2年間飲水投与試験 9.6 100 96 尿細管上皮、肝細胞の変性と 10(種差)×10(個体 差) 壊死 (Kociba et al. 1974 ¹⁹) 発がん ラットの2年間飲水投与試験 16 16 1000 肝腫瘍の増加 10(種差) × 10(個体 差)×10(非遺伝毒性 (Yamazaki et al. 1994 ⁴²) 発がん性)

表 3 - 2	モデル外挿法に	よる過剰発がんリス	クの定量的評価
1X J - Z	レノ /V/ご押/ひに	らっし ガーカー・ファン ハー・ファン・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス	

	リスクレベル	濃度(μg/L)	用量(μg/kg 体重/日)	
WHO/DWG(第3版)				
ラットの2年間飲水投与(NCI 1978 ³⁰) における鼻腔がんの 増加	10 ⁻⁵	88	3.0ª	
ラットの2年間飲水投与				
(Yamazaki et al. 1994 ⁴²)にお ける肝腫瘍の増加	10 ⁻⁵	54	1.8 ^b	
EPA/IRIS	10 ⁻⁴ (1/10,000)	300	9.09	
ラットの 2 年間飲水投与 (NCI 1978 ³⁰) における鼻甲介腫瘍の	10 ⁻⁵ (1/100,000)	30	0.909	
増加	10 ⁻⁶ (1/1,000,000)	3	0.091	
水道水				
ラットの 2 年間飲水投与 (Yamazaki et al. 1994 ⁴²)におけ る肝細胞腫瘍の増加	10 ⁻⁵	54	2.1 ^c	

 $[^]a$ 成人体重 60kg、1 日の飲水量を 2L と仮定し、飲料水ユニットリスク: 1.1 x 10 $^{-7}$ / μ g/L (当該物質を 1L あたり 1 μ g 含む飲料水を生涯にわたり摂取するときの過剰発がんリスク)、経口傾斜係数: 3.3 x 10 $^{-3}$ / mg/kg 体重/日及び用量を算出。

^b 同様に、飲料水ユニットリスク: 1.9×10^{-7} / μ g/L、経口傾斜係数: 5.7×10^{-3} / mg/kg 体重/日及び用量を算出。

 $^{^{}c}$ 成人体重 50kg とし、同様に、飲料水ユニットリスク: $1.9\times10^{-7}/\mu g/L$ 、経口傾斜係数: $4.8\times10^{-3}/m g/kg$ 体重/日及び用量を算出。

表 4 各試験における NOAEL 等

衣		がける NUAEL 寺		1	I	1
番		試験種	エンドポイント	NOAEL	LOAEL	備考
号	系統・性・			mg/kg 体重/	mg/kg 体重/	
	動物数/群			日	日	
	ヒト	1、10 及び 15	目、鼻、喉における粘膜		200ppm	
	<u> </u>	分間 吸入暴	刺激(200ppm[15 分間])。		200ppiii	
		路				
	ヒト	6 時間	軽度の眼の刺激(50ppm)		50ppm	
		吸入暴露				
	ヒト	平均 25 年間	暴露と関連した症状認	推定暴露量		
	24	吸入暴露	められず。	0.006~		
		777 (37 12 1		13.3ppm		
	ヒト	最低1か月~	がんによる死亡例は、推	0.36~		
	LF					
		約 20 年間	計値と同様	61mg/m³		
		吸入暴露				
短	ラット F344	2 週間	嗅上皮細胞の核肥大	3,330ppm	10,000ppm	ATSDR では、
	雌雄 10	飲水投与	(10,000ppm-)、肝・腎に	=雄 370(T)	=	肝腎の貧血
			貧血樣色調(1,100ppm-)	,	(T)	様色調につ
					(-)	いては考慮
						せず。
\vdash	=	C7 [7 88	五十 町 取み停並 / 畑中		7 000 (141)	E9 。
	ラット 6	67 日間	死亡,肝・腎の病変(細胞	-	7,230(W)	
		飲水投与	変性等)			
	ラット SD	11 週間	相対肝重量増加,軽微な	10(W)	1,000(W)	
	雄 4	飲水投与	肝臓病変(1,000)			
	ラット F344	13 週間	呼吸上皮細胞の核肥大	640ppm	1,600ppm	
	雌雄 10	飲水投与	(1,600ppm-)、嗅上皮細	=姓 60(丁)	= 本能 150(T)	
	инин 10		(1,000ppm) (1,000ppm) 胞の核肥大(4,000ppm)	-ад оо(1)	-ад 100(1)	
			肝細胞腫脹(雄1,600ppm-、			
			雌 10,000ppm-)			
	マウス BDF1	2 週間	肝細胞腫脹(30,000ppm)	10,000ppm	30,000ppm	
	雌雄 10	飲水投与		=雄 1,380	=雄 2,550	
				(T)	(T)	
	マウス 6	67 日間	肝・腎の病変(細胞変性	-	9,812(W)	
	.	飲水投与	等)		' (/	
\vdash	マウス BDF1	13 週間	気管支上皮細胞の核肥	640ppm	1 600000	
					1,600ppm	
	雌雄 10	飲水投与	大(雄 4,000ppm-、	=雌 170(T)	=雌 410(T)	
			雌 1,600ppm-) 肝細胞腫			
			脹(4,000ppm-)			
			近位尿細管の空胞化の			
			減少(雄 4,000ppm-)			
臣	ラット	2 年間	体重増加抑制、生存率低	雄 9.6(A)	雄 94	
~	Sherman	飲水投与	下(雄1,015、雌1,599)、	雌 19(A)	雌 148	
	雌雄 60	ריאיייייייייייייייייייייייייייייייייייי	尿細管上皮、肝細胞の変	ин то (<i>I</i>	<u>м</u> д 170	
	叫性么性 UU					
		o # ==	性・壊死(雄 94-,雌 148-)	222	4 000	
	ラット	2 年間	肝臓での過形成増加	200ppm	1,000ppm	
	F344/DuCrj	飲水投与	(1,000ppm-)、肝海綿状	=娃 16(W)、		
	雌雄 50		変性増加(5,000ppm)	雌 21(W)		
	ラット	2 年間	病理変化なし	0.4mg/L		
	Wistar	吸入暴露		(A)		
		(1日7時間、		=105(W)		
		,		-100(**)		
		週5日)				

	マウス Crj:BDF ₁ 雌雄 50	2 年間 飲水投与	嗅上皮細胞の核肥大、AST・ALT・LDH・ALP 増加、 気管支の核増大 (雌雄 2,000ppm-)、 肝臓の血管拡張の増加、 気 管 の 核 増 大 (雄 8,000ppm)	500ppm =雄 66、 雌 77(T)	2,000ppm =雄 251、 雌 323(T)	
生	ラット SD 雌 18-20	妊娠 6-15 日 強制経口投与	母動物毒性(摂餌量減少)、胎児体重減少,胸骨骨化遅延(1,033)	516(W)	1,033	

短:短期毒性試験 長:長期毒性試験 生:生殖・発生毒性試験

A:著者 W:WHO T:ATSDR 無印:WG

本評価書中で使用した略号については次にならった

ALT アラニンアミノトランスフェラーゼ,グルタミン酸オキサロ酢酸トランスアミナーゼ

AP、ALP アルカリフォスファターゼ

アスパラギン酸アミノトランスフェラーゼ,グルタミン酸ピルビン酸トランスアミナー

) |

AUC 血中薬物濃度 - 時間曲線下面積

BUN 血液尿素窒素

BMDL₁₀ 10%の影響に対するベンチマーク用量の 95%信頼下限値

CHL チャイニーズハムスター肺由来細胞株

CHO チャイニーズハムスター卵巣由来細胞株

C_{max} 最高血(漿)中濃度

CPK クレアチンフォスフォキナーゼ

CYP シトクロム P 4 5 0

GSH グルタチオン

-GTP ーグルタミルトランスペプチダーゼ

Hb ヘモグロビン(血色素)

Ht ヘマトクリット

LC₅₀ 半数致死濃度

LD₅₀ 半数致死量

LDH 乳酸脱水素酵素

LOAEL 最小毒性量

LOEL 最小作用量

MCH 平均赤血球血色素量

MCHC 平均赤血球血色素濃度

MCV 平均赤血球容積

MLA マウスリンフォーマ試験

NOAEL 無毒性量

NOEL 無作用量

OCT オルニチンカルバミルトランスフェラーゼ

T_{1/2} 消失半減期

TBIL 総ビリルビン

TDI 耐容一日摂取量

TG トリグリセリド

T_{max} 最高血(漿)中濃度到達時間

参考文献

1 12T ATSDR (2004) Draft Toxicological profile for 1,4 Dioxane (Update). Atlanta, Georgia, US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry.

- 2 ^{12W3-43} Buffler PA, Wood SM, Suarez L, Kilian DJ (1978) Mortality follow-up of workers exposed to 1,4-dioxane. J Occup Med, 20: 255-259.
- 3 ^{12T-1} Bull RJ, Robinson M, Laurie RD (1986) Association of carcinoma yield with early papilloma development in SENCAR mice. Environ Health Perspect, 68: 11-17.
- 4 DeRosa CT, Wibur S, Holler J, Richter P, Stevens YW (1996) Health evaluation of 1,4-dioxane. Toxicol Ind Health, 12: 1-43.
- 5 European Chemical Industry Ecology and Toxicology Centre (ECETOC) (1983) 1,4-Dioxane. Joint Assessment of Commodity Chemicals, No. 2, Brussels.
- Fairley A, Linton EC, Ford-Moore AH (1934) The toxicity to animals of 1,4-dioxane. J Hyg, 34: 486-501.
- 7 Galloway SM, Armstrong MJ, Reuben C, Colman S, Brown B, Cannon C, Bloom AD, Nakamura F, Ahmed M, Duk S, Rimpo J, Margolin BH, Resnick MA, Anderson B, Zeiger E (1987) Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: evaluations of 108 chemicals. Environ Mol Mutag, 10: 1-175.
- 8 Giavini E, Vismara C, Broccia ML (1985) Teratogenesis study of dioxane in rats. Toxicol Lett, 26: 85-88.
- 9 12W3-33 Goldsworthy TL, Monticello TM, Morgan KT, Bermudez E, Wilson DM, Jackh R, Butterworth BE (1991) Examination of potential mechanisms of carcinogenicity of 1,4-dioxane in rat nasal epithelial cells and hepatocytes. Arch Toxicol, 65; 1-9.
- 10 ^{12W3-44} Hansen J (1993) The industrial use of selected chemicals and risk of cancer 1970-1984. At-salg, Kopenhagen, Denmark.
- 11 Haworth S, Lawlor T, Mortelmans K, Speck W, Zeiger E (1983) *Salmonella* mutagenicity test results for 250 chemicals. Environ Mutag, Suppl. 1; 3-142.
- 12 ^{12W3-26} Hellmér L & Bolcsfoldi G (1992) An evaluation of the *E. coli* K-12 uvrB/recA DNA repair host-mediated assay. I. *In vitro* sensitivity of the bacteria to 61 compounds. Mutation Res, 272: 145-160.
- 13 ^{12W3-45} International Agency for Research on Cancer (IARC) (1999) Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man, Lyon, 71: 589-602.
- 14 ^{12T-2} JBRC (1998a) Two-week studies of 1,4-dioxane in F344 rats and BDF1 mice (drinking water studies). Kanagawa, Japan: Japan Bioassay Research Center.
- 15 ^{12T-3} JBRC (1998b) Thirteen-week studies of 1,4-dioxane in F344 rats and BDF1 mice (drinking water studies). Kanagawa, Japan Bioassay Research Center.
- 16 ^{12W3-28} Khudoley VV, Mizgireuv I, Pliss GB (1987) The study of mutagenic activity of carcinogens and other chemical agents with *Salmonella typhimurium* assays: testing of 126 compounds. Arch Geschwulstforsch, 57: 453-462.

- 17 King ME, Shefner AM, Bates RR (1973) Carcinogenesis bioassay of chlorinated dibenzodioxins and related chemicals. Environ Health Perspect, 5: 163-170.
- 18 Kitchin KT & Brown JL (1990) Is 1,4-dioxane a genotoxic carcinogen? Cancer Lett, 53: 67-71.
- 19 ^{12W3-22} Kociba RJ, McCollister SB, Park C, Torkelson TR, Gehring PJ (1974) 1,4-Dioxane. I. Results of a 2-year ingestion study in rats. Toxicol Appl Pharmacol, 30: 275-286.
- 20 Lundberg I, Hogberg J, Kronevi T, Holmberg B (1987) Three industrial solvents investigated for tumor promoting activity in the rat liver. Cancer Lett, 36: 29-33.
- 21 ^{12W3-38} Maronpot RR, Shimkin MB, Witschi HP, Smith LH, Cline JM (1986) Strain A mouse pulmonary tumor test results for chemicals previously tested in the National Cancer Institute carcinogenicity tests. J Natl Cancer Inst, 76: 1101-1112.
- 22 ^{12W3-14} Marzulli NF, Anjo DM, Maibach HI (1981) *In vivo* Skin penetration studies of 2,4-toluenediamine, 2,4-diaminoanisole, 2-nitro-p-phenylenediamine, p-dioxane and N-nitrosodiethanolamine in cosmetics. Food Cosmet Toxicol, 19: 743-747.
- 23 ^{12W3-35} McFee AF, Abbott MG, Gulati DK, Shelby MD (1994) Results of mouse bone marrow micronucleus studies on 1,4-dioxane. Mutation Res, 322: 141-150.
- 24 ^{12W3-29} McGregor DB, Brown AG, Howgate S, McBride D, Riach C, Caspary WJ (1991) Responses of the L5178Y mouse lymphoma cell forward mutation assay. V: 27 coded chemicals. Environ. Mol Mutag, 17: 196-219.
- 25 ^{12W3-17} Mikheev MI, Gorlinskaya YeP, Solovyova TV (1990) The body distribution and biological action of xenobiotics. J Hyg Epidemiol Microbiol Immunol, 34: 329-336.
- 26 ^{12W3-36}Mirkova ET (1994) Activity of the rodent carcinogen 1,4-dioxane in the mouse bone marrow micronucleus assay. Mutation Res, 322: 141-150.
- 27 ^{12T-4} Miyagawa M, Shirotori T, Tsuchitani M, Yoshikawa K (1999) Repeat-assessment of 1,4-dioxane in a rathepatocyte replicative DNA synthesis (RDS) test: evidence for stimulus of hepatocyte proliferation. Exp Toxicol Pathol, 51: 555-558.
- ^{12T-5} Morita T & Hayashi M (1998) 1,4-dioxane is not mutagenic in five *in vitro* assays and mouse peripheral blood micronucleus assay, but is in mouse liver micronucleus assay. Environ Mol Mutagen, 32: 269-280.
- 29 ^{12T-6} Muñoz ER & Barnett BM (2002) The rodent carcinogens 1,4-dioxane and thiourea induce meiotic non-disjunction in *Drosophila melanogaster* females. Mutat Res, 517: 231-238.
- 30 ^{12W3-37, 12I-C9} NCI (National Cancer Institute) (1978) Bioassay of 1,4-dioxane for possible carcinogenicity. National Cancer Institute Technical Report Series, 80, DHEW Pub. No.78-1330.
- 31 ^{12W3-19} RTECS (Registry of Toxic Effects of Chemical Substances) (2000) database, National Institute for Occupational Safety and Health (NIOSH)
- 32 ^{12W3-18}Reitz RH, McCroskey PS, Park CN, Andersen ME, Gargas ML (1990) Development of a physiologically based pharmacokinetic model for risk assessment with 1,4-dioxane. Toxicol Appl Pharmacol, 105: 37-54.
- 33 12W3-31 Sheu CW, Moreland FM, Lee JK, Dunkel VC (1988) *In vitro* BALB/3T3 cell

- transformation assay of nonoxynol-9 and 1,4-dioxane. Environ Mol Mutag, 11: 41-48.
- 34 ^{12W3-39} Stoner GD, Conran PB, Greisiger ED, Stober JM (1986) Comparison of two routes of chemical administration on the lung adenoma response in strain A/J mice. Toxicol Appl Pharmacol, 82: 19-31.
- 35 ^{12W3-21}Stott WT, Quast JF, Watanabe PG (1981) Differentiation of the mechanisms of oncogenicity of 1,4-dioxane and 1,3-hexachlorobutadiene in the rat. Toxicol Appl Pharmacol, 60: 287-300.
- ^{12W3-42}Thiess AM, Tress E, Fleig I (1976) Results from an occupational medical investigation of employees exposed to dioxane. Arbeitsmed Sozialmed Praeventivmed, 11: 36-46.
- 37 ^{12W3-34}Tinwell H & Ashby J (1994) Activity of 1,4-dioxane in mouse bone marrow micronucleus assays. Mutation Res, 322: 141-150.
- 38 ^{12W3-24}Torkelson TR, Leong BKJ, Kociba RJ, Richter WA, Gehringet PJ (1974) 1,4-dioxane. II. Results of a 2-year inhalation study in rats. Toxicol Appl Pharmacol, 30; 287-298.
- 39 ^{12I} U.S. EPA (Environmental Protection Agency) (1990) Integrated Risk Information System (IRIS). Washington, DC. Available online at http://www.epa.gov/iris/
- 40 ^{12T-7} Uno Y, Takaswas H, Miyagawa M, Inoue Y, Yoshikawa, K. (1994). An *in vivo-in vitro* replications DNA synthesis (RDS) test using rat hepatocytes as an early prediction assay for nongenotoxic heptacarcinogens: Screening of 22 known positives and 25 noncarcinogens. Mutat Res, 320: 189-205.
- 41 ^{12W3} WHO (2005) Guidelines for Drinking Water Quality, Third edition, 2005.documents on chemicals. 1,4-Dioxane.
- 41a ^{12T} Woo, Y., Argus, M.F., and Arcos, J.C. (1977b). Tissue and subcellular distribution of ³H-dioxane in the rat and apparent lack of microsome-catalyzed covalent binding in the target tissue. Life Sci. 21:1447-1456.
- 42 ^{12W3-23}Yamazaki K, Ohno H, Asakura M, Narumi A, Ohbayashi H, Fujita H, Ohnishi M, Katagiri T, Senoh H, Yamanouchi K, Nakayama E, Yamamoto S, Noguchi T, Nagano K, Enomoto M, Sakabe H (1994) Two-year toxicological and carcinogenesis studies of 1,4-dioxane in F344 rats and BDF1 mice. Proceedings of the Second Asia-Pacific Symposium on Environmental and Occupational Health, 193-198.
- 43 Yoon JS, Mason JM, Valencia R, Woodruff RC, Zimmering S (1985) Chemical mutagenesis testing in *Drosophila*. IV. Results of 45 coded compounds tested for the national toxicology program. Environ Mutagen, 7: 349-367.
- 44 Young JD, Braun WH, Rampy LW, Chenoweth MB, Blau GE (1977) Pharmacokinetics of 1,4-dioxane in humans. J Toxicol Environ Health, 3: 507-520.
- 45 Young JD, Braun WH, Gehring PJ (1978) Dose-dependent fate of 1,4-dioxane in rats. J Toxicol Environ Health, 4: 709-726.
- 46 12MH 厚生労働省 2003. 水質基準の見直しにおける検討概要 平成 15 年 4 月、厚生 科学審議会、生活環境水道部会、水質管理専門委員会
- 47 日本バイオアッセイ研究センター(1990)1,4-ジオキサンのラット及びマウスを 用いた経口(混水)投与によるがん原性予備試験(急性・2週間・13週間)報告書
- 48 日本バイオアッセイ研究センター (1990) 1,4-ジオキサンのラット及びマウスを 用いた経口(混水)投与によるがん原性試験