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I. PURPOSE & SCOPE

The Environmental Protection Agency’s (EPA) Office of Pesticide Programs (OPP) is 
a licensing program regulating pesticides in the U.S under the Federal Insecticide, 
Fungicide, and Rodenticide Act (FIFRA) and the Federal Food, Drug, and Cosmetic Act 
(FFDCA).  As part of this program, OPP evaluates a substantial body of toxicology and 
exposure data to assess the effects of pesticides on human health and the environment.  In 
evaluating human health, EPA looks first for information directly evaluating the potential 
for effects to people, including epidemiological data.   Historically, however, few 
epidemiology studies have been available to inform the potential toxicity of pesticide 
chemicals.  As such, OPP has in the past primarily relied on toxicology studies in laboratory 
animals to assess the hazard potential and to estimate human health risk.  With the 
publication of numerous papers from the Agricultural Health Study1 and from the National 
Institute of Environmental Health Sciences (NIEHS)/EPA Children’s Centers2, among 
others, the availability of epidemiology studies conducted on U.S.-relevant exposures to 
pesticides is increasing. Nevertheless, since the number of pesticides for which quality 
epidemiology data either exist or are being developed remains relatively low in the near 
term, experimental laboratory data will likely continue to be the primary source of data for 
use in quantitative risk assessment for most pesticides.   

OPP’s goal is to use such information -- when available -- in a scientifically robust 
and transparent way.  To accomplish this, OPP has developed a general epidemiologic 
framework, as described in this document, that outlines the scientific considerations that 
OPP will weigh in evaluating how such studies and scientific information can be more fully 
integrated into risk assessments of pesticide chemicals.  The current document is neither a 
binding regulation nor is it intended to be or serve as a reviewer’s guide or manual or as a 
Standard Operating Procedure for assessing or using epidemiology data. Nor is it intended 
to be a full treatise on more modern or advanced epidemiological methods or to adequately 
convey the nuances and complexity that is important for interpreting these types of 
studies.   As such, it does not discuss (or does not discuss in any detail) such important 
epidemiological topics as causal inference and causal diagrams (Rothman et al., 2012a; 
Glymor and Greenland, 2012); more recent approaches to confounder identification, 
assessment, and control; meta-analysis and heterogeneity and its assessment/evaluation 
(Borenstein et al., 2009; Greenland and O’Rourke, 2012); or sensitivity/quantitative bias 
analysis for epidemiologic data (Lash et al., 2009; Lash et al,. 2014; Ioannidis, 2008; 
Greenland and Lash, 2012; Jurek et al., 2007).   All these topics, concepts, and issues can 
and do apply to epidemiology studies concerning pesticides, but are not covered in this 
OPP framework document.  Instead, this document provides overall conceptual 
considerations concerning the evaluation and use of epidemiology studies on pesticides in 

1 https://aghealth.nih.gov/ 
2 https://www.epa.gov/research-grants/niehsepa-childrens-environmental-health-and-disease-prevention-
research-centers 
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the context of human health risk assessments to support OPP’s FIFRA and FFDCA activities.    
An earlier version of this document was reviewed favorably by the FIFRA Scientific 
Advisory Panel (SAP) in February, 2010 (USEPA, 2010; FIFRA SAP, 2010).  This document 
incorporates improvements recommended by the SAP, public comments, and the 
experience gained since 2010 conducting assessments on several pesticides for which 
epidemiological data were available, and should be considered a document that will be 
updated from time-to-time as we progress and on as-needed basis  

II. INTRODUCTION

Two reports by the National Research Council (NRC) of the National Academy of 
Science (NAS), “Toxicity Testing in the 21st Century: A Vision and A Strategy (2007)” and 
“Science and Decisions (2009),” together provide new directions in toxicology and risk 
assessment.   These two NRC reports advocate far reaching changes in how toxicity testing 
is performed, how such data are interpreted, and ultimately how regulatory decisions are 
made.  Specifically, the 2007 report on 21st century toxicity testing advocates a shift away 
from the current focus of using apical toxicity endpoints to using toxicity pathways3 to 
inform toxicity testing, risk assessment, and ultimately decision making.  This approach is 
based on the rapidly evolving scientific understanding of how genes, proteins, and small 
molecules interact to form molecular pathways that maintain cell function in human cells. 
The goal for the new toxicity testing paradigm is to determine how exposure to 
environmental agents can perturb these pathways, thereby causing a cascade of 
subsequent key events leading to adverse health effects.  Human information like that 
found in epidemiology studies, human incident databases, and biomonitoring studies, along 
with experimental toxicological information are expected to play a significant role in this 
new approach.  Specifically, these types of human information provide insight into the 
effects caused by actual chemical exposures in humans and thus can contribute to problem 
formulation and hazard/risk characterization.  In addition, epidemiologic and human 
incident data can guide additional analyses or data generations (e.g., dose and endpoint 
selection for use in in vitro and targeted in vivo experimental studies), identify potentially 
susceptible populations, identify new health effects, or confirm the existing toxicological 
observations.   

This new vision of toxicity testing and risk assessment will involve data from 
multiple levels of biological organization ranging from the molecular level up to 
population-based surveillance with a goal of considering chemical effects from their source 
to the ultimate health outcome and effects on populations.  Such data will come from in 
vitro and in vivo experimental studies along with in silico and modeled data. OPP’s 
framework for incorporating epidemiology and incident data is conceptually consistent 
with the 2007 NRC report on 21st century toxicity testing in that both emphasize the use of 
the best available information from multiple data sources are compiled in a weight of the 
evidence (WOE) analysis.    

3 Toxicity pathways are cellular response pathways that, when sufficiently perturbed, are expected to result 
in adverse health effects.
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As a general principle, occupational and environmental epidemiology studies are 
conducted only on widely used pesticides; these pesticides also tend to have to be well-
studied in the scientific literature.  Thus, OPP expects in many cases where epidemiologic 
data are available, a significant body of literature data on toxicology, exposure, 
pharmacokinetics (PK), and mode of action/adverse outcome pathway information 
(MOA/AOP) may also be available.  Human incident data are available on a broader range 
of chemicals, some of which have robust databases and others which do not.  In those 
situations, where there are significant human incident cases and little is known about the 
MOA/AOP or PK of a particular pesticide, the WOE analysis can be used to identify areas of 
new research.  

OPP’s approach in this framework for incorporating epidemiology and human 
incident data is not a new or novel approach.  Instead, this approach is a reasonable, logical 
extension of existing tools and methods.  This document relies on existing guidance 
documents and frameworks (Table 1) as the starting point for reviewing and evaluating 
epidemiology and human incident data for use in pesticide risk assessment.  This 
framework on using epidemiology and incident data in human health risk assessment is 
consistent with the recommendations of the NRC in its 2009 report on Science and 
Decisions, and with the agency’s recent Human Health Risk Assessment Framework 
(USEPA, 2014a) with respect to emphasizing the use of problem formulation as a tool for 
scoping, planning, and reviewing available, particularly in the context of risk management 
needs.   

Similarly, OPP’s framework is consistent with updates to the World Health 
Organization/International Programme on Chemical Safety MOA/human relevance 
framework, which highlights the importance of problem formulation and the need to 
integrate information at different levels of biological organization (Meek et al., 2014).   The 
MOA/HR framework begins with identifying the series of key events that are along the 
causal path, that are established on weight of evidence, using principles like those 
described by Bradford Hill, taking into account factors such as dose-response and temporal 
concordance, biological plausibility, coherence and consistency (Hill, 1965).  Using this 
analytic approach, epidemiologic findings can be evaluated in the context of other human 
information (including human incident findings) and experimental studies and for 
identifying areas of uncertainty and future research.   However, it is noteworthy that the 
availability of a fully elucidated MOA/AOP is a not requirement for using epidemiology 
studies in human health risk assessment.  As the agency continues to move forward in 
implementing the transformative approach in the 2007 and 2009 NRC reports and as OPP 
gains experience in integration of epidemiology and human incident information, OPP will 
re-evaluate and update this framework as appropriate.   
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Figure 1.  Schematic of the adverse outcome pathway. Adapted from Ankley et al.
(2010). 

Table 1.  Key guidance documents and frameworks used by OPP

NAS

1983: Risk Assessment in the Federal Government:  Managing the Process 

1994: Science and Judgment 

2007: Toxicity Testing in the 21st Century  

2009: Science and Decisions: Advancing Risk Assessment 

2011:  NAS report on Formaldehyde 

2014: Review of EPA's Integrated Risk Information System (IRIS) Process 

WHO/IPCS 

2001-2007: Mode of Action/Human Relevance Framework 

2005:  Chemical Specific Adjustment Factors (CSAF) 

2014:  New developments in the evolution and application of the WHO/IPCS 
framework on mode of action/species concordance analysis. 
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EPA 

1991-2005: Risk Assessment Forum Guidances for Risk Assessment (e.g., guidelines for 
carcinogen, reproductive, developmental, neurotoxicity, ecological, and exposure 
assessment, guidance for benchmark dose modeling, review of reference dose and 
reference concentration processes)4

2000: Science Policy Handbook on Risk Characterization 

2006b.  Approaches for the Application of Physiologically Based Pharmacokinetic 
(PBPK) Models and Supporting Data in Risk Assessment 
2014a.  Framework for Human Health Risk Assessment to Inform Decision Making. 
2014b.  Guidance for Applying Quantitative Data to Develop Data-Derived 
Extrapolation Factors for Interspecies and Intraspecies Extrapolation

OPP 

2001: Aggregate risk assessment  

2001 and 2002:  Cumulative risk assessment  

OECD 2013:  Organisation for Economic Co-operation and Development Guidance Document 
On Developing And Assessing Adverse Outcome Pathways 

Although there are other sources of human information, the focus of this framework is 
on interpreting and using epidemiology and human incident data in human risk 
assessment; other sources of human information are not addressed in this document in any 
depth.  Specifically, this document does not extensively discuss research with pesticides 
involving intentional exposure of human subjects5 or on studies done to measure dermal or 
inhalation exposures in agricultural workers as they perform their activities6,7 .    

4 https://www.epa.gov/osa/products-and-publications-relating-risk-assessment-produced-office-science-
advisor 
5 Both the conduct of such research and OPP’s reliance on data from such research are governed by EPA’s 
Rule for the Protection of Human Subjects of Research (40 CFR Part 26.)  Among other things, these rules 
forbid research involving intentional exposure of pregnant or nursing women or of children, require prior 
review of proposals for new research by EPA-OPP and by the Human Studies Review Board (HSRB), and 
require further review by EPA-OPP and the HSRB of reports of completed research. 
6 In the last several years, OPP has extensively evaluated existing observational studies with agricultural 
workers in efforts to improve the data and approaches used in worker exposure assessment; those 
evaluations can be found elsewhere (http://www.epa.gov/scipoly/sap/meetings/2007/010907_mtg.htm) 
7 For additional information on how such worker exposure studies are conducted and used by OPP, see PPP-
48 “Pesticides and human Health Risk Assessment: Policies, Processes, and Procedures “available at 
https://www.extension.purdue.edu/extmedia/PPP/PPP-48.pdf.   
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III. SYSTEMATIC REVIEW IN PESTICIDE RISK ASSESSMENT: EPIDEMIOLOGY

In recent years, the NRC has encouraged the agency to move towards systematic 
review processes to enhance the transparency of scientific literature reviews that support 
chemical-specific risk assessments to inform regulatory decision making (NRC 2011, 
2014).  The NRC defines systematic review as "a scientific investigation that focuses on a 
specific question and uses explicit, pre-specified scientific methods to identify, select, 
assess, and summarize the findings of similar but separate studies" (NRC, 2014).  
Consistent with NRC’s recommendations, the Office of Chemical Safety and Pollution 
Prevention (OCSPP) employs fit-for-purpose systematic reviews that rely on standard 
methods for collecting, evaluating and integrating the scientific data supporting our 
decisions.   

According to the NRC, systematic reviews “have several common elements: 
transparent and explicitly documented methods, consistent and critical evaluation of all 
relevant literature, application of a standardized approach for grading the strength of 
evidence, and clear and consistent summative language (NRC, 2014).” In recent years, 
several groups (Rooney et al., 2014; Woodruff and Sutton, 2014; Hartung, 2010) have 
published systematic review approaches for use in environmental health sciences. The 
OCSPP approach to systematic review is consistent with the principles articulated in the 
Cochrane Handbook for Systematic Reviews of Interventions for evidence-based medicine 
and with the principles of the Grading of Recommendations Assessment, Development and 
Evaluation (GRADE). GRADE guidelines used by systematic review approaches for 
environmental health sciences developed by the National Institute of Environmental Health 
Sciences (NIEHS) Office of Health Assessment and Translation (OHAT) (Rooney et al., 
2014) and University of California, San Diego (Woodruff and Sutton, 2014). According to 
the Cochrane Handbook, the key characteristics of a systematic review are: 

a clearly stated set of objectives with pre-defined eligibility criteria for studies;
an explicit, reproducible methodology;
a systematic search that attempts to identify all studies that would meet the
eligibility criteria;
an assessment of the validity of the findings from the identified studies;
a systematic presentation and synthesis of the characteristics and findings of the
included studies.

Each approach mentioned above share common themes and workflow starting with a 
statement of scientific context (e.g., problem formulation or protocol) followed by 
literature review with explicit search strategy methods, analysis of study quality (often 
called risk of bias), evaluation of the quality of the totality of the evidence (e.g., integration) 
and ultimately leading to a conclusion(s).  Each approach recommends transparent and 
pre-determined criteria for inclusion/exclusion of scientific literature, evaluation of study 
quality, and reporting of study quality (e.g., high, medium, low).  Each approach 
recommends a pre-stated tool for data integration that provides the foundation for the 
conclusion(s). 
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So far, no single nomenclature has been agreed upon by the risk assessment 
community for systematic review and OCSPP expects terminology to evolve over time as 
more broad experience is gained.  OCSPP considers its systematic review process and 
workflow as starting with problem formulation followed by data collection, data 
evaluation, data integration, and summary findings with critical data gaps identified.  
Scientific analysis is often iterative in nature as new knowledge is obtained.   

A. Problem Formulation

In the NRC report Science and Decisions-Advancing Risk Assessment, the National 
Academy of Sciences (NAS) recommended to EPA that risk assessments and associated 
scientific analyses be developed to be useful to policy makers; in order to attain this goal, 
the NRC recommended that the agency more broadly use problem formulation in 
developing its risk assessments.  In response to the NRC, the agency published the Human 
Health Risk Assessment Framework (USEPA, 2014) which highlights the importance of 
problem formulation.  Problem formulation entails an initial dialogue between scientists 
and risk managers and provides the regulatory context for the scientific analysis and helps 
define the scope of an analysis.  Problem formulation draws from regulatory, decision-
making and policy context of the assessment, informs the technical approach to the 
assessment and systematically identifies the major factors to be considered.  As such, the 
complexity and scope of each systematic review will vary among the different risk 
assessment contexts.  In other words, an OCSPP systematic review is conducted as “fit-for-
purpose” (NRC, 2009) based on the pre-determined scope and purpose determined from 
problem formulation.   

The problem formulation involves consideration of the available information along 
with key gaps in data or scientific information.  OPP uses problem formulation as a tool to 
identify exposure pathways and potential health outcomes along with the appropriate 
methods, data sources, and approaches for the scientific analysis.    If missing data are 
critical to the assessment, options are discussed as to how best to obtain that information 
(e.g., required testing, research). The peer review process is identified and the timeline for 
completing the assessment is defined.  

Systematic review provides a transparent tool for organizing available information 
and identifying gaps in information for the regulatory purpose for the analysis.  As such, in 
problem formulation, the regulatory context of a scientific analysis is described which in 
turn defines the scope of and purpose for collection and evaluation of scientific literature.  
Some considerations in problem formulation may be related to population or life-stage, 
exposure pathways (e.g., route, duration, frequency), and/or health outcomes of interest 
identified from in vitro or in vivo laboratory studies along with epidemiology or human 
incident studies along with resources available and regulatory timeframe.   In the context of 
considering epidemiology and human incident information, an initial evaluation of the 
study quality, study design, and uncertainties are considered.   
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Key scientific issues related to hazard assessment considered in problem 
formulation include:  What are the effects associated with exposure?  What are the 
MOA/AOPs associated with these effects?  What are the temporal aspects of the effects?  
Are there susceptible populations and if so, who are they and what factors contribute to 
susceptibility?   Are there differences in PK or pharmacodynamics (PD) between laboratory 
animals and humans?  Exposure information is also evaluated in problem formulation.  Key 
scientific issues related to exposure assessment considered in problem formulation 
include:   How is the pesticide used? What are all of the relevant use sites of exposure? To 
what chemical substances will people be exposed? What are the routes, durations, and 
frequencies of exposures? Who may be exposed?  Does the exposure pose different risks to 
different groups (e.g., due age or activity patterns?)   In the specific case of epidemiology 
data, this review considers a variety of factors including, but not limited to, research 
hypothesis, study design (i.e., sample size, sufficient controls, quality of measurements, 
etc.), exposure dose/concentration, statistical analysis, and conclusions.   

B. Data Collection

The data collection phase of systematic review is the collection of available information 
from various published and unpublished sources, such as the open scientific literature and 
submitted studies for pesticide registration.  OPP reviews data collected under the 
Organisation for Economic Cooperation and Development (OECD) test guidelines, OCSPP 
harmonized test guidelines, and other pesticide (OPP guidelines).  These guideline studies 
are collected primarily from in-house databases of submitted studies and are found 
through searches of such internal databases.   

In the case of epidemiology, most studies are expected to be found in the open 
scientific literature.  Although in some cases supplemental analyses or information may be 
available, dialogue with the researchers may provide additional, important information not 
published in the original paper in understanding and interpreting epidemiology studies.  
The sources of human incident information are summarized in Section IV.   

Open literature search strategies use specified criteria to retrieve health effects 
information from the open scientific literature and unpublished sources. After identifying 
and selecting the most appropriate sources/databases and determining the most resource 
effective strategy utilizing classification codes, medical subject headings, and/or keywords, 
a search is conducted of the literature.  Depending on the complexity of the scientific 
evaluation, support from a reference librarian may or may not be needed.  The goal of a 
human health literature search is to perform a reliable and reproducible literature search 
by providing proper documentation of the literature search process. The following steps 
are conducted to retrieve relevant studies:  

The purpose of the scientific analysis and inclusion criteria are established.

Combinations of terms/key words and/or MeSH (Medical Subject Heading) terms
and their Boolean combinations (AND; OR; NOT) are used and documented.
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Advanced Search and Field Search by author, title, keywords or subject heading may 
also be performed as needed.  Knowledge of database structure, and using a 
separate search strategy for a specific database is helpful in retrieving relevant 
studies. In addition to an initial comprehensive search, periodic searches may be 
conducted to update the literature list. 

The search strategy is documented, including the date(s) of the search(es)to ensure 
that all the searches of all the databases are reproducible.   

Reference lists of retrieved articles are examined2 for additional background and to 
look for articles that were not discovered in the initial search.  

After combining the retrieved articles from different databases and removing 
duplicates, the available titles and abstracts are screened.  For some of the articles 
where relevance could not be determined from the title and the abstract, the article 
is retrieved for further review. 

Following the initial screening, articles that were not relevant (exclusion criteria) – 
such as opinion articles, studies not in English, and those consisting only of abstracts 
are excluded.  Additional exclusion criteria can be identified on a case by case basis.  
All exclusion criteria are documented.  The rest of the articles, even those that found 
no adverse health effects, are included for review and evaluation.   

C. Data Evaluation 

In the data evaluation phase, data quality is reviewed and conclusions are made about 
the utility of such data. Study quality reflects the overall confidence that reports findings 
are correct (Balshem et al., 2011).  As such, study quality can include: 

reporting quality (how well or completely a study is reported);  
how credible the findings are based on the design and conduct of the study;  
and how well the study addresses the topic under review (Rooney et al., 
2014).  

Study quality is first considered on an individual study basis, and the quality is judged. 
For example, one may have stronger confidence in a well conducted case control study than 
a poorly conducted cohort study.  Credibility of the scientific findings, often called risk of 
bias, is evaluated using pre-determined criteria for specific domains related to study design 
and conduct (See Table 2).   

OPP initially developed a guidance on using the open scientific literature 
considerations called the “Guidance for Considering and Using Open Literature Toxicity 
Studies to Support Human Health Risk Assessment” (USEPA, 2012) and generally continues 
to follow this guidance.   However, with the acceleration of systematic review in risk 
assessment, some aspects of the literature guidance may need updating in the future.  
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Conclusions about the quality of the data are made and can be described in conclusion 
statements or categories (e.g., acceptable/not acceptable; low, medium, high).

Specific considerations used in evaluating epidemiology studies on pesticide chemicals 
are provided in Section III.C below.  As part of the data review, a concise written review of 
the study is developed.  This written review describes the study design, results, 
conclusions, and the strengths and weaknesses of the study. The quality of the 
epidemiologic exposure assessment is an important factor in determining what role 
epidemiologic data will play in the risk assessment.  As such, it is important to fully 
characterize the assumptions used in the epidemiologic exposure assessment and the 
degree to which these assumptions affect the interpretation and generalizability of the 
epidemiologic findings.  The evaluation of the epidemiologic exposure assessment may 
include a consideration of past and present exposure patterns (e.g., exposed populations, 
pathways, routes, and levels of exposure) and may include significant changes in use 
patterns (e.g., risk mitigation actions or new use patterns).  With regard to evaluating meta-
analyses, reporting guidelines for Meta-analysis Of Observational Studies in Epidemiology 
(MOOSE) have been developed by Stroup et al., (2000) that are useful in evaluating the 
quality and interpreting meta-analysis.  

D. Data Integration: Weight of Evidence (WOE) 

OPP’s human health characterizations involve the consideration of all available and 
relevant data, including but not limited to human studies/epidemiology, biomonitoring 
data, in vitro and in vivo experimental laboratory toxicological studies, MOA/AOP 
information, pharmacokinetic studies, and structure-activity relationships (SAR).  Once the 
different types of hazard data are collected and a full evaluation of each relevant study is 
conducted and documented, the next step is to integrate multiple lines of evidence. 

Data integration is based on the principle of reaching a judgment of the totality of 
the available negative and positive data for relevant hazards. OPP uses a WOE analysis for 
evaluating epidemiology and human incident data, such conclusions are made on the 
preponderance of the information rather than relying on any one study.  OPP uses the 
modified Bradford Hill criteria like those in the MOA/human relevance framework as a tool 
for organizing and integrating information from different sources (Hill, 1965; U.S. EPA, 
1999, 2005; Sonich-Mullin et al., 2001; Meek et al., 2003; Seed et al., 2005; OECD AOP Wiki 
Users Handbook8).   It is important to note that the Hill Criteria are not intended as a check 
box approach but instead are points to consider when evaluating the totality of evidence.  
In addition, the availability of a fully elucidated MOA/AOP is a not requirement for using 
epidemiology studies in human health risk assessment.  However, even in the absence of a 
fully developed MOA/AOP, collection and evaluation of mechanistic data may provide 
support for biological plausibility and help explain differences in tissue sensitivity, species, 
gender, life-stage, or other factor.  The MOA/human relevance framework is a flexible tool 
which provides a foundation for organizing information without rigidity.  It is this 

8 https://aopwiki.org/wiki/index.php/Main_Page#OECD_User_Handbook 

167



Page 13  

flexibility that makes it a useful tool for a variety of purposes such as evaluating causality, 
integrating information across multiple lines of scientific evidence, and identifying data 
gaps and areas of future research.  In this analysis, epidemiologic findings and human 
incident data can be evaluated in the context of other human information and experimental 
studies to evaluate biological plausibility, to identify areas of uncertainty and areas of 
further research.   To describe how Bradford Hill aspects are considered in the WOE 
evaluations, OPP has used some definitions of terms as outlined in EPA’s Preamble to the 
Integrated Science Assessments (ISAs) which serve as a scientific foundation for the review 
of EPA’s National Ambient Air Quality Standards (NAAQS). (USEPA, 2015).   

Key events.  In cases where the MOA/AOP are established for a particular health 
outcome, a clear description of each of the key events (i.e., measurable parameters) 
that underlie the MOA/AOP are given. Data to inform the key events may come from 
a combination of in vitro or in vivo data sources (human or animal). These key 
events can be a combination of PK and PD events.  However, it noteworthy that the 
availability of a fully elucidated MOA/AOP is a not requirement for using 
epidemiology studies in human health risk assessment.   

Biological Gradient/Exposure-Response/Dose-Response Concordance & 
Relationships.  The Preamble to the ISAs notes that “In the context of epidemiology, 
a well-characterized exposure-response relationship (e.g., increasing effects 
associated with greater exposure) strongly suggests cause and effect, especially 
when such relationships are also observed for duration of exposure (e.g., increasing 
effects observed following longer exposure times) (USEPA, 2015).” When the 
MOA/AOP is known, dose-response relationships are identified for each key event.  
Dose-response relationships are compared among key events.  In some cases, the 
earlier key events may be more sensitive than later key events.  In other cases, key 
events may share similar dose-response curves.   

Temporal association.  Evidence of a temporal sequence between the introduction 
of an agent and appearance of the effect constitutes another argument in favor of 
causality (USEPA, 2015).  The Preamble to the ISAs notes that “Strong evidence for 
causality can be provided through ‘natural experiments’ when a change in exposure 
is found to result in a change in occurrence or frequency of health.”   

This analysis considers key events which occur rapidly (e.g., metabolism to an active 
metabolite which could occur within minutes of exposure) and those which occur after 
longer durations (e.g., development of a tumor) to ensure coherence of the effects.  Specific 
to considering epidemiology data, the temporal relationship between the exposure and 
health outcome may be considered.     
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Strength, consistency, and specificity.

Consistency:  An inference of causality is strengthened when a pattern of elevated risks is 
observed across several independent studies. The reproducibility of findings constitutes 
one of the strongest arguments for causality. Statistical significance is not the sole criterion 
by which the presence or absence of an effect is determined. If there are discordant results 
among investigations, possible reasons such as differences in exposure, confounding 
factors, and the power of the study are considered (USEPA, 2015).   

Consistency of findings across studies is informed by the repeated observation of effects or 
associations across multiple independent studies. Further support is provided by 
reproducibility of findings in different populations under different circumstances. 
However, discordant results among independent investigations may be explained by 
differences in study methods, random errors, exposure, confounding factors, or study 
power, and thus may not be used to rule out a causal connection (USEPA, 2015). 

Strength of the observed association:  The finding of large, precise risks increases 
confidence that the association is not likely due to chance, bias, or other factors. However, 
it is noted that a small magnitude in an effect estimate may or may not represent a 
substantial effect in a population (USEPA, 2015). 

Specificity of the observed association:  Evidence linking a specific outcome to an 
exposure can provide a strong argument for causation. However, it must be recognized that 
rarely, if ever, do environmental exposures invariably predict the occurrence of an 
outcome, and that a given outcome may have multiple causes (USEPA, 2015). 

Biological plausibility and coherence.    

Coherence:  An inference of causality from one line of evidence (e.g., 
epidemiologiccontrolled human exposure, animal, or ecological studies) may be 
strengthened by other lines of evidence that support a cause-and-effect interpretation of 
the association. There may be coherence in demonstrating effects from evidence across 
various fields and/or across multiple study designs or related health endpoints within one 
scientific line of evidence (USEPA, 2015).   

When animal and human data show a similar toxic profile, both quantitatively and 
qualitatively, there is high confidence in the human health risk assessment. Whereas in 
other cases, animal and human data may show a qualitatively similar toxic profile but 
quantitative differences are observed.   For example, a particular chemical exhibits the 
same MOA/AOP in animals and humans but there may be species differences in dose-
response characteristics.  These dose-response differences could be due to tissue 
dosimetry (i.e., PK) or from different response characteristics (i.e., PD).   In contrast, animal 
and human data can, in some instances, show qualitatively dissimilar outcomes.  This 
situation highlights the need to fully and objectively evaluate all available information in a 
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transparent and comprehensive manner to consider factors such as species, gender, and 
life-stage differences and potential susceptibilities along with study design considers and 
exposure potential.   

Biological plausibility: An inference of causality is strengthened by results from 
experimental studies or other sources demonstrating biologically plausible mechanisms. A 
proposed mechanism, which is based on experimental evidence and which links exposure 
to an agent to a given effect, is an important source of support for causality (USEPA, 2015).   

Similarly, information on MOA/AOP for a chemical, as one of many structural analogs, can 
inform decisions regarding likely causality.  Structure activity relationships and 
information on the agent’s structural analogs can provide insight into whether an 
association is causal (USEPA, 2015).   

EPA’s Cancer Guidelines (2005) indicate:     

“evaluation of the biological plausibility of the associations observed in epidemiologic 
studies reflects consideration of both exposure-related factors and toxicological 
evidence relevant to identification of potential modes of action (MOAs). Similarly, 
consideration of the coherence of health effects associations reported in the 
epidemiologic literature reflects broad consideration of information pertaining to the 
nature of the biological markers evaluated in toxicologic and epidemiologic studies. [p. 
39].”   

However, The Cancer Guidelines further state that “lack of mechanistic data, however, is not 
a reason to reject causality [p. 41].”   As such, lack of established MOA/AOP is not necessary 
knowledge when using epidemiology data and epidemiology associations may still be valid 
even in the absence of an established MOA/AOP and may also provide insight into potential 
MOA/AOP. 

Uncertainties. Uncertainties are discussed in the WOE transparently and 
objectively. 

E. Overall conclusions, recommendations for risk assessment, statement 
of areas of confidence and uncertainty  

It is important to document a summary of the evidence, the procedures or methods 
used to weigh the evidence, the basis for the WOE conclusion or recommendation, any 
uncertainties and areas for further research.  Recommendations are made on the role of the 
epidemiologic or human incident data in the risk assessment.  Generally, OPP does not use 
human incident information for quantitative risk assessment but instead to inform risk 
assessment/risk management activities such as indicating a potential need for a new risk 
assessment or new risk management measures, evaluating the success of risk mitigation 
actions after they are implemented, and targeting possible enforcement activities.  In 
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contrast to more limited role of human incident data, epidemiology studies have the 
potential to help inform multiple components of the risk assessment in a variety of ways.  
High quality studies with robust exposure assessment may be used to estimate a risk 
metric quantitatively.    Alternatively, outcomes reported in epidemiologic studies may be 
compared qualitatively with those seen in in vitro and animal studies to evaluate the 
human relevance of animal findings (Hertz-Picciotto, 1995) and may be useful in assessing 
the biological plausibility of epidemiologic outcomes.   In the final portion of the proposed 
WOE analysis, the overall conclusions along with statement of areas of confidence and 
uncertainty.  This section also identifies areas of additional research.   This section 
recommends the source of data for regulatory values and the appropriate approach for 
extrapolating between species (if necessary) and among humans.  

IV. REVIEWING EPIDEMIOLOGY STUDIES FOR USE IN PESTICIDE RISK ASSESSMENT 

A.  Introduction   

Epidemiology is a science that seeks to identify and evaluate relationships between 
exposure to chemical, physical or biological agents, and the health status of populations 
(Boyes et al., 2007).  It has been defined as the “study of how disease is distributed in 
populations and the factors that influence or determine this distribution” (Gordis, 2009). 
More broadly, it is considered as “the study of the occurrence and distribution of health-
related events, states, and processes in specified populations, including the study of the 
determinants influencing such processes and the application of this knowledge to control 
of relevant health problems” (Porta, 2014).   The objective of much epidemiologic research 
is to obtain a valid and precise estimate of the effect of a potential cause on the occurrence 
of disease.  A key objective of epidemiology, like other sciences, is determining cause and 
effect or - said differently - of identifying the etiology of a disease or health outcome and 
the risk factors with which it might be associated.   Calderon (2000) described four major 
uses of such studies:  1) describe the health status of a population and discover important 
time trends in disease and exposure frequency; 2) explain the occurrence of diseases by 
identifying factors that are associated with specific diseases or trends; 3) predict the 
number of disease occurrences and the distribution of health states in specific populations; 
and 4) improving the health status of the population by identifying factors that affect 
environmental or human health.  In the case of pesticides, epidemiology focuses on the 
relation between exposure and adverse health effects in the general population and in 
specific sub-populations, such as occupationally exposed workers or applicators.  

Epidemiology studies have the potential to help inform multiple components of the risk 
assessment in a variety of ways.  High quality studies with robust exposure assessment 
may be used to quantitatively estimate risk or an appropriate risk surrogate such as an 
odds ratio or risk ratio.  However, many epidemiology studies that deal with pesticides and 
pesticide exposure suffer some limitations in size, scope, exposure assessment, or data 
analysis which prevent or otherwise impede their full use in quantitative risk assessment 
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(Ntzani et al., 2013).  Pesticide use in the US has changed significantly over the last few 
decades.  As the use changes, so does the exposure to workers.  Changes in pesticide use 
have occurred due to risk mitigation actions by EPA, resistance management activities, 
introduction of new chemistries, and increased use of genetically modified crops.  These 
significant changes in exposure have to be taken into account when interpreting 
epidemiology studies and, ultimately, the decision to use such studies in quantitative risk 
assessment. Even so, epidemiology studies may be used to compare with evidence from 
experimental animal studies to characterize assumptions used in deriving such values.  In 
other cases, outcomes reported in epidemiologic studies may be compared qualitatively 
with those seen in in vitro and laboratory animal studies to evaluate biological plausibility 
or human relevance of animal findings (Hertz-Picciotto, 1995).   Human information like 
that found in epidemiology studies are expected to potentially play a significant role in the 
new vision of toxicity testing recommended by the NRC (2007).  Specifically, epidemiology 
studies can provide insight on health outcomes that may arise from real-world chemical 
exposures in humans and thus can contribute to problem formulation and hazard/risk 
characterization.  Human information may guide additional studies (e.g., dose and endpoint 
selection for use in in vitro and targeted in vivo experimental studies); and identify novel 
health effects or host susceptibilities which can be investigated with future research.   

When laboratory data from animal studies provide the primary source of information 
for hazard characterization, one potential source of uncertainty is the relevance of animal 
models to humans.  In the absence of data to support the contrary, animal findings are 
assumed to be relevant to humans.  Furthermore, EPA assumes that humans are more 
sensitive than laboratory animals in the absence of data to support the contrary.  In 
actuality, humans may be more or less sensitive to pesticides than other animal species.  
Epidemiology and human incident data can provide scientific information and support to 
inform uncertainties associated with species extrapolation.   With respect to population 
variability, epidemiology studies better characterize potential variability than do animal 
studies.  Specifically, epidemiologic data include the genetic diversity, and variability 
inherent in human populations and thus can better account for and represent actual 
population response to environmental chemicals than laboratory animals (Calderon, 2000).   

With respect to dose-response characterization, animal toxicology studies have the 
benefit that studies can be designed to cover a broad range of exposure levels.  However, 
animal toxicology studies generally use exposures which are much larger (sometimes 
orders of magnitude) than those that occur in the environment.  These high exposure levels 
in animal studies dictate the need for extrapolation from high to low doses.  This 
extrapolation introduces added uncertainty into the risk assessment.  Epidemiology studies 
and human incident data involve actual real-world exposures and thus high dose 
extrapolation may in many cases not be needed. Epidemiology studies conducted over a 
range of exposures (from low to high) are most useful.     

Animal studies do not replicate the length, magnitude, duration, routes of exposure and 
variability in exposure experienced by humans (Calderon, 2000).   Human exposure often 
occurs through multimedia exposure pathways, including food, water, air, and indoor and 
outdoor environments.  In contrast, controlled laboratory studies typically use a single 
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route of exposure.  In addition, humans may experience exposure to multiple chemicals 
and/or non-chemical stressors simultaneously, whereas most animal studies involve a 
single chemical stressor.   On one hand, this multi-chemical exposure in epidemiology 
studies can provide a challenge when attempting to attribute epidemiologic outcomes to a 
single pesticide chemical. On the other hand, epidemiologic research considers real-world 
exposures and may help, when considered along with experimental approaches, address 
questions associated with multiple chemical exposures which can be difficult to evaluate in 
an experimental setting.    

B.  Types of Epidemiology Studies  

The major types of observational epidemiologic studies are described briefly below 
with consideration of their strengths and weaknesses (Lilienfeld and Lilienfeld, 1979; 
Mausner and Kramer, 1985; Kelsey et al., 1996; Rothman and Greenland, 2012; Paddle and 
Harrington, 2000; USEPA, 2005; Purdue Pesticide Programs, PPP-43).    

Cohort studies begin with a group of people that share common characteristics—the 
cohort—and evaluate their health over an extended follow-up time period during which 
the occurrence of disease is recorded (see figure box from van den Brandt et al. (2002)). 
The common characteristic is often the presence vs. absence of “risk factors” (such as 
exposures)9.  In such studies, 
differences in disease occurrence 
between the “exposed” and “non-
exposed” individuals are identified 
and studied over time to determine 
differences in the rate of disease10.
This difference in the rate of disease 
occurrence is then investigated to 
determine if the rate of disease 
differs between the exposed and 
non-exposed groups.  Cohort studies 
have the ability to simultaneously 
evaluate multiple disease outcomes 
under study (which is not true for case-control studies, which are generally limited to 
evaluating only a single (pre-specified) disease outcome, discussed below). Cohort studies 
can also be performed either prospectively, like the Agricultural Health Study (AHS, 
http://aghealth.nci.nih.gov/), or retrospectively from historical records. A prospective 
cohort design focuses on a group of people from a current point in time through a future 
point in time. A retrospective cohort design focuses on a group exposed at some point in 
the past, and compares disease rates after exposure occurred (generally through existing 

9 While exposure is often dichotomized on an exposed vs. non-exposed basis in cohort studies, exposure can 
also be measured on a quantitative scale (e.g., by a continuous measure or by quantiles) 
10 Cohort studies commonly study differences in rates of disease, but these can also include other focal 
outcomes of interest such as birth weight, mental abilities, blood pressure, etc.    
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available exposure databases (or records) available on a person-by-person (individual) 
basis).  Prospective cohort studies can be relatively lengthy and expensive to conduct, 
particularly for rare diseases, and require a large number of subjects to be under study.  
Importantly, significant resources and professional staff are required for a long period of 
time to collect high quality data.   

Case-control studies are studies in which groups of individuals with (cases) and 
generally without (controls) a given disease are identified and compared with respect to 
(generally past11) exposure to determine whether those with the disease of interest are 
more likely or no more likely to have 
been exposed to the agent(s) or 
factor(s) of interest.  That is, the 
analysis of case-control studies 
contrasts the frequency of exposure of 
the agent or factor in the cases with 
those in the controls to determine if 
these differ and, thus, whether there is a 
differential association.  In case-control 
studies, determination of the disease 
status (i.e., cases with the disease; 
controls without) generally precedes 
determination of the exposure status 
(see figure box from van den Brandt et 
al. (2002))   Because disease has already occurred at the time of selection into the case-
control study, this study design is particularly useful in studying uncommon diseases  or 
diseases with long latency and can be utilized to evaluate the relation between many 
different exposures and a specific (pre-specified) disease outcome of interest . And because 
case-control studies begin with individuals who have the disease, the studies can involve 
fewer subjects than cohort studies and can be completed in a comparatively shorter time 
frame.  Challenges in case-control investigations include the selection of an appropriate 
control group and the assessment of exposures which may have occurred long before the 
disease was diagnosed (Rothman, 2012; Wacholder et al. 1992a; Wacholder et al. 1992b; 
Wacholder et al. 1992c; Shultz and Grimes, 2002; Grimes and Schultz, 2005). Case-control 
studies can be particularly susceptible to “recall bias” in which diseased individuals may 
remember exposures or events differently (generally better) than those who serve as the 
controls and are healthy.   

Nested case-control studies are an example of a hybrid design and contain the 
elements of a cohort and a case-control study.  These designs can be useful when the 
analytical costs for determining pesticide exposure are too high for the entire cohort to be 
studies.  For example, a cases that that have developed the disease or health outcome in an 

11 It is possible for case-control studies to be done prospectively in which the cases have not yet developed 
the disease until after the study begins under which circumstance the cases are enrolled in the study over 
time. 
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ongoing cohort study can be matched with appropriate controls from the study that have 
not yet developed the disease or outcome of interest at the time of the analysis. One 
recognized advantage of the nested case-control study (as opposed to a more standard 
case-control study) is that the issues of selection bias and recall bias are minimized.   

Cross-sectional studies focus on the prevalence of disease (e.g., birth defects, small-
for-gestational age or SGA), symptoms, biological/physical and physiologic response 
measurements (e.g., pulmonary function tests, blood pressure, chest X-ray, clinical 
examinations, liver and kidney biomarkers). A key feature of such studies is that they are 
observational studies which focuses on the prevalence as a frequency measure, with the 
presence or absence of disease determined at the time of sampling or over a sampling 
period. Prevalence is the proportion of individuals in a population that has the disease and 
can either be determined as a “point prevalence” or as a “period prevalence”.12 A 
prevalence is a proportion not a rate and thus the cross sectional studies do not involve a 
follow up period. Typically, the exposure status (e.g., exposed or unexposed), disease 
status/outcome, and demographic characteristics are determined at a point in (or over) 
time. The major comparison in this study design is a comparison of the prevalence of the 
outcome in the exposed population vs. the prevalence of that outcome in the non-exposed 
population, with the risk measure being the prevalence risk ratio or odds ratio.  Cross-
sectional studies are generally used to identify patterns or trends in disease occurrence 
over time or in different geographical locations, and can be conducted quickly and 
relatively inexpensively.  However, they measure the prevalence of a disease outcome 
which is affected by both incidence – the rate of occurrence of new cases – and duration of 
the disease, and it can be difficult in any analysis to sufficiently separate these factors. 
Thus, they involve “survivor populations” and do not measure, evaluate, or consider those 
that have left the population of interest because they became ill.  Another important 
limitation of cross-sectional studies is they do not allow one to determine whether 
exposure precedes the disease.  As such, cross-sectional studies are unable to establish 
temporal relationships between disease and exposure and typically require additional 
studies to confirm a hypothesized causal association suggested by a cross-sectional study.  

Ecologic studies examine exposure and disease patterns using information reflecting 
group or population-level data. In an ecologic study, the unit of analysis is a group and not 
an individual13.  Here, groups of subjects are sampled, with the exposure, disease, and 
potential confounding factors measured at this group (or cluster) level.  Groups are 
generally defined on a geographic, administrative, or organizations unit basis (e.g., districts, 
towns, counties, schools, workplaces, etc.) with all exposure, disease, or confounder 
measurements made or summarized at the group level rather than at the level of the 
individual.  An ecological (group-based) study contrasts with an individual-level study in 
that in the former there is no information on whether the cases are the actual individuals 

12 The former involve measurements at a particular place and/or a particular time while the latter involves 
determinations of the proportion of cases over a given time period. 
13 Some studies can be “partially ecologic” in design in which either the exposure or the disease outcome is 
measured on a group level but the other variable is measures at an individual level with the researcher 
making inferences to the individual level. 
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with the exposure whereas in the latter exposure information is tied to the individual.  As 
an example, a study of disease rates by contaminant levels in water can be ecologic with 
respect to evaluation of the exposure, but the health outcome or disease status may have 
determined on an individual basis. In these instances, the term “semi-ecological” can 
sometimes be used when exposure is determined at the group level but outcome is 
determined at the level of the individual.   

Using this design, it is not possible to know whether all members of the exposed group 
are individually exposed (or the individual exposure levels) nor is it possible to infer 
individual-level effects from the group level effects that result.   If the intent of the study is 
to direct inferences to the group (rather than the individual), then this is not a concern and 
these studies can be appropriate, particularly if measurements are constrained or difficult 
to perform at the individual level and exposures within the group are generally 
homogenous. If the intent of the study is instead to direct inferences to the individual, then 
this study design suffers from what is termed the ecological fallacy:  the assumption that an 
observed relationship in an aggregated or grouped data set will reflect what would have 
been observed had the sampling occurred at the individual level.  In addition to this 
ecological fallacy issue, an additional bias arises a result of the inability to appropriately 
control for confounding variables at the level of the individual as opposed to the group 
when information on confounding factors is only available at the group level.     

In most cases, ecologic studies are considered as hypothesis-generating studies and 
best used for suggesting research hypotheses for future studies and may contribute to 
problem formulation.  Nevertheless, it is important to assess ecological studies on the basis 
of the quality of their design, and useful information can be gleaned from an ecologic study 
if it is well-designed (FIFRA SAP, 2010).  Ecologic studies alone generally do not have the 
ability to establish a causal association.  When taken with other these studies can be useful 
under certain circumstances and should be noted in the hazard characterization. In 
particular, stable populations, clear exposure contrasts, and large differences in risk can be 
important factors that might increase the utility of these studies.    

C.  Evaluating epidemiology studies for use in pesticide risk assessment   

OPP searches the peer reviewed literature for observational epidemiology studies of 
potential adverse acute and chronic health effects linked to chemical use. Details regarding 
literature search protocols and strategies are provided elsewhere. Epidemiologic research 
utilizing cohort, case-control, or cross-sectional study designs may provide information to 
OPP to strengthen OPP’s understanding of the potential hazards, exposure-response 
characterization, exposure scenarios. or assessment methods, and – ultimately -- risk 
characterization (van den Brandt, 2002).  In addition, compelling case reports or case 
series analysis may illumine a health effect or mechanism of action previously unidentified.  

Generally speaking, the quality of epidemiologic research, sufficiency of 
documentation of the study (study design and results), and relevance to risk assessment is 
considered when evaluating epidemiology studies from the open literature for use in OPP’s 
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risk assessments. It is important that these criteria are endpoint-specific as various 
methodological details become more or less important given the endpoint of concern. For 
example, it is important to understand relevant factors that influence outcome 
ascertainment (e.g., is there a test or a biomarker available to indicate presence of an effect, 
or are symptoms gradual and non-specific initially leading to physician diagnosis upon 
advanced disease state). In addition, for environmental and occupational epidemiology 
studies, the quality of the exposure assessment is vitally important. Prior consideration 
must be given to aspects of exposure and confounder measurement to the question under 
consideration.  

When considering individual study quality, various aspects of the design, conduct, 
analysis and interpretation of the epidemiology studies are important. These include:  

1. Clear articulation of the hypothesis, even if the study is hypothesis-generating in 
nature; 

2. Adequate assessment of exposure for the relevant critical windows of the health 
effects, the range of exposure of interest for the risk assessment target population, 
and the availability of a dose/exposure-response trend from the study, among other 
qualities of exposure assessment, 

3. Reasonably valid and reliable outcome ascertainment (the correct identification of 
those with and without the health effect in the study population), 

4. Appropriate inclusion and exclusion criteria that result in a sample population 
representative of the target population, and absent systematic bias, 

5. Adequate measurement and analysis of potentially confounding variables, including 
measurement or discussion of the role of multiple pesticide exposure, or mixtures 
exposure in the risk estimates observed, 

6. Overall characterization of potential systematic biases in the study including errors 
in the selection of participation and in the collection of information; this can include 
performing sensitivity analysis to determine the potential influence of systematic 
error on the risk estimates presented (e.g., Greenland’s formula) 

7. Evaluation of the statistical power of the study to observe health effects with 
appropriate discussion and/or presentation of power estimates, 

8. Use of appropriate statistical modeling techniques, given the study design and the 
nature of the outcomes under study 

Other Federal and non-Federal entities have offered such guides (e.g., OHAT, 
Navigation Guide, National Toxicology Program [NTP] Report on Carcinogens [ROC14], IRIS, 
Cochrane ACROBAT-Non-Randomized Studies of Interventions) (Sterne et al., 2015 as well 
as the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) 
statement for observational epidemiological studies (see www.strobe-statement.org and  
Vandenbroucke et al., 2007;  Von Elm, 2014)   As OPP gains experience with integrating 
epidemiology studies into human health risk assessment, relevant adjustments to its 
evaluation approach will be made.   

14 http://ntp.niehs.nih.gov/pubhealth/roc/index.html 
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Independent study evaluation is performed and documented prior to the 
development of evidence- tables of detailed summary tables which are informative to 
hazard identification and exposure response assessment. Table 2 provides a structure to 
the major considerations evaluated and the associated weight (low, medium, high) for each 
consideration.   Table 2 provides a generic set of considerations and should not be 
considered a checklist.  The specific scientific considerations appropriate for particular 
science analysis are adjusted on a case by case basis.   

The culmination of the study evaluation process would be to provide 
professional/expert opinion as to the nature of the potential bias that may result from 
systematic errors in each specific study identified through study specific evaluations, and 
an assessment of overall confidence in the epidemiological database. In this way, data 
integration (animal, human, mechanistic, other) would be informed by level of confidence 
in the human epidemiological studies that inform human health effects of environmental 
and occupational exposures.  
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Table 2. Study Quality Considerations a (Adapted from Munoz-Quezada et al., 2013; 
LaKind et al., 2014) 

Parameter High Moderate Low 

Exposure
assessment 

Accurate and 
precise quantitative 
relationship with 
external 
exposure, internal 
dose, or target dose, 
possibly associated 
with an MOA/AOP. 

If questionnaire 
utilized, questionnaire 
and/or interview 
answered by subjects 
for chemical-specific 
exposure  

Evidence exists for a 
relationship 
between biomarker in a 
specified matrix 
and external exposure, 
internal dose, or 
target dose. 

Questionnaire and/or 
interview for chemical-
specific exposure answered by 
subjects or proxy individuals  

Poor surrogate 

Low-quality 
questionnaire and/or 
interview; information 
collected for groups of 
chemicals rather than 
chemical-specific; no 
chemical-specific 
exposure information 
collected; ever/never 
use of pesticides in 
general evaluated 

Outcome Assessment 

Standardized tool, 
validated in study 
population; medical 
record 
review/diagnosis 
confirmation by 
trained staff; 
appropriate 
consideration of 
prevalence/incidence 
of cases 

Standardized tool, not 
validated in population, or 
screening tool; or, medical 
record review, methods 
unstated  

Selected sections of 
test, or maternal 
report, other; or, 
maternal/paternal 
self-report; 
unclear/no 
consideration for 
whether prevalent or 
incident cases are 
appropriate 

Confounder control 

Good control for 
important 
confounders relevant 
to scientific question, 
and standard 
confounders 

Moderately good control 
confounders, standard 
variables, not all variables 
relevant for scientific question 

Multi-variable analysis 
not performed no 
adjustments; no 
stratification, 
restriction, or 
matching

Statistical Analysis 

Appropriate to study 
question and design, 
supported by 
adequate sample size, 
maximizing use of 
data, reported well 
(not selective) 

Acceptable methods, 
questionable study power 
(especially sub-analyses), 
analytic choices that lose 
information, not reported 
clearly  

Minimal attention to 
statistical analyses, 
comparisons not 
performed or 
described clearly  

Risk of (other) bias 
(selection, 
differential 
misclassification, 
effect size 
magnification, other) 

Major sources of other 
potential biases not 
likely present, present 
but analyzed, unlikely 
to influence 
magnitude and 
direction of the risk 
estimate 

Other sources of bias present, 
acknowledged but not 
addressed in study, may 
influence magnitude but not 
direction of estimate 

Major study biases 
present, 
unacknowledged or 
unaddressed in study, 
cannot exclude other 
explanations for study 
finding 

a Overall study quality ranking based on comprehensive assessment across the parameters. 
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1. Exposure Assessment  

Exposure assessment can be defined as the “process of estimating or measuring the 
magnitude, frequency and duration of exposure to an agent, along with the number and 
characteristics of the population exposed. Ideally, it describes the sources, pathways, 
routes, and the uncertainties in the assessment. (Zartarian et al., 2005).”  In environmental 
epidemiology, exposure assessment poses a unique challenge, particularly for toxicants 
that are found in low concentrations in environmental media (NRC, 1991; NRC, 1997).  
Given the complexity of exposure pathways, researchers have developed a number of 
different approaches to assess exposure, which vary in accuracy, precision, and resource 
requirements (Niewenhuijsen, 2003).  Some of these approaches are not specific to 
epidemiologic research but may be used to inform exposure assessment in a variety of 
scientific analyses.  These approaches include indirect methods, based on historical 
records, questionnaires, and environmental monitoring, and direct methods, based on 
personal monitoring and biomonitoring.   A brief description of each method and its 
strengths and limitations is summarized below.  

Table 3. Summary of indirect and direct exposure assessment methods.

Approach Method/Tools Example Exposure Estimation 

Indirect 

Historical Records 
Estimating proximity to 
agricultural crops using 
address information 

Dichotomous or ordinal 
exposure 

Questionnaires 
Determine potential for 
exposure based on 
pesticide-use responses 

Dichotomous or ordinal 
exposure 

Environmental Monitoring 
Measuring pesticide levels 
in community water 
drinking system 

Dichotomous or ordinal 
exposure, although 
exposure can be estimated 
using modeling

Direct 
Personal Monitoring 

Measuring pesticide 
inhalation and dermal 
contact 

Quantified exposure  

Biomonitoring Measuring pesticide levels 
in blood and urine Quantified internal dose 

Historical records and questionnaires are used to characterize key 
characteristics which may be associated with chemical exposure. When used in 
epidemiologic studies, historical records and questionnaires are not typically used to 
predict quantitative levels of exposure.  Rather, historical record information or 
questionnaire responses are used to assign categorical levels of exposure.  Examples of 
historical record information that can be used to assign exposure levels includes address in 
proximity to an agricultural crop and employment history information on job title and 
history.  Similarly, questionnaires can be used to determine if individuals recall using 
pesticides or identify individuals that perform specific job functions that increase their 
potential for exposure.  While historical records and questionnaires can be cost-effective 
sources of data on potential exposure, they do have limitations.  Data collected from 
historical records and questionnaires is only a surrogate of exposure.  As a result, these 
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data sources may be an oversimplification of exposure and not accurately rank individual’s 
exposure potential.   

Environmental monitoring is used to characterize the levels of contaminants in 
environmental media, including air, water, soil, food, and home and work environments.  
Many state and Federal programs collect environmental monitoring data that may be 
useful in epidemiologic studies.  Environmental monitoring is particularly useful for 
exposure that can be defined by geographic boundaries, such as air pollution and drinking 
water.  As such, many epidemiologic studies have utilized ambient air monitoring data and 
community drinking water system data to characterize exposure to air pollution and 
drinking water contamination, respectively.  While environmental monitoring data is useful 
for estimating exposures defined by geographic boundaries, it can be less reliable for the 
purposes of assigning individual-levels exposures, particularly when individuals live, work, 
and spend time in many different locations.   

Personal monitoring is used to characterize exposure at the point of contact of a 
body boundary.  Examples of personal monitoring include the use of dosimeters to assess 
dermal contact with pesticides, personal air sampling devices to assess inhalation 
exposure, and collection of duplicate diet samples to determine pesticide levels in food.  
The advantage of personal monitoring is that it is likely to provide more accurate estimates 
of individual-level exposure than indirect methods.  Personal monitoring also makes it 
possible to quantify exposure levels that can be useful for prioritizing the relevance of 
different routes of exposure.  Additionally, personal monitoring can also be used to assess 
longitudinal exposure when repeated measurements are taken over time.  While personal 
monitoring offers many advantages over indirect approaches, it also tends to be labor and 
resource intensive (Niewenhuijsen, 2003).  As a result, it is not typically feasible to conduct 
large-scale epidemiologic studies that assess exposure using personal monitoring.  
Furthermore, personal monitoring is highly dependent on the measurement techniques 
and analytic tools used to obtain samples and it is less likely that information that 
characterizes exposures during the relevant time period (usually in the past) will be 
available.  In addition, it is unlikely that the full range of exposures over the time period of 
interest will be captured, and sampling may not be over a sufficient time period to capture 
peaks and fluctuations  As such, it is extremely important to consider the scientific rigor 
and reliability of personal monitoring methodologies that are used in epidemiologic 
studies, and such monitoring may need to be supplemented by other monitoring (e.g., 
environmental, biological, and/or interview/questionnaire data).     

Biomonitoring is used to characterize exposure by measuring a chemical, its 
metabolite(s), or reactive product(s) in biological samples, such as blood, urine, saliva, 
milk, adipose, and other body tissues (Needham et al., 2007).  Zartarian et al. (2005) state 
that “a biomarker/biological marker has been defined as an "indicator of changes or events 
in biological systems. Biological markers of exposure refer to cellular, biochemical, 
analytical, or molecular measures that are obtained from biological media such as tissues, 
cells, or fluids and are indicative of exposure to an agent".  Thus, biomarkers can be used to 
assess exposure or as indicators of health effects (LaKind et al., 2014).  Table 4 provides 
scientific considerations for evaluating the quality and relevance of biomonitoring data 
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collected from epidemiology studies. Assessing exposure using biomonitoring has 
expanded rapidly as analytical tools have become more cost-effective and more biomarkers 
are identified.  Compared with self-reported questionnaire or interview data, 
biomonitoring may reduce exposure misclassification and enhance the precision of the risk 
estimates. Similarly, biomonitoring integrates exposures from different routes and can be 
used to determine the amount of exposure that is absorbed into the body (Checkoway et al., 
2004).  Furthermore, knowledge as to the role of the biomarker in the natural history of 
disease is known in certain instances, such that biomarkers may help resolve temporality 
of exposure issues.

While biomonitoring has many advantages over others exposure assessment 
methods, it also has its own limitations. In many studies, biological sample are only taken 
from a single point in time and may not reflect accurately reflect longitudinal patterns, 
particularly if exposures are highly variable.  Furthermore, evaluation of biomarkers also 
requires an understanding of degradation and metabolism of chemicals in both the 
environment and human body.  As such, biomarkers of exposure may differ between 
individuals for reasons other than exposure level. Differences in metabolism, co-
morbidities such as kidney disease in relation to urinary measurements, uncertainty as to 
whether the biomarker measures exposure to the active ingredient or the environmental 
degradates may all account for apparent differences in biomarkers of exposure among 
individuals, and possibly between comparison groups.
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Table 4. Considerations of biomonitoring data from environmental epidemiology research (Adapted from LaKind et 
al. (2014). 

Biomarker Consideration Tier 1 Tier 2 Tier 3 

Exposure biomarker 
Biomarker has accurate and 
precise quantitative relationship 
with external exposure, internal 
dose, or target dose.  

Biomarker has an unknown 
quantitative relationship with 
external exposure, internal 
dose, or target dose or is poor 
surrogate (low accuracy and 
precision) for exposure/dose. 

NA

Effect biomarker Bioindicator of a key event in a 
MOA/AOP. 

Biomarkers of effect for which 
the relationship to health 
outcome is understood 

Biomarker has undetermined 
consequences (e.g., biomarker is not 
specific to a health outcome). 

Specificity Biomarker is derived from 
exposure to one parent chemical. 

Biomarker is derived from 
multiple parent chemicals with 
similar toxicities. 

Biomarker is derived from multiple 
parent chemicals with varying types 
of adverse endpoints. 

Method sensitivity 

Limits of detection are low 
enough to detect chemicals in a 
sufficient percentage of the 
samples to address the research 
question.  

Frequency of detection too low 
to address the research 
hypothesis.  

NA

Biomarker stability Samples with a known history 
and documented stability data.  

Samples have known losses 
during storage but the 
difference between low and 
high exposures can be 
qualitatively assessed.  

Samples with either unknown 
history and/or no stability data for 
analytes of interest.  

Sample contamination Samples are contamination-free 
from time of collection to time of 
measurement (e.g., by use of 

Study not using/documenting 
these procedures.  

There are known contamination 
issues and no documentation that 
the issues were addressed 
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Biomarker Consideration Tier 1 Tier 2 Tier 3 

certified analyte-free collection 
supplies and reference materials, 
and appropriate use of blanks 
both in the field and lab).  
Research includes documentation 
of the steps taken to provide the 
necessary assurance that the 
study data are reliable.  

Method requirements 

Instrumentation that provides 
unambiguous identification and 
quantitation of the biomarker at 
the required sensitivity (e.g., GC-
HRMS, GC-MS/MS, LC-MS/MS)  

Instrumentation that allows 
for identification of the 
biomarker with a high degree 
of confidence and the required 
sensitivity (e.g., GC-MS, GC-
ECD).

Instrumentation that only allows for 
possible quantification of the 
biomarker but the method has 
known interferants (e.g., GC-FID, 
spectroscopy) 

Matrix adjustment 
Study includes results for 
adjusted and non-adjusted 
concentrations 

Study only provides results 
using one method (matrix-
adjusted or not). 

NA

FP = false positive; FN = false negative; GC-HRMS = gas chromatography/high-resolution mass spectrometry; GC-MS = gas chromatography/mass spectrometry; GC-ECD 
= gas chromatography-electron capture detector; GC-FID = gas chromatography-flame ionization detector], ICC = intra-class correlation coefficient ; NA = not applicable; 
PFP = probability of false positive 
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Indirect exposure assessment methods are common in retrospective studies and 
based on factors that are surrogates of chemical exposure.  As described above, indirect 
exposure data cannot generally be used to estimate quantitative exposure levels without 
additional modeling.  For example, a questionnaire can be used to determine if an 
individual has ever used a pesticide, but can less reliably collect data on all the 
environmental and behavioral factors that are needed to calculate that individual’s 
exposure.  As such, indirect exposure data are often used to classify exposure using a 
dichotomous exposure variable (i.e. exposed/unexposed) or ordinal exposure scale.  In 
contrast, direct exposure assessment methods are based on data on actual individual-level 
exposure through personal monitoring and biomonitoring.  Thus, direct methods can be 
used to estimate individual exposure or internal dose levels.  Direct methods are more 
common in prospective studies, but are also used in retrospective studies when existing 
biological samples are available from well-defined population groups.   

Quantified personal measurements, such as personal monitoring and 
biomonitoring, are generally considered the best source of data for estimating actual 
exposure levels (NRC, 1991; NRC, 1997).  While this is the case, accurate qualitative 
measures of exposure (e.g. dichotomous and ordinal exposure metrics) from indirect 
methods can be just as accurate for the purpose of epidemiology.  Moreover, indirect 
methods are often easier to interpret and may require less additional research and 
development to demonstrate their utility in exposure assessment.   

Regardless of the approach, exposure assessment methods should be able to 
provide exposure estimates that are reliable and valid.  In the context of epidemiology, 
reliability general refers to the ability to reproduce results and validity generally refers to 
the extent that exposure estimates reflect true exposure levels (Checkoway et al., 2004).  
When evaluating a particular exposure assessment’s reliability and validity, it is important 
to consider the exposure assessment’s strengths and weaknesses in the context of the 
study’s research objectives.  Less refined exposure assessment may be suitable for 
exploratory studies.  This is because exploratory studies help raise awareness about 
potential hazards that can encourage investment in more focused research.  Conversely, 
studies with more focused hypotheses can be greatly strengthened through the use of more 
refined exposure assessment methods.  Therefore, indirect and direct exposure assessment 
methods represent a spectrum of tools that are complimentary and can be used at different 
stages of research when exploring exposure-disease relationships.   

2. Confounding Factors  

Confounding occurs when the relationship between the exposure and disease is to some 
extent attributable to the effect of a second (confounding) risk factor. This can happen 
when this second (i.e., confounding) risk factor is an independent, causally-associated risk 
factor for the disease but is also associated -- causally or non-causally -- with the exposure 
under analysis and does not also serve as an intermediate variable in the causal pathway 
between the exposure and the outcome of interest. If not properly measured and accounted 
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for, confounders have the ability to change the magnitude (and potentially the direction) of 
the estimated association between an exposure and health outcome.  This can result in an 
over- or under-estimation of the relationship between exposure and disease because the 
effects of the two risk factors have not been appropriately separated, or “disentangled”.  As 
an example:  a given pesticide may be associated with lung cancer in a given study, but this 
may be due to a confounding effect of farm tractor diesel fumes: here, this second factor – 
farm tractor diesel fumes – would be a confounder if it was causally associated with the 
disease outcome (here, lung cancer) but also associated with pesticide exposure.  
Confounding factors may include less intuitive lifestyle exposures such as cigarette 
smoking, dietary factors (e.g., high energy/calorie laden diet), and physical activity (e.g., 
lack of physical activity) genetics, comorbidity, medication use, alcohol consumption, etc., 
all of which may adversely affect health and may be statistically associated with pesticide 
use. In epidemiological analyses, confounding factors are measured in the study sample 
and typically “adjusted for” in the final risk estimate in either the design phase of the study 
or the analysis phase.  With respect to the former, the epidemiological researcher can 
“restrict” the study population to individuals that share a characteristic which the 
researcher wishes to control; this has the result of removing the potential effect of 
confounding caused by that (now controlled) characteristic.  A second available method – 
also applicable to the design phase of the study -- is for the researcher to control 
confounding by “matching” individuals based on the confounding variable.  This ensures 
that the confounding variable is evenly distributed between the two comparison groups 
and effectively controls for this.  It is important to note that the relationship between the 
confounder and the exposure or outcome does not need to be found to be statistically 
significant in order for it to have an impact on the risk estimate for the main effect15.

At the analysis stage, one method by which confounding can be controlled is by 
stratification.  Under this means of control, the association is measured separately under 
each of the (potentially) confounding variables; the separate estimates are “brought 
together” statistically -- if determined to be appropriate -- to produce a common odds ratio 
or other effect size measure by using Mantel-Haenszel approaches which weight the 
estimates measured in each stratum.  Stratification can be difficult if there are multiple 
potential confounders that need to be controlled simultaneously.  In such cases, 
confounding is typically dealt with by means of statistical modelling. (e.g., logistic 
regression).

  It is important that careful consideration be given to confounders prior to any 
epidemiological studies being initiated in the field and it is important that any study 
adequately describe how this was done:  epidemiological studies are frequently critiqued 
for ignoring or paying insufficient attention to potential confounders. For this reason, a 
sensitivity analysis can be helpful to demonstrate the potential effects that a missing or 
unaccounted for confounder may have on the observed effect sizes (see Gustafson and 

15 This is why it is generally considered inappropriate to “statistically test” for a confounder to determine 
whether the confounder needs to be adjusted for.  Instead, some consider a change in the effect size of 10% or 
more after adjustment for (inclusion of) a potential confounder to be sufficient evidence for the confounder to 
be incorporated into the analysis.  
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McCandless, 2010). If unmeasured confounders are thought to affect the results, 
researchers should conduct sensitivity analyses to estimate the range of impacts and the 
resulting range of adjusted effect measures.  Such sensitivity analyses -- generally not 
uniformly conducted in most published epidemiological studies – can be used when 
available to estimate the impact of biases and potential confounding by known but 
unmeasured risk factors.

Depending upon the specific exposure-disease association under study, a factor may 
or may not be a confounding factor that is necessary to control: in order for a substantial 
distortion in the effect size estimate to occur due to confounding, the confounder must be 
not only a relatively strong risk factor for the disease of interest16, but also be strongly 
associated with the exposure of interest.  Assessment of potential confounding is made on a 
study specific basis and – if unmeasured confounders are thought to affect the results -- 
researchers should conduct a sensitivity analysis to estimate the range of impacts and 
resulting range of adjusted effect measures. When evaluating the quality of observational 
epidemiology studies, OPP will consider whether relevant confounding factors are properly 
identified, described, measured and analyzed such that an unbiased estimate of the specific 
association under study can be made, and, when possible, may consider sensitivity analysis 
as a potential tool to assist in determining the degree to which such confounding might 
potentially affect the estimate of the effect size.  It should be emphasized that a confounder 
must be a relatively strong risk factor for the disease to be strongly associated with the 
exposure of interest to create a substantial distortion in the risk estimate.  In such cases, it 
is not sufficient to simply raise the possibility of confounding; one should make a 
persuasive argument explaining why a risk factor is likely to be a confounder, what its 
impact might be, and how important that impact might be to the interpretation of findings.  
(p. 23-25, FIFRA SAP Report, 22 April 2010)          

Finally, it is important to distinguish between confounding, effect modification, 
synergy, and other mediating effects of covariates.   Confounding is a bias that results from 
not controlling for a variable that is associated causally with the disease and associated –
causally or non-causally -- with the exposure of interest.  Epidemiologic researchers seek to 
minimize this bias.  Effect modifiers -- on the other hand -- are variables that differentially 
affect the magnitude of the effect size, by strata (e.g., age, race/ethnicity, SES status, genetic 
polymorphisms).  Effect modifiers may or may not also be confounders.  Typically, they are 
modelled by either introducing interaction terms in multivariable models or by evaluating 
effect sizes by strata after stratifying the data by levels of the effect modifier.  A study 
frequently needs to be specifically designed to evaluate effect modifiers in order to have a 
sufficient sample size in each population strata of interest.  Epidemiologic researchers seek 
to understand effect modifiers (not minimize them, as they do with confounders) because 
they can be important in evaluating risk differences across population strata, in evaluating 
the association between exposure and the effect of interest, and in identifying susceptible 

16 Consideration needs to be given not only to ensuring that the confounding factor is indeed a risk factor on 
its own but also to ensuring not only related to the exposure of interest.  Adjusting for a factor that has an 
association with the disease of interest wholly or partly because of its association with the exposure of 
interest will lead to attenuation of the exposure-disease relationship if it truly exists. 
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subpopulations.  Effect modifiers may or may not also be confounders.  For example, 
smoking may be a confounder in a study associating lung cancer with a pesticide often used 
on tobacco, but it may also be an effect modifier if the risk of exposure to this pesticide is 
higher among smokers than non-smokers.  Synergy is often introduced as a biological or 
pharmacological/toxicological concept rather than an epidemiological one and relates to 
the ability of two chemicals, together and acting jointly, to magnify or exaggerate the effect 
beyond that which would be seen considering the (mathematical) sum of each chemical’s 
effects alone. In epidemiological and statistical terms, this is often expressed as effect 
modification or interaction.       

3. Statistical Analysis  

Epidemiologic studies are designed to measure an association between a specific 
exposure and a disease. When evaluating the quality of pesticide epidemiology studies, OPP 
will also consider the statistical methods used. Specifically, OPP will consider the extent to 
which the analytic methods described in the study are appropriate to the research 
question; the completeness of the description of the statistical methods utilized; the 
appropriateness of the methods for identification, assessment and adjustment of 
potentially confounding variables in the exposure-disease relation; and, the description, 
extent of,  and presentation of any sub-group analyses which may have been performed 
(including whether statistical corrections for multiple comparisons have been made).   

Epidemiologic investigations typically utilize statistical modeling to estimate risk (e.g. 
generalized linear models such as logistic (for odds ratios) or Poisson (for count data) 
regression. To do so, researchers must consider not only the relevant main exposure and 
outcome variables, but also consider relevant confounding factors, and whether the 
association under investigation may differ by level of these factors, i.e., effect modification 
or interaction (Szklo et al., 2004). Upon identification of a potentially confounding variable 
-- one that substantively changes the magnitude and/or direction of the association under 
study -- adjustment through regression modeling can help to isolate the risk estimate of 
interest, i.e., the association under study. In addition, OPP will evaluate the stratification of 
the association by the level of the potential effect modifier under study or evaluation of 
statistical interaction. If the magnitude and direction of the association of interest differs 
greatly by level of a third variable, then the stratified results should be considered primary. 

When performing statistical modeling when the outcome is rare or the sample size is 
relatively small, it is important to be cautious about including too many covariates in the 
model.  Any resulting effect size estimate may be too high or too low and is unlikely to 
reflect the true estimate of effect. Such issues due to rare events or low sample sizes are 
also possible when conditional methods are used (e.g., conditional logistic regression when 
the design includes matching of the comparison group under study): if too few discordant 
pairs (or discordant sets) are observed, the estimated effect size may also be unreliable.  
Thus:  while controlling for confounders and other covariates is important, the assessor 
must take care not to over-control or end up with too few degrees of freedom to produce a 
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reliable test. In these cases, it may be more important to seek parsimonious models that 
adjust for only a smaller number of the most influential confounders and other covariates 
so that the effective sample size remains adequate.   

Finally, it is important in any statistical modeling exercise to consider statistical 
significance in the context of clinical/biological/scientific significance of the result. It may 
be that some results are statistically significant but unimportant in a clinical/biological/ 
scientific context.  The reverse can be true:  it may be that results are not statistically 
significant but may be important in a clinical/biological/scientific context.  The former may 
suggest a sample size that is larger than necessary while the latter may suggest one than is 
smaller than needed.   The latter case may be important from a public health perspective 
and warrant further exploration, especially when the association is strong (despite it being 
imprecise) 

4. Potential Bias in Observational Research 

Bias is a systematic error in the design or conduct of a study that gives rise to study 
results that are systematically different from the (unobserved) true situation. This 
contrasts with random errors which relate to sampling variability and precision (or, 
equivalently, confidence bounds) around the effect size measure, but which do not “drive” 
or “push” the result in one particular direction (e.g., either toward or away from the null).   

Bias is a reflection of methodological imperfections in the design or conduct of the 
study and should be addressed or discussed by researchers as part of their analysis. There 
are a number of ways that bias can be introduced into a study:  studies may be biased in the 
way in which participants are selected into the study (selection bias), or the way in which 
information about exposure and disease status is collected (information bias, including 
recall bias discussed earlier for case-control studies). One example of a common 
occupational selection bias is the “healthy worker effect” which can create an important 
bias in occupational epidemiology studies, leading to bias toward the null, and even below 
(creating the interpretation that the exposure is “protective”) No study is totally devoid of 
bias and one should consider the extent to which authors of published studies described 
potential bias in the study, and how (if at all) they attempted to address it and characterize 
it in the study.  Bias can result from differential or non-differential misclassification 
(Greenland, 1998). Differential misclassification (bias) means that misclassification has 
occurred in a way that depends on the values of other variables, while non-differential 
misclassification (bias) refers to misclassifications that do not depend on the value of other 
variables. Misclassification biases – either differential or non-differential – depend on the 
sensitivity and specificity of the study’s methods used to categorize such exposures  and 
can have a predictable effect on the direction of bias under certain (limited) conditions: this 
ability to characterize the direction of the bias based on knowledge of the study methods 
and analyses can be useful to the regulatory decision-maker since it may allow the decision 
maker to determine the extent to which, if any, the epidemiological effect sizes being 
considered (e.g., OR, RR) are likely underestimates or overestimates of the true effect 

189



Page 35  

size17.  It is not atypical to find degrees of misclassification in the range of 10 to 20 percent 
and it can be helpful in reviewing epidemiological studies to consider a form of sensitivity 
(or “what if”) analysis which evaluates such a degree of misclassification -- and whether it 
is differential or non-differential – and the degree to which such misclassification might 
impact the odds ratio or relative risk with respect to both magnitude and direction18.
(p.25, FIFRA EPA SAP report, 22 April, 2010).   As mentioned earlier with respect to 
confounding, such quantitative sensitivity analysis is only rarely performed or practiced in 
published epidemiology studies, with bias instead more typically evaluated in a narrative 
manner without any quantitative assessment of its potential magnitude and the effect it 
may have on the epidemiological effect size estimates (Jurek at al., 2006).  This may be due 
– in part -- to a general lack of availability of computational tools for such analysis by 
epidemiologists or their unfamiliarity with them.  Such tools are becoming increasingly 
available and may be valuable in developing more rigorous quantitative methods for 
evaluation of potential biases.  

5. Interpretation of Null studies 

“Null” studies -- or well-conducted studies which report no association between 
exposure to the pesticide and an adverse health outcome -- will be evaluated carefully for 
their potential usefulness in human health risk assessment. The study may report a null 
result either because the investigated association indeed does not in reality exist, or 
because the study was conducted failed to detect an association at a given predetermined 
level of significance.  This latter result –the failure to detect an association -- should not 
necessarily be interpreted to mean that no association exists, but rather as simply one was 
not found in the particular study19,20. To evaluate which of these two conditions may be 
correct when reviewing “null” studies, one should consider other research reported 
concerning the same or similar research question, the manner in which exposure and 
outcome were assessed, the extent to which exposure misclassification may have biased 
the study to the null, the statistical methods used including the identification and analysis 
of confounding variables in the association, the extent to which the exposure is below a 
threshold at which an effect would occur or be detected, as well as the power of the study 
and its ability to detect an effect size of substantive interest.  Statistical power refers to the 
probability that researchers may correctly identify that there is a difference between the 
two comparison groups, i.e., there is an association between exposure and disease, when in 

17 The direction of bias that results from the degree of non-differential misclassification will also depend on 
the categorization of exposure (either dichotomous or polytomous).
18 Such sensitivity analyses might be especially recommended for exposure misclassification biases which in 
many cases are expected to result in more substantive effects on the effect size estimate than those from 
confounding.     
19 The old adage that “the absence of evidence does should not be interpreted as the evidence of absence” is 
true here. 
20 See also the American Statistical Association’s Statement on Statistical Significance and P-values at 
https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf
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fact there is in fact a true difference (or association). Studies that are “low powered” may 
falsely conclude there is no association, when an association actually exists21.

Finally, it is important to consider the effects of publication bias in any systematic 
review of the literature with respect to interpretation of null studies.  The term publication 
bias refers to the tendency for the available published literature to disproportionately 
exclude such null studies.   Studies that demonstrate such a “null” association between a 
disease or health outcome can be as equally informative as those that do provided that the 
study in question meets the quality criteria established as part of the epidemiological 
review process.  These may include such factors as study design; the existence of an a priori
hypothesis vs. an exploratory analysis; sample size and statistical power to detect an effect 
size of interest; proper ascertainment of outcome vis-à-vis sensitivity and specificity; the 
quality of the exposure assessment and the potential for differential and non-differential 
misclassification; adequacy of the measurement of key potential confounders and other 
forms of bias (information, selection, etc.); and evaluation of effect modifiers; appropriate 
statistical analyses, including consideration of and possible correction for multiple 
comparisons that a unsupported by a priori hypotheses, biological plausibility, or other 
supporting information.   

6. External Validity (Generalizability)  

As noted above, validity generally refers to the extent that exposure estimates 
reflect true exposure levels (Checkoway et al., 2004).  External validity, or generalizability,
refers to the ability to extend the epidemiologic study results derived from a sample of the 
population (e.g., pesticide applicators) to other populations (e.g., all agricultural workers). 
To assess external validity, comparison of characteristics in the sample to the larger 
population (if known) can be made.  Such evaluation should include not only demographic 
factors, but also whether exposures (e.g., dose, timing, duration) are similar and whether 
important effect modifiers (e.g., sensitivity of vulnerable populations) were considered.   
Generalizability is of particular importance because it is important to understand whether 
and how individual study results may be applied to the larger group or targeted sub-groups 
in regulatory risk assessment.  For example, the AHS has reported statistical associations 
between some cancer and non-cancer health outcomes for some pesticide chemicals.  OPP 
has an interest in evaluating the extent to which the reported findings may apply to 
pesticide applicators in states other than North Carolina and Iowa or to farm workers who 
primarily do post-application activities.   

21 Studies that are low-powered but find statistically significant effects may also be subject to the 
phenomenon of effect size magnification and this can be important to investigate as well.  (Ioannidis, 2008).
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V. HUMAN INCIDENT SURVEILLANCE DATA 

Generally speaking, epidemiology studies on pesticides such as those described above 
focus on lower exposures (over a longer time period) that are less likely to result in acute 
clinical symptoms. OPP is also interested in exposures that are higher and occur over 
shorter-intervals (often on an acute “one-time” basis).  This “human incident,” or poisoning 
data can be useful for evaluating short term, high exposure scenarios that can be readily 
attributed to the pesticide in question.   

OPP uses such “human incident information” for several purposes.  Most broadly, the 
program uses incident data to inform risk assessment/risk management activities; this 
forms an integral part of our registration review activities under our Pesticide Registration 
Improvement Act (PRIA) responsibilities.  To this end, OPP evaluates human incident data 
for trends over time and examines patterns in the severity and frequency of different 
pesticide exposures. In some cases, incident information can indicate need for additional 
information or additional risk management measures.  Incident information can also help 
assess the success of risk mitigation actions after they are implemented, and incident 
information is an important part of OPP’s performance accountability system to ensure the 
effectiveness of risk management actions that OPP has taken to protect human health and 
the environment.  Lastly, incident information can be useful in providing real world use 
information with respect to usage practices and also in potentially targeting enforcement 
or educational activities, where appropriate.    

OPP obtains this information from a variety of sources.  Sources of human incident data 
include both (human) medical case reports appearing in the medical and toxicological 
literature as well as information from a variety of national toxico-surveillance activities
for acute pesticide poisonings which are considered jointly to aid acute and chronic hazard 
identification and as an integral part of the risk assessment process.22

Medical case reports (first-hand accounts written by physicians) or medical case 
series (a compendium of medical case reports across individuals that share common 
source or symptomology) are valuable tools for analyzing all available evidence of health 
effects, and to complement the findings of animal studies and epidemiological studies.  In 
addition, they can identify unusual or novel occurrences of an adverse health effects 
plausibly associated with use of a specific pesticide providing “advance notice” to the 
agency for toxico-vigilance purposes.  Published case reports for pesticides typically 
describe the effects from an atypical (high exposure/dose, illegal, off-label) acute or short-
term exposure. The reports are often anecdotal and can be highly selective in nature.  They 
can, however, can be particularly valuable in identifying previously unidentified toxic 
effects in humans and in learning about the effects, health outcomes, and medical sequelae 
following high exposures.  They frequently have more detailed medical information 
(including sequelae), detailed follow-up, and generally higher quality and/or quantitative 

22 OPP is aware of efforts by IPSC to consider human incident data in risk assessment.  
http://www.who.int/ipcs/publications/methods/human_data/en/index.html
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information about dose.  If similarities are seen across multiple medical case studies or 
patterns emerge – in symptoms, exposure scenarios or usage practices -- these can provide 
valuable information for the risk assessment process and strengthen any findings.  Medical 
case studies and series that include quantitative exposure information can be compared to 
exposure estimates in the risk assessment (which are based on labeled application rates 
and surrogate exposure information) to characterize margins of exposure expected from 
typical use, when appropriate.   

The following considerations are evaluated in assessing medical case reports and 
medical case series: 

A detailed history of exposure (when, how, how much); time of onset of adverse 
effects; and signs and symptoms of the patient, are reported.  
Information on the product/chemical/pesticide, such as name, pesticide label, 
registration number, etc. 
Patient information (e.g. age, race, sex); underlying health conditions and use of any 
medications that can produce similar signs and symptoms; relevant medical history; 
and the presence of any risk factors. 
Description of events and how the diagnosis was made. 
Management and treatment of the patient, and laboratory data (before, during and 
after the therapy), including blood levels of pesticides and chemicals.  
Whether the medical report is reliable, reasonable and whether it is consistent with 
current knowledge, including other research, reviews and guidelines. 
Clinical course of the event and patient outcome (e.g. patient recovered and 
discharged from hospital; condition of patient after the discharge, any chronic 
health effects or premature death related to the pesticide or chemical exposure). 

In addition to using medical case reports/series as a source of real-world exposure and 
toxicological information, OPP also engages in toxico-surveillance activities using a variety 
of pesticide poisoning incident databases are also available. Specifically, OPP has access to 
the following five human incident data sources: the OPP Incident Data System (IDS); the 
American Association of Poison Control Centers (PCC) summary reports from their 
National Poison Data System (NPDS); data from the EPA-funded National Pesticide 
Information Center (NPIC), currently at Oregon State University; the Centers for Disease 
Control and Prevention/National Institute for Occupational Safety and Health Sentinel 
Event Notification System for Occupational Risk-Pesticides (NIOSH SENSOR-Pesticides) and 
the California Pesticide Illness Surveillance Program (PISP). Each of these are described, in 
turn below:  

OPP Incident Data System (IDS) is maintained by OPP and incorporates 
data submitted by registrants under FIFRA section 6(a)(2)23, as well as other 
incidents reported directly to EPA. OPP has compiled the pesticide related 

23 Under FIFRA 6(a)(2), pesticide registrants are required to notify EPA if and when they become aware of 
“factual information regarding unreasonable adverse effects on the environment of the pesticide.”   
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incident reports in the IDS since 1992. The IDS includes reports of alleged 
human health incidents from various sources, including mandatory FIFRA 
Section 6 (a) (2) reports from registrants, other federal and state health and 
environmental agencies and individual consumers. IDS include information 
on incidents involving humans, plants, wild and domestic animals where 
there is a claim of an adverse effect. The vast majority of IDS reports are 
received by the agency in paper format.  IDS entries act as a “pointers” to 
copies of original reports retained on microfilm and scanned images in OPP’s 
Information Service Center.  

While IDS includes both occupational and non-occupational incidents, the 
majority of incidents reported relate to non-occupational/residential 
scenarios The reports are obtained from across the U.S. and most incidents 
have all relevant product information (such as the EPA Registration Number) 
recorded. As IDS is populated mostly by information provided by pesticide 
registrants under their FIFRA 6(a)(2) reporting requirements, the agency has 
relatively high confidence in the identification of the specific product which 
is involved.  Severity rankings are included for each incident (as specified by 
CFR §159.184).  Symptom information is sometimes included in the narrative 
portion of the incident, but this information is usually not 
validated/confirmed by a healthcare professional.  IDS also includes 
narrative information on exposure scenario and hazard information.  Many 
companies use standardized, industry-developed Voluntary Incident 
Reporting Forms.   

OPP collects and evaluates the data from the IDS and identifies potential 
patterns with respect to the extent and severity of the health effects due to 
pesticides exposure. While IDS reports are broad in scope and can in some 
cases contain detailed information, the system does not necessarily 
consistently capture detailed information about incident events, such as 
occupational exposure circumstances or medical outcome.   

In addition, most cases data going into IDS is not validated or verified, though 
some reports are collected from calls to contract poison control centers. 
Nevertheless, incident information can provide an important post-marketing 
feedback loop to the agency following initial registration of the product: IDS 
incidents of a severe nature, or a suggested pattern or trend among less 
severe incidents can signal the agency to further investigate a particular 
chemical or product.  Because IDS has such extensive coverage, it can assist 
in providing temporal trend information and determining whether risk 
mitigation has helped reduce potential pesticide exposure and decreased the 
number of potential incidents reported to IDS.  Overall, IDS provides good 
information about national trends and frequency of incidents for pesticides 
and can provide valuable insights into the hazard and/or exposure potential 
of a pesticide. 
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The National Poison Data System (NPDS) -- formerly called the Toxic 
Effects Surveillance System (TESS) -- is maintained by the American 
Association of Poison Control Centers (AAPCC) and is supported with 
funding from several federal agencies.  NPDS is a computerized information 
system with geographically specific and near real-time reporting.  Although 
the main mission of Poison Control Centers is in helping callers respond to 
emergencies, NPDS data can help identify emerging problems in chemical 
product safety.  Hotlines at 61 PCC’s nationwide are open 24/7, 365 days a 
year and are staffed by specially trained nurses, pharmacists, and other 
clinical health care specialists to provide poisoning information.  Using 
computer assisted data entry, standardized protocols, and strict data entry 
criteria, local callers report incidents.  These reported incidents are retained 
locally and are updated in summary form to the national database 
maintained by AAPCC. Information calls are tallied separately and not 
counted as incidents.  The PCC system covers nearly all the US and its 
territories and has undergone major computer enhancements since 2001.  

NPDS includes mainly non-occupational incidents.  NPDS does not include 
narrative information and the product information may not be complete.  
NPDS provides severity rankings and symptom information that are 
designated/recorded by trained specialists, and the agency has relatively 
high confidence in this information.  NPDS also provides some information 
on the likelihood of the adverse effect being a result of the reported 
exposure. Overall, NPDS provides good information about national trends, 
frequency of incidents for pesticides, as well as the hazard potential for 
particular pesticides.  However, resource limitations permit the agency to 
only access AAPCC summary reports published each year (e.g., see 
http://www.aapcc.org/annual-reports/ ) and these serve as a supplement to 
other data sources for which the agency has more complete access.     

The National Pesticide Information Center (NPIC)
(http://npic.orst.edu/index.html) is funded by EPA to serve as a source of 
objective, science-based pesticide information in response to inquiries and to 
respond to incidents. NPIC functions nationally during weekday business 
hours and is a cooperative effort between Oregon State University 
(currently) and EPA; it is intended to serve as a source of objective, science-
based pesticide information and to respond to inquiries from the public and 
to incidents. Similar to Poison Control Centers, NPIC’s primary purpose is not 
to collect incident data (about 10% of NPIC’s annual calls are considered 
“incident” related), but rather to provide information to inquirers on a wide 
range of pesticide topics, and direct them to other sources for pesticide 
incident investigation and emergency treatment.  Nevertheless, NPIC does 
collect information about incidents (approximately 4000 incidents per year) 
from inquirers and records that information in a database.  NPIC is a source 
of national incident information, but generally receives fewer reports than 
IDS.  Regardless, if a high frequency is observed in IDS for a given pesticide or 
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product, NPIC provides a source of information that can prove valuable in 
determining consistency across national data sets. 

As with IDS and PCC, the incidents in NPIC are mainly non-occupational. 
NPIC incidents include narratives and product information when the caller 
provides the information. Although the scope is national, there are 
significantly fewer incidents reported to NPIC than to NPDS or IDS but 
considerably more information is provided and the agency can request 
custom reports on an as-needed basis. Hazard information includes severity 
rankings, route of exposure and symptoms – which are recorded by trained 
personnel. NPIC also provides information on how likely the link between 
exposure and adverse effect is (which they call a certainty index). NPIC also 
publishes annual reports and analyses in the open literature which are 
valuable resources. 

The Center for Disease Control and Prevention National Institute for 
Occupational Health (CDC/NIOSH) manages a pesticide surveillance program 
and database entitled the Sentinel Event Notification System for 
Occupational Risk (SENSOR)-Pesticides.24  This database includes pesticide 
illness case reports in 12 states from 1998-2013.   Participating states are: 
California, Florida, Iowa, Louisiana, Michigan, Nebraska, New Mexico, New York, 
North Carolina, Oregon, Texas and Washington. The participating states for a 
given year vary depending on state and federal funding for pesticide 
surveillance.  

Cases of pesticide-related illnesses in the SENSOR-Pesticides database are 
ascertained from a variety of sources, including: reports from local Poison 
Control Centers, state Department of Labor workers’ compensation claims when 
reported by physicians, reports from state Departments of Agriculture, and 
physician reports to state Departments of Health. Although both occupational 
and non-occupational incidents are included in the database, the SENSOR 
coordinators primarily focus their follow-up case investigation efforts on the 
occupational pesticide incidents.  The SENSOR coordinator at the state 
Department of Health will follow-up with cases and work to obtain medical 
records in order to verify exposure scenario, symptoms, severity, and health 
outcome.  Using standardized protocol and case definitions, SENSOR 
coordinators at state Departments of Health enter the incident interview 
description provided by the case, medical report, physician and patient into the 
SENSOR data system.  

All SENSOR-Pesticides cases must report a minimum of two health effects in 
order to be included in the aggregate database that EPA uses for incident 

24 SENSOR-Pesticides webpage: http://www.cdc.gov/niosh/topics/pesticides/overview.html
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analyses.  Evidence for each case is evaluated, based on the NIOSH case 
classification matrix, for its causal relationship between exposure and illness.  
98% of SENSOR-Pesticides cases are classified as definite, probable, or possible, 
and 2% of the cases are classified as suspicious.  Unlikely, asymptomatic, and 
unrelated cases, as well as those with insufficient information, are not included 
in the SENSOR-Pesticides database.  

Overall, SENSOR-Pesticides provides very useful information on both 
occupational and non-occupational incidents, and sometimes valuable insights 
into the hazard and/or exposure potential of a pesticide. SENSOR-Pesticides also 
conducts analyses of its own data and publishes these in the Morbidity and 
Mortality Weekly. Unlike the aforementioned databases and although it contains 
both non-occupational/residential and occupational incidents, SENSOR’s has 
traditionally focused on occupational pesticide incidents, and is of particular 
value in providing that information.  SENSOR-Pesticides data from 1998-2011 is 
available online at: http://wwwn.cdc.gov/Niosh-whc/Home/Pesticides.

The California Pesticide Illness Surveillance Program (PISP) is maintained 
by the State of California. This database documents pesticide-related illnesses 
and injuries. Case reports are received from physicians and via workers’ 
compensation records. The local County Agricultural Commissioner investigates 
the circumstances of the exposure. Medical records and investigative findings 
are then evaluated by California’s Department of Pesticide Regulation (DPR) 
technical experts and entered into an illness registry. All reported pesticide 
illnesses in the California PISP program are investigated by the county 
agricultural commissioners, and the DPR evaluates the reports and compiles 
them into a database, which is used to improve the state’s program to protect 
workers and others from the adverse effects of pesticide exposure 
(http://apps.cdpr.ca.gov/calpiq/).

Currently, OPP evaluates human incident data on a chemical-specific basis. Incidents 
from each database are analyzed for hazard potential (deaths, frequency of more severe 
incidents, and patterns/trends of reported symptoms) and exposure potential (frequency 
of incidents/ trends over time, patterns/trends of exposure scenarios, of factors affecting 
exposure or of products). When evaluating human incident data from the above databases, 
OPP considers several general criteria.  OPP considers the relative severity and frequency 
of symptoms. Additionally, OPP generally has greater confidence in reports in which 
temporal association can be verified or are at least plausible.  Lastly, other factors that are 
used to evaluate human incident data include evidence of an exposure response 
association, consistency in reported health effects, biological plausibility of reported health 
effects, elimination of alternative causes of health effect such as pharmaceutical use, and 
the specificity of the observed symptoms and health effects.  Additionally, narratives of 
more severe incidents are often evaluated for any temporal association between time-of-
exposure and effects reported to determine whether an association is supported by the 
circumstances. For example, a heart attack in an elderly individual that occurs three 
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months following an indoor pesticide application may be determined not to be a likely 
causal association.  On the other hand, a severe incident occurring at or shortly after the 
time of exposure with symptoms consistent with known symptomology for the pesticide 
class and that occurs   without prior medical history may suggest that causal inference is 
more justified.    

In sum, then, incident data -- consisting of both medical case reports/case series 
appearing the medical and human toxicological literature and toxico-surveillance data 
derived from the databases that EPA either maintains, funds, or accesses -- can provide 
useful, complementary information that assists OPP in evaluating the real-world risks of 
pesticides.    

VI. SUMMARY & CONCLUSIONS  

This framework describes important factors in reviewing epidemiology and human 
incident data and describes a proposed WOE analysis for incorporating such data in 
pesticide human health risk assessment.  OPP uses the best available data across multiple 
lines of evidence and from in vitro, in vivo, and in silico data sources.  OPP uses a WOE 
approach when integrating data from multiple sources to take into account for quality, 
consistency, relevancy, coherence and biological plausibility using modified Bradford Hill 
criteria as an organizational tool.  Application of WOE analysis is an integrative and 
interpretive process routinely used by EPA according to in scientific analysis outlined in its 
risk assessment guidelines. The WOE analysis also evaluates the quality of the combined 
data set and is consistent with the level of effort and complexity that is appropriate for a 
particular scientific assessment (U.S. EPA, 2002).  OPP acknowledges that toxicology and 
risk assessment are currently undergoing transformational changes towards implementing 
the new vision of 21st century toxicity testing.  As these transformation changes occur, OPP 
will update this approach as appropriate.    
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I. PURPOSE & SCOPE  

 The Environmental Protection Agency’s (EPA) Office of Pesticide Programs (OPP) is 
a licensing program regulating pesticides in the U.S under the Federal Insecticide, 
Fungicide, and Rodenticide Act (FIFRA) and the Federal Food, Drug, and Cosmetic Act 
(FFDCA).  As part of this program, OPP evaluates a substantial body of toxicology and 
exposure data to assess the effects of pesticides on human health and the environment.  In 
evaluating human health, EPA looks first for information directly evaluating the potential 
for effects to people, including epidemiological data.   Historically, however, few 
epidemiology studies have been available to inform the potential toxicity of pesticide 
chemicals.  As such, OPP has in the past primarily relied on toxicology studies in laboratory 
animals to assess the hazard potential and to estimate human health risk.  With the 
publication of numerous papers from the Agricultural Health Study1 and from the National 
Institute of Environmental Health Sciences (NIEHS)/EPA Children’s Centers2, among 
others, the availability of epidemiology studies conducted on U.S.-relevant exposures to 
pesticides is increasing. Nevertheless, since the number of pesticides for which quality 
epidemiology data either exist or are being developed remains relatively low in the near 
term, experimental laboratory data will likely continue to be the primary source of data for 
use in quantitative risk assessment for most pesticides.   

 OPP’s goal is to use such information -- when available -- in a scientifically robust 
and transparent way.  To accomplish this, OPP has developed a general epidemiologic 
framework, as described in this document, that outlines the scientific considerations that 
OPP will weigh in evaluating how such studies and scientific information can be more fully 
integrated into risk assessments of pesticide chemicals.  The current document is neither a 
binding regulation nor is it intended to be or serve as a reviewer’s guide or manual or as a 
Standard Operating Procedure for assessing or using epidemiology data. Nor is it intended 
to be a full treatise on more modern or advanced epidemiological methods or to adequately 
convey the nuances and complexity that is important for interpreting these types of 
studies.   As such, it does not discuss (or does not discuss in any detail) such important 
epidemiological topics as causal inference and causal diagrams (Rothman et al., 2012a; 
Glymor and Greenland, 2012); more recent approaches to confounder identification, 
assessment, and control; meta-analysis and heterogeneity and its assessment/evaluation 
(Borenstein et al., 2009; Greenland and O’Rourke, 2012); or sensitivity/quantitative bias 
analysis for epidemiologic data (Lash et al., 2009; Lash et al,. 2014; Ioannidis, 2008; 
Greenland and Lash, 2012; Jurek et al., 2007).   All these topics, concepts, and issues can 
and do apply to epidemiology studies concerning pesticides, but are not covered in this 
OPP framework document.  Instead, this document provides overall conceptual 
considerations concerning the evaluation and use of epidemiology studies on pesticides in 

1 https://aghealth.nih.gov/ 
2 https://www.epa.gov/research-grants/niehsepa-childrens-environmental-health-and-disease-prevention-
research-centers 

3

 

I. 
 

EPA OPP
FIFRA FFDCA

OPP

EPA
OPP

Agricultural Health Study1 National Institute of Environmental 
Health Sciences NIEHS EPA Children's Centers2 

 
 
OPP

OPP

OPP

Rothman 2009 ; Greenland and O'Rourke 2012
Borenstein 2009 ; Greenland and 

O'Rourke 2012 Lash 2009 ; 
Lash 2014 ; Ioannidis 2008 ; Greenland and Lash 2012 ; Jurek 2007

OPP
OPP FIFRA FFDCA

 
  

                                                  
1 https://aghealth.nih.gov/ 
2  https://www.epa.gov/research-grants/niehsepa-childrens-environmental-health-and-disease-

prevention-research-centers 

258



Page 4  

the context of human health risk assessments to support OPP’s FIFRA and FFDCA activities.    
An earlier version of this document was reviewed favorably by the FIFRA Scientific 
Advisory Panel (SAP) in February, 2010 (USEPA, 2010; FIFRA SAP, 2010).  This document 
incorporates improvements recommended by the SAP, public comments, and the 
experience gained since 2010 conducting assessments on several pesticides for which 
epidemiological data were available, and should be considered a document that will be 
updated from time-to-time as we progress and on as-needed basis  

II. INTRODUCTION  

 Two reports by the National Research Council (NRC) of the National Academy of 
Science (NAS), “Toxicity Testing in the 21st Century: A Vision and A Strategy (2007)” and 
“Science and Decisions (2009),” together provide new directions in toxicology and risk 
assessment.   These two NRC reports advocate far reaching changes in how toxicity testing 
is performed, how such data are interpreted, and ultimately how regulatory decisions are 
made.  Specifically, the 2007 report on 21st century toxicity testing advocates a shift away 
from the current focus of using apical toxicity endpoints to using toxicity pathways3 to 
inform toxicity testing, risk assessment, and ultimately decision making.  This approach is 
based on the rapidly evolving scientific understanding of how genes, proteins, and small 
molecules interact to form molecular pathways that maintain cell function in human cells. 
The goal for the new toxicity testing paradigm is to determine how exposure to 
environmental agents can perturb these pathways, thereby causing a cascade of 
subsequent key events leading to adverse health effects.  Human information like that 
found in epidemiology studies, human incident databases, and biomonitoring studies, along 
with experimental toxicological information are expected to play a significant role in this 
new approach.  Specifically, these types of human information provide insight into the 
effects caused by actual chemical exposures in humans and thus can contribute to problem 
formulation and hazard/risk characterization.  In addition, epidemiologic and human 
incident data can guide additional analyses or data generations (e.g., dose and endpoint 
selection for use in in vitro and targeted in vivo experimental studies), identify potentially 
susceptible populations, identify new health effects, or confirm the existing toxicological 
observations.   

 This new vision of toxicity testing and risk assessment will involve data from 
multiple levels of biological organization ranging from the molecular level up to 
population-based surveillance with a goal of considering chemical effects from their source 
to the ultimate health outcome and effects on populations.  Such data will come from in 
vitro and in vivo experimental studies along with in silico and modeled data. OPP’s 
framework for incorporating epidemiology and incident data is conceptually consistent 
with the 2007 NRC report on 21st century toxicity testing in that both emphasize the use of 
the best available information from multiple data sources are compiled in a weight of the 
evidence (WOE) analysis.    

3 Toxicity pathways are cellular response pathways that, when sufficiently perturbed, are expected to result 
in adverse health effects.
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As a general principle, occupational and environmental epidemiology studies are 
conducted only on widely used pesticides; these pesticides also tend to have to be well-
studied in the scientific literature.  Thus, OPP expects in many cases where epidemiologic 
data are available, a significant body of literature data on toxicology, exposure, 
pharmacokinetics (PK), and mode of action/adverse outcome pathway information 
(MOA/AOP) may also be available.  Human incident data are available on a broader range 
of chemicals, some of which have robust databases and others which do not.  In those 
situations, where there are significant human incident cases and little is known about the 
MOA/AOP or PK of a particular pesticide, the WOE analysis can be used to identify areas of 
new research.  

OPP’s approach in this framework for incorporating epidemiology and human 
incident data is not a new or novel approach.  Instead, this approach is a reasonable, logical 
extension of existing tools and methods.  This document relies on existing guidance 
documents and frameworks (Table 1) as the starting point for reviewing and evaluating 
epidemiology and human incident data for use in pesticide risk assessment.  This 
framework on using epidemiology and incident data in human health risk assessment is 
consistent with the recommendations of the NRC in its 2009 report on Science and 
Decisions, and with the agency’s recent Human Health Risk Assessment Framework 
(USEPA, 2014a) with respect to emphasizing the use of problem formulation as a tool for 
scoping, planning, and reviewing available, particularly in the context of risk management 
needs.   

Similarly, OPP’s framework is consistent with updates to the World Health 
Organization/International Programme on Chemical Safety MOA/human relevance 
framework, which highlights the importance of problem formulation and the need to 
integrate information at different levels of biological organization (Meek et al., 2014).   The 
MOA/HR framework begins with identifying the series of key events that are along the 
causal path, that are established on weight of evidence, using principles like those 
described by Bradford Hill, taking into account factors such as dose-response and temporal 
concordance, biological plausibility, coherence and consistency (Hill, 1965).  Using this 
analytic approach, epidemiologic findings can be evaluated in the context of other human 
information (including human incident findings) and experimental studies and for 
identifying areas of uncertainty and future research.   However, it is noteworthy that the 
availability of a fully elucidated MOA/AOP is a not requirement for using epidemiology 
studies in human health risk assessment.  As the agency continues to move forward in 
implementing the transformative approach in the 2007 and 2009 NRC reports and as OPP 
gains experience in integration of epidemiology and human incident information, OPP will 
re-evaluate and update this framework as appropriate.   
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Figure 1.  Schematic of the adverse outcome pathway. Adapted from Ankley et al.
(2010). 

Table 1.  Key guidance documents and frameworks used by OPP 

NAS

1983: Risk Assessment in the Federal Government:  Managing the Process  

1994: Science and Judgment  

2007: Toxicity Testing in the 21st Century   

2009: Science and Decisions: Advancing Risk Assessment 

2011:  NAS report on Formaldehyde 

2014: Review of EPA's Integrated Risk Information System (IRIS) Process 

WHO/IPCS 

2001-2007: Mode of Action/Human Relevance Framework  

2005:  Chemical Specific Adjustment Factors (CSAF) 

2014:  New developments in the evolution and application of the WHO/IPCS 
framework on mode of action/species concordance analysis. 
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EPA

1991-2005: Risk Assessment Forum Guidances for Risk Assessment (e.g., guidelines for 
carcinogen, reproductive, developmental, neurotoxicity, ecological, and exposure 
assessment, guidance for benchmark dose modeling, review of reference dose and 
reference concentration processes)4

2000: Science Policy Handbook on Risk Characterization  

2006b.  Approaches for the Application of Physiologically Based Pharmacokinetic 
(PBPK) Models and Supporting Data in Risk Assessment 
2014a.  Framework for Human Health Risk Assessment to Inform Decision Making. 
2014b.  Guidance for Applying Quantitative Data to Develop Data-Derived 
Extrapolation Factors for Interspecies and Intraspecies Extrapolation

OPP 

2001: Aggregate risk assessment   

2001 and 2002:  Cumulative risk assessment           

OECD 2013:  Organisation for Economic Co-operation and Development Guidance Document 
On Developing And Assessing Adverse Outcome Pathways 

Although there are other sources of human information, the focus of this framework is 
on interpreting and using epidemiology and human incident data in human risk 
assessment; other sources of human information are not addressed in this document in any 
depth.  Specifically, this document does not extensively discuss research with pesticides 
involving intentional exposure of human subjects5 or on studies done to measure dermal or 
inhalation exposures in agricultural workers as they perform their activities6,7 .    

4 https://www.epa.gov/osa/products-and-publications-relating-risk-assessment-produced-office-science-
advisor 
5 Both the conduct of such research and OPP’s reliance on data from such research are governed by EPA’s 
Rule for the Protection of Human Subjects of Research (40 CFR Part 26.)  Among other things, these rules 
forbid research involving intentional exposure of pregnant or nursing women or of children, require prior 
review of proposals for new research by EPA-OPP and by the Human Studies Review Board (HSRB), and 
require further review by EPA-OPP and the HSRB of reports of completed research. 
6 In the last several years, OPP has extensively evaluated existing observational studies with agricultural 
workers in efforts to improve the data and approaches used in worker exposure assessment; those 
evaluations can be found elsewhere (http://www.epa.gov/scipoly/sap/meetings/2007/010907_mtg.htm) 
7 For additional information on how such worker exposure studies are conducted and used by OPP, see PPP-
48 “Pesticides and human Health Risk Assessment: Policies, Processes, and Procedures “available at 
https://www.extension.purdue.edu/extmedia/PPP/PPP-48.pdf.   
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III. SYSTEMATIC REVIEW IN PESTICIDE RISK ASSESSMENT: EPIDEMIOLOGY 

In recent years, the NRC has encouraged the agency to move towards systematic 
review processes to enhance the transparency of scientific literature reviews that support 
chemical-specific risk assessments to inform regulatory decision making (NRC 2011, 
2014).  The NRC defines systematic review as "a scientific investigation that focuses on a 
specific question and uses explicit, pre-specified scientific methods to identify, select, 
assess, and summarize the findings of similar but separate studies" (NRC, 2014).  
Consistent with NRC’s recommendations, the Office of Chemical Safety and Pollution 
Prevention (OCSPP) employs fit-for-purpose systematic reviews that rely on standard 
methods for collecting, evaluating and integrating the scientific data supporting our 
decisions.   

According to the NRC, systematic reviews “have several common elements: 
transparent and explicitly documented methods, consistent and critical evaluation of all 
relevant literature, application of a standardized approach for grading the strength of 
evidence, and clear and consistent summative language (NRC, 2014).” In recent years, 
several groups (Rooney et al., 2014; Woodruff and Sutton, 2014; Hartung, 2010) have 
published systematic review approaches for use in environmental health sciences. The 
OCSPP approach to systematic review is consistent with the principles articulated in the 
Cochrane Handbook for Systematic Reviews of Interventions for evidence-based medicine 
and with the principles of the Grading of Recommendations Assessment, Development and 
Evaluation (GRADE). GRADE guidelines used by systematic review approaches for 
environmental health sciences developed by the National Institute of Environmental Health 
Sciences (NIEHS) Office of Health Assessment and Translation (OHAT) (Rooney et al., 
2014) and University of California, San Diego (Woodruff and Sutton, 2014). According to 
the Cochrane Handbook, the key characteristics of a systematic review are: 

a clearly stated set of objectives with pre-defined eligibility criteria for studies; 
an explicit, reproducible methodology; 
a systematic search that attempts to identify all studies that would meet the 
eligibility criteria; 
an assessment of the validity of the findings from the identified studies; 
a systematic presentation and synthesis of the characteristics and findings of the 
included studies. 

Each approach mentioned above share common themes and workflow starting with a 
statement of scientific context (e.g., problem formulation or protocol) followed by 
literature review with explicit search strategy methods, analysis of study quality (often 
called risk of bias), evaluation of the quality of the totality of the evidence (e.g., integration) 
and ultimately leading to a conclusion(s).  Each approach recommends transparent and 
pre-determined criteria for inclusion/exclusion of scientific literature, evaluation of study 
quality, and reporting of study quality (e.g., high, medium, low).  Each approach 
recommends a pre-stated tool for data integration that provides the foundation for the 
conclusion(s).
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So far, no single nomenclature has been agreed upon by the risk assessment 
community for systematic review and OCSPP expects terminology to evolve over time as 
more broad experience is gained.  OCSPP considers its systematic review process and 
workflow as starting with problem formulation followed by data collection, data 
evaluation, data integration, and summary findings with critical data gaps identified.  
Scientific analysis is often iterative in nature as new knowledge is obtained.   

A. Problem Formulation 

In the NRC report Science and Decisions-Advancing Risk Assessment, the National 
Academy of Sciences (NAS) recommended to EPA that risk assessments and associated 
scientific analyses be developed to be useful to policy makers; in order to attain this goal, 
the NRC recommended that the agency more broadly use problem formulation in 
developing its risk assessments.  In response to the NRC, the agency published the Human 
Health Risk Assessment Framework (USEPA, 2014) which highlights the importance of 
problem formulation.  Problem formulation entails an initial dialogue between scientists 
and risk managers and provides the regulatory context for the scientific analysis and helps 
define the scope of an analysis.  Problem formulation draws from regulatory, decision-
making and policy context of the assessment, informs the technical approach to the 
assessment and systematically identifies the major factors to be considered.  As such, the 
complexity and scope of each systematic review will vary among the different risk 
assessment contexts.  In other words, an OCSPP systematic review is conducted as “fit-for-
purpose” (NRC, 2009) based on the pre-determined scope and purpose determined from 
problem formulation.

The problem formulation involves consideration of the available information along 
with key gaps in data or scientific information.  OPP uses problem formulation as a tool to 
identify exposure pathways and potential health outcomes along with the appropriate 
methods, data sources, and approaches for the scientific analysis.    If missing data are 
critical to the assessment, options are discussed as to how best to obtain that information 
(e.g., required testing, research). The peer review process is identified and the timeline for 
completing the assessment is defined.  

Systematic review provides a transparent tool for organizing available information 
and identifying gaps in information for the regulatory purpose for the analysis.  As such, in 
problem formulation, the regulatory context of a scientific analysis is described which in 
turn defines the scope of and purpose for collection and evaluation of scientific literature.  
Some considerations in problem formulation may be related to population or life-stage, 
exposure pathways (e.g., route, duration, frequency), and/or health outcomes of interest 
identified from in vitro or in vivo laboratory studies along with epidemiology or human 
incident studies along with resources available and regulatory timeframe.   In the context of 
considering epidemiology and human incident information, an initial evaluation of the 
study quality, study design, and uncertainties are considered.   

9
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Key scientific issues related to hazard assessment considered in problem 
formulation include:  What are the effects associated with exposure?  What are the 
MOA/AOPs associated with these effects?  What are the temporal aspects of the effects?  
Are there susceptible populations and if so, who are they and what factors contribute to 
susceptibility?   Are there differences in PK or pharmacodynamics (PD) between laboratory 
animals and humans?  Exposure information is also evaluated in problem formulation.  Key 
scientific issues related to exposure assessment considered in problem formulation 
include:   How is the pesticide used? What are all of the relevant use sites of exposure? To 
what chemical substances will people be exposed? What are the routes, durations, and 
frequencies of exposures? Who may be exposed?  Does the exposure pose different risks to 
different groups (e.g., due age or activity patterns?)   In the specific case of epidemiology 
data, this review considers a variety of factors including, but not limited to, research 
hypothesis, study design (i.e., sample size, sufficient controls, quality of measurements, 
etc.), exposure dose/concentration, statistical analysis, and conclusions.   

B. Data Collection 

The data collection phase of systematic review is the collection of available information 
from various published and unpublished sources, such as the open scientific literature and 
submitted studies for pesticide registration.  OPP reviews data collected under the 
Organisation for Economic Cooperation and Development (OECD) test guidelines, OCSPP 
harmonized test guidelines, and other pesticide (OPP guidelines).  These guideline studies 
are collected primarily from in-house databases of submitted studies and are found 
through searches of such internal databases.   

In the case of epidemiology, most studies are expected to be found in the open 
scientific literature.  Although in some cases supplemental analyses or information may be 
available, dialogue with the researchers may provide additional, important information not 
published in the original paper in understanding and interpreting epidemiology studies.  
The sources of human incident information are summarized in Section IV.   

Open literature search strategies use specified criteria to retrieve health effects 
information from the open scientific literature and unpublished sources. After identifying 
and selecting the most appropriate sources/databases and determining the most resource 
effective strategy utilizing classification codes, medical subject headings, and/or keywords, 
a search is conducted of the literature.  Depending on the complexity of the scientific 
evaluation, support from a reference librarian may or may not be needed.  The goal of a 
human health literature search is to perform a reliable and reproducible literature search 
by providing proper documentation of the literature search process. The following steps 
are conducted to retrieve relevant studies:  

The purpose of the scientific analysis and inclusion criteria are established. 

Combinations of terms/key words and/or MeSH (Medical Subject Heading) terms 
and their Boolean combinations (AND; OR; NOT) are used and documented.  
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Advanced Search and Field Search by author, title, keywords or subject heading may 
also be performed as needed.  Knowledge of database structure, and using a 
separate search strategy for a specific database is helpful in retrieving relevant 
studies. In addition to an initial comprehensive search, periodic searches may be 
conducted to update the literature list. 

The search strategy is documented, including the date(s) of the search(es)to ensure 
that all the searches of all the databases are reproducible.   

Reference lists of retrieved articles are examined2 for additional background and to 
look for articles that were not discovered in the initial search.  

After combining the retrieved articles from different databases and removing 
duplicates, the available titles and abstracts are screened.  For some of the articles 
where relevance could not be determined from the title and the abstract, the article 
is retrieved for further review. 

Following the initial screening, articles that were not relevant (exclusion criteria) – 
such as opinion articles, studies not in English, and those consisting only of abstracts 
are excluded.  Additional exclusion criteria can be identified on a case by case basis.  
All exclusion criteria are documented.  The rest of the articles, even those that found 
no adverse health effects, are included for review and evaluation.   

C. Data Evaluation 

In the data evaluation phase, data quality is reviewed and conclusions are made about 
the utility of such data. Study quality reflects the overall confidence that reports findings 
are correct (Balshem et al., 2011).  As such, study quality can include: 

reporting quality (how well or completely a study is reported);  
how credible the findings are based on the design and conduct of the study;  
and how well the study addresses the topic under review (Rooney et al., 
2014).  

Study quality is first considered on an individual study basis, and the quality is judged. 
For example, one may have stronger confidence in a well conducted case control study than 
a poorly conducted cohort study.  Credibility of the scientific findings, often called risk of 
bias, is evaluated using pre-determined criteria for specific domains related to study design 
and conduct (See Table 2).   

OPP initially developed a guidance on using the open scientific literature 
considerations called the “Guidance for Considering and Using Open Literature Toxicity 
Studies to Support Human Health Risk Assessment” (USEPA, 2012) and generally continues 
to follow this guidance.   However, with the acceleration of systematic review in risk 
assessment, some aspects of the literature guidance may need updating in the future.  
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Conclusions about the quality of the data are made and can be described in conclusion 
statements or categories (e.g., acceptable/not acceptable; low, medium, high).

Specific considerations used in evaluating epidemiology studies on pesticide chemicals 
are provided in Section III.C below.  As part of the data review, a concise written review of 
the study is developed.  This written review describes the study design, results, 
conclusions, and the strengths and weaknesses of the study. The quality of the 
epidemiologic exposure assessment is an important factor in determining what role 
epidemiologic data will play in the risk assessment.  As such, it is important to fully 
characterize the assumptions used in the epidemiologic exposure assessment and the 
degree to which these assumptions affect the interpretation and generalizability of the 
epidemiologic findings.  The evaluation of the epidemiologic exposure assessment may 
include a consideration of past and present exposure patterns (e.g., exposed populations, 
pathways, routes, and levels of exposure) and may include significant changes in use 
patterns (e.g., risk mitigation actions or new use patterns).  With regard to evaluating meta-
analyses, reporting guidelines for Meta-analysis Of Observational Studies in Epidemiology 
(MOOSE) have been developed by Stroup et al., (2000) that are useful in evaluating the 
quality and interpreting meta-analysis.  

D. Data Integration: Weight of Evidence (WOE) 

OPP’s human health characterizations involve the consideration of all available and 
relevant data, including but not limited to human studies/epidemiology, biomonitoring 
data, in vitro and in vivo experimental laboratory toxicological studies, MOA/AOP 
information, pharmacokinetic studies, and structure-activity relationships (SAR).  Once the 
different types of hazard data are collected and a full evaluation of each relevant study is 
conducted and documented, the next step is to integrate multiple lines of evidence. 

Data integration is based on the principle of reaching a judgment of the totality of 
the available negative and positive data for relevant hazards. OPP uses a WOE analysis for 
evaluating epidemiology and human incident data, such conclusions are made on the 
preponderance of the information rather than relying on any one study.  OPP uses the 
modified Bradford Hill criteria like those in the MOA/human relevance framework as a tool 
for organizing and integrating information from different sources (Hill, 1965; U.S. EPA, 
1999, 2005; Sonich-Mullin et al., 2001; Meek et al., 2003; Seed et al., 2005; OECD AOP Wiki 
Users Handbook8).   It is important to note that the Hill Criteria are not intended as a check 
box approach but instead are points to consider when evaluating the totality of evidence.  
In addition, the availability of a fully elucidated MOA/AOP is a not requirement for using 
epidemiology studies in human health risk assessment.  However, even in the absence of a 
fully developed MOA/AOP, collection and evaluation of mechanistic data may provide 
support for biological plausibility and help explain differences in tissue sensitivity, species, 
gender, life-stage, or other factor.  The MOA/human relevance framework is a flexible tool 
which provides a foundation for organizing information without rigidity.  It is this 

8 https://aopwiki.org/wiki/index.php/Main_Page#OECD_User_Handbook 
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flexibility that makes it a useful tool for a variety of purposes such as evaluating causality, 
integrating information across multiple lines of scientific evidence, and identifying data 
gaps and areas of future research.  In this analysis, epidemiologic findings and human 
incident data can be evaluated in the context of other human information and experimental 
studies to evaluate biological plausibility, to identify areas of uncertainty and areas of 
further research.   To describe how Bradford Hill aspects are considered in the WOE 
evaluations, OPP has used some definitions of terms as outlined in EPA’s Preamble to the 
Integrated Science Assessments (ISAs) which serve as a scientific foundation for the review 
of EPA’s National Ambient Air Quality Standards (NAAQS). (USEPA, 2015).   

Key events.  In cases where the MOA/AOP are established for a particular health 
outcome, a clear description of each of the key events (i.e., measurable parameters) 
that underlie the MOA/AOP are given. Data to inform the key events may come from 
a combination of in vitro or in vivo data sources (human or animal). These key 
events can be a combination of PK and PD events.  However, it noteworthy that the 
availability of a fully elucidated MOA/AOP is a not requirement for using 
epidemiology studies in human health risk assessment.   

Biological Gradient/Exposure-Response/Dose-Response Concordance & 
Relationships.  The Preamble to the ISAs notes that “In the context of epidemiology, 
a well-characterized exposure-response relationship (e.g., increasing effects 
associated with greater exposure) strongly suggests cause and effect, especially 
when such relationships are also observed for duration of exposure (e.g., increasing 
effects observed following longer exposure times) (USEPA, 2015).” When the 
MOA/AOP is known, dose-response relationships are identified for each key event.  
Dose-response relationships are compared among key events.  In some cases, the 
earlier key events may be more sensitive than later key events.  In other cases, key 
events may share similar dose-response curves.   

Temporal association.  Evidence of a temporal sequence between the introduction 
of an agent and appearance of the effect constitutes another argument in favor of 
causality (USEPA, 2015).  The Preamble to the ISAs notes that “Strong evidence for 
causality can be provided through ‘natural experiments’ when a change in exposure 
is found to result in a change in occurrence or frequency of health.”   

This analysis considers key events which occur rapidly (e.g., metabolism to an active 
metabolite which could occur within minutes of exposure) and those which occur after 
longer durations (e.g., development of a tumor) to ensure coherence of the effects.  Specific 
to considering epidemiology data, the temporal relationship between the exposure and 
health outcome may be considered.     

                                                                                                           

13

 

Bradford Hill
WOE OPP EPA

NAAQS ISA EPA
USEPA 2015  

 
MOA AOP MOA AOP

in vitro in vivo
PK PD

MOA AOP
 

 
- - ISAs 

-

USEPA, 2015 MOA AOP

 
 

1 USEPA 2015 ISAs

 
 

 
  

268



Page 14  

Strength, consistency, and specificity.

Consistency:  An inference of causality is strengthened when a pattern of elevated risks is 
observed across several independent studies. The reproducibility of findings constitutes 
one of the strongest arguments for causality. Statistical significance is not the sole criterion 
by which the presence or absence of an effect is determined. If there are discordant results 
among investigations, possible reasons such as differences in exposure, confounding 
factors, and the power of the study are considered (USEPA, 2015).   

Consistency of findings across studies is informed by the repeated observation of effects or 
associations across multiple independent studies. Further support is provided by 
reproducibility of findings in different populations under different circumstances. 
However, discordant results among independent investigations may be explained by 
differences in study methods, random errors, exposure, confounding factors, or study 
power, and thus may not be used to rule out a causal connection (USEPA, 2015). 

Strength of the observed association:  The finding of large, precise risks increases 
confidence that the association is not likely due to chance, bias, or other factors. However, 
it is noted that a small magnitude in an effect estimate may or may not represent a 
substantial effect in a population (USEPA, 2015). 

Specificity of the observed association:  Evidence linking a specific outcome to an 
exposure can provide a strong argument for causation. However, it must be recognized that 
rarely, if ever, do environmental exposures invariably predict the occurrence of an 
outcome, and that a given outcome may have multiple causes (USEPA, 2015). 

Biological plausibility and coherence.    

Coherence:  An inference of causality from one line of evidence (e.g., 
epidemiologiccontrolled human exposure, animal, or ecological studies) may be 
strengthened by other lines of evidence that support a cause-and-effect interpretation of 
the association. There may be coherence in demonstrating effects from evidence across 
various fields and/or across multiple study designs or related health endpoints within one 
scientific line of evidence (USEPA, 2015).   

When animal and human data show a similar toxic profile, both quantitatively and 
qualitatively, there is high confidence in the human health risk assessment. Whereas in 
other cases, animal and human data may show a qualitatively similar toxic profile but 
quantitative differences are observed.   For example, a particular chemical exhibits the 
same MOA/AOP in animals and humans but there may be species differences in dose-
response characteristics.  These dose-response differences could be due to tissue 
dosimetry (i.e., PK) or from different response characteristics (i.e., PD).   In contrast, animal 
and human data can, in some instances, show qualitatively dissimilar outcomes.  This 
situation highlights the need to fully and objectively evaluate all available information in a 
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transparent and comprehensive manner to consider factors such as species, gender, and 
life-stage differences and potential susceptibilities along with study design considers and 
exposure potential.   

Biological plausibility: An inference of causality is strengthened by results from 
experimental studies or other sources demonstrating biologically plausible mechanisms. A 
proposed mechanism, which is based on experimental evidence and which links exposure 
to an agent to a given effect, is an important source of support for causality (USEPA, 2015).   

Similarly, information on MOA/AOP for a chemical, as one of many structural analogs, can 
inform decisions regarding likely causality.  Structure activity relationships and 
information on the agent’s structural analogs can provide insight into whether an 
association is causal (USEPA, 2015).   

EPA’s Cancer Guidelines (2005) indicate:     

“evaluation of the biological plausibility of the associations observed in epidemiologic 
studies reflects consideration of both exposure-related factors and toxicological 
evidence relevant to identification of potential modes of action (MOAs). Similarly, 
consideration of the coherence of health effects associations reported in the 
epidemiologic literature reflects broad consideration of information pertaining to the 
nature of the biological markers evaluated in toxicologic and epidemiologic studies. [p. 
39].”   

However, The Cancer Guidelines further state that “lack of mechanistic data, however, is not 
a reason to reject causality [p. 41].”   As such, lack of established MOA/AOP is not necessary 
knowledge when using epidemiology data and epidemiology associations may still be valid 
even in the absence of an established MOA/AOP and may also provide insight into potential 
MOA/AOP. 

Uncertainties. Uncertainties are discussed in the WOE transparently and 
objectively. 

E. Overall conclusions, recommendations for risk assessment, statement 
of areas of confidence and uncertainty  

It is important to document a summary of the evidence, the procedures or methods 
used to weigh the evidence, the basis for the WOE conclusion or recommendation, any 
uncertainties and areas for further research.  Recommendations are made on the role of the 
epidemiologic or human incident data in the risk assessment.  Generally, OPP does not use 
human incident information for quantitative risk assessment but instead to inform risk 
assessment/risk management activities such as indicating a potential need for a new risk 
assessment or new risk management measures, evaluating the success of risk mitigation 
actions after they are implemented, and targeting possible enforcement activities.  In 

15

 

 

USEPA 2015  
 

1 MOA AOP

USEPA
2015  

 
EPA 2005  
 

MOA

p.39  
 

p.41 MOA AOP
MOA AOP

MOA AOP
 

 
 WOE  
 
E.  
 

WOE

OPP

 
  

270



Page 16  

contrast to more limited role of human incident data, epidemiology studies have the 
potential to help inform multiple components of the risk assessment in a variety of ways.  
High quality studies with robust exposure assessment may be used to estimate a risk 
metric quantitatively.    Alternatively, outcomes reported in epidemiologic studies may be 
compared qualitatively with those seen in in vitro and animal studies to evaluate the 
human relevance of animal findings (Hertz-Picciotto, 1995) and may be useful in assessing 
the biological plausibility of epidemiologic outcomes.   In the final portion of the proposed 
WOE analysis, the overall conclusions along with statement of areas of confidence and 
uncertainty.  This section also identifies areas of additional research.   This section 
recommends the source of data for regulatory values and the appropriate approach for 
extrapolating between species (if necessary) and among humans.  

IV. REVIEWING EPIDEMIOLOGY STUDIES FOR USE IN PESTICIDE RISK ASSESSMENT 

A.  Introduction   

Epidemiology is a science that seeks to identify and evaluate relationships between 
exposure to chemical, physical or biological agents, and the health status of populations 
(Boyes et al., 2007).  It has been defined as the “study of how disease is distributed in 
populations and the factors that influence or determine this distribution” (Gordis, 2009). 
More broadly, it is considered as “the study of the occurrence and distribution of health-
related events, states, and processes in specified populations, including the study of the 
determinants influencing such processes and the application of this knowledge to control 
of relevant health problems” (Porta, 2014). The objective of much epidemiologic research 
is to obtain a valid and precise estimate of the effect of a potential cause on the occurrence 
of disease.  A key objective of epidemiology, like other sciences, is determining cause and 
effect or - said differently - of identifying the etiology of a disease or health outcome and 
the risk factors with which it might be associated.   Calderon (2000) described four major 
uses of such studies:  1) describe the health status of a population and discover important 
time trends in disease and exposure frequency; 2) explain the occurrence of diseases by 
identifying factors that are associated with specific diseases or trends; 3) predict the 
number of disease occurrences and the distribution of health states in specific populations; 
and 4) improving the health status of the population by identifying factors that affect 
environmental or human health.  In the case of pesticides, epidemiology focuses on the 
relation between exposure and adverse health effects in the general population and in 
specific sub-populations, such as occupationally exposed workers or applicators.  

Epidemiology studies have the potential to help inform multiple components of the risk 
assessment in a variety of ways.  High quality studies with robust exposure assessment 
may be used to quantitatively estimate risk or an appropriate risk surrogate such as an 
odds ratio or risk ratio.  However, many epidemiology studies that deal with pesticides and 
pesticide exposure suffer some limitations in size, scope, exposure assessment, or data 
analysis which prevent or otherwise impede their full use in quantitative risk assessment 
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(Ntzani et al., 2013).  Pesticide use in the US has changed significantly over the last few 
decades.  As the use changes, so does the exposure to workers.  Changes in pesticide use 
have occurred due to risk mitigation actions by EPA, resistance management activities, 
introduction of new chemistries, and increased use of genetically modified crops.  These 
significant changes in exposure have to be taken into account when interpreting 
epidemiology studies and, ultimately, the decision to use such studies in quantitative risk 
assessment. Even so, epidemiology studies may be used to compare with evidence from 
experimental animal studies to characterize assumptions used in deriving such values.  In 
other cases, outcomes reported in epidemiologic studies may be compared qualitatively 
with those seen in in vitro and laboratory animal studies to evaluate biological plausibility 
or human relevance of animal findings (Hertz-Picciotto, 1995).   Human information like 
that found in epidemiology studies are expected to potentially play a significant role in the 
new vision of toxicity testing recommended by the NRC (2007).  Specifically, epidemiology 
studies can provide insight on health outcomes that may arise from real-world chemical 
exposures in humans and thus can contribute to problem formulation and hazard/risk 
characterization.  Human information may guide additional studies (e.g., dose and endpoint 
selection for use in in vitro and targeted in vivo experimental studies); and identify novel 
health effects or host susceptibilities which can be investigated with future research.   

When laboratory data from animal studies provide the primary source of information 
for hazard characterization, one potential source of uncertainty is the relevance of animal 
models to humans.  In the absence of data to support the contrary, animal findings are 
assumed to be relevant to humans.  Furthermore, EPA assumes that humans are more 
sensitive than laboratory animals in the absence of data to support the contrary.  In 
actuality, humans may be more or less sensitive to pesticides than other animal species.  
Epidemiology and human incident data can provide scientific information and support to 
inform uncertainties associated with species extrapolation.   With respect to population 
variability, epidemiology studies better characterize potential variability than do animal 
studies.  Specifically, epidemiologic data include the genetic diversity, and variability 
inherent in human populations and thus can better account for and represent actual 
population response to environmental chemicals than laboratory animals (Calderon, 2000).   

With respect to dose-response characterization, animal toxicology studies have the 
benefit that studies can be designed to cover a broad range of exposure levels.  However, 
animal toxicology studies generally use exposures which are much larger (sometimes 
orders of magnitude) than those that occur in the environment.  These high exposure levels 
in animal studies dictate the need for extrapolation from high to low doses.  This 
extrapolation introduces added uncertainty into the risk assessment.  Epidemiology studies 
and human incident data involve actual real-world exposures and thus high dose 
extrapolation may in many cases not be needed. Epidemiology studies conducted over a 
range of exposures (from low to high) are most useful.     

Animal studies do not replicate the length, magnitude, duration, routes of exposure and 
variability in exposure experienced by humans (Calderon, 2000).   Human exposure often 
occurs through multimedia exposure pathways, including food, water, air, and indoor and 
outdoor environments.  In contrast, controlled laboratory studies typically use a single 

17

 

EPA

in vitro

Hertz-Picciotto 1995 NRC
2007

in vitro 
in vivo

 
 

EPA

Calderon 2000  
 

 
 

Calderon 2000

 
  

272



Page 18  

route of exposure.  In addition, humans may experience exposure to multiple chemicals 
and/or non-chemical stressors simultaneously, whereas most animal studies involve a 
single chemical stressor.   On one hand, this multi-chemical exposure in epidemiology 
studies can provide a challenge when attempting to attribute epidemiologic outcomes to a 
single pesticide chemical. On the other hand, epidemiologic research considers real-world 
exposures and may help, when considered along with experimental approaches, address 
questions associated with multiple chemical exposures which can be difficult to evaluate in 
an experimental setting.    

B.  Types of Epidemiology Studies  

The major types of observational epidemiologic studies are described briefly below 
with consideration of their strengths and weaknesses (Lilienfeld and Lilienfeld, 1979; 
Mausner and Kramer, 1985; Kelsey et al., 1996; Rothman and Greenland, 2012; Paddle and 
Harrington, 2000; USEPA, 2005; Purdue Pesticide Programs, PPP-43).    

Cohort studies begin with a group of people that share common characteristics—the 
cohort—and evaluate their health over an extended follow-up time period during which 
the occurrence of disease is recorded (see figure box from van den Brandt et al. (2002)). 
The common characteristic is often the presence vs. absence of “risk factors” (such as 
exposures)9.  In such studies, 
differences in disease occurrence 
between the “exposed” and “non-
exposed” individuals are identified 
and studied over time to determine 
differences in the rate of disease10.
This difference in the rate of disease 
occurrence is then investigated to 
determine if the rate of disease 
differs between the exposed and 
non-exposed groups.  Cohort studies 
have the ability to simultaneously 
evaluate multiple disease outcomes 
under study (which is not true for case-control studies, which are generally limited to 
evaluating only a single (pre-specified) disease outcome, discussed below). Cohort studies 
can also be performed either prospectively, like the Agricultural Health Study (AHS, 
http://aghealth.nci.nih.gov/), or retrospectively from historical records. A prospective 
cohort design focuses on a group of people from a current point in time through a future 
point in time. A retrospective cohort design focuses on a group exposed at some point in 
the past, and compares disease rates after exposure occurred (generally through existing 

9 While exposure is often dichotomized on an exposed vs. non-exposed basis in cohort studies, exposure can 
also be measured on a quantitative scale (e.g., by a continuous measure or by quantiles) 
10 Cohort studies commonly study differences in rates of disease, but these can also include other focal 
outcomes of interest such as birth weight, mental abilities, blood pressure, etc.    
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available exposure databases (or records) available on a person-by-person (individual) 
basis).  Prospective cohort studies can be relatively lengthy and expensive to conduct, 
particularly for rare diseases, and require a large number of subjects to be under study.  
Importantly, significant resources and professional staff are required for a long period of 
time to collect high quality data.

Case-control studies are studies in which groups of individuals with (cases) and 
generally without (controls) a given disease are identified and compared with respect to 
(generally past11) exposure to determine whether those with the disease of interest are 
more likely or no more likely to have 
been exposed to the agent(s) or 
factor(s) of interest.  That is, the 
analysis of case-control studies 
contrasts the frequency of exposure of 
the agent or factor in the cases with 
those in the controls to determine if 
these differ and, thus, whether there is a 
differential association.  In case-control 
studies, determination of the disease 
status (i.e., cases with the disease; 
controls without) generally precedes 
determination of the exposure status 
(see figure box from van den Brandt et 
al. (2002))   Because disease has already occurred at the time of selection into the case-
control study, this study design is particularly useful in studying uncommon diseases  or 
diseases with long latency and can be utilized to evaluate the relation between many 
different exposures and a specific (pre-specified) disease outcome of interest . And because 
case-control studies begin with individuals who have the disease, the studies can involve 
fewer subjects than cohort studies and can be completed in a comparatively shorter time 
frame.  Challenges in case-control investigations include the selection of an appropriate 
control group and the assessment of exposures which may have occurred long before the 
disease was diagnosed (Rothman, 2012; Wacholder et al. 1992a; Wacholder et al. 1992b; 
Wacholder et al. 1992c; Shultz and Grimes, 2002; Grimes and Schultz, 2005). Case-control 
studies can be particularly susceptible to “recall bias” in which diseased individuals may 
remember exposures or events differently (generally better) than those who serve as the 
controls and are healthy.   

Nested case-control studies are an example of a hybrid design and contain the 
elements of a cohort and a case-control study.  These designs can be useful when the 
analytical costs for determining pesticide exposure are too high for the entire cohort to be 
studies.  For example, a cases that that have developed the disease or health outcome in an 

11 It is possible for case-control studies to be done prospectively in which the cases have not yet developed 
the disease until after the study begins under which circumstance the cases are enrolled in the study over 
time. 
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ongoing cohort study can be matched with appropriate controls from the study that have 
not yet developed the disease or outcome of interest at the time of the analysis. One 
recognized advantage of the nested case-control study (as opposed to a more standard 
case-control study) is that the issues of selection bias and recall bias are minimized.   

Cross-sectional studies focus on the prevalence of disease (e.g., birth defects, small-
for-gestational age or SGA), symptoms, biological/physical and physiologic response 
measurements (e.g., pulmonary function tests, blood pressure, chest X-ray, clinical 
examinations, liver and kidney biomarkers). A key feature of such studies is that they are 
observational studies which focuses on the prevalence as a frequency measure, with the 
presence or absence of disease determined at the time of sampling or over a sampling 
period. Prevalence is the proportion of individuals in a population that has the disease and 
can either be determined as a “point prevalence” or as a “period prevalence”.12 A 
prevalence is a proportion not a rate and thus the cross sectional studies do not involve a 
follow up period. Typically, the exposure status (e.g., exposed or unexposed), disease 
status/outcome, and demographic characteristics are determined at a point in (or over) 
time. The major comparison in this study design is a comparison of the prevalence of the 
outcome in the exposed population vs. the prevalence of that outcome in the non-exposed 
population, with the risk measure being the prevalence risk ratio or odds ratio.  Cross-
sectional studies are generally used to identify patterns or trends in disease occurrence 
over time or in different geographical locations, and can be conducted quickly and 
relatively inexpensively. However, they measure the prevalence of a disease outcome 
which is affected by both incidence – the rate of occurrence of new cases – and duration of 
the disease, and it can be difficult in any analysis to sufficiently separate these factors. 
Thus, they involve “survivor populations” and do not measure, evaluate, or consider those 
that have left the population of interest because they became ill.  Another important 
limitation of cross-sectional studies is they do not allow one to determine whether 
exposure precedes the disease.  As such, cross-sectional studies are unable to establish 
temporal relationships between disease and exposure and typically require additional 
studies to confirm a hypothesized causal association suggested by a cross-sectional study.  

Ecologic studies examine exposure and disease patterns using information reflecting 
group or population-level data. In an ecologic study, the unit of analysis is a group and not 
an individual13.  Here, groups of subjects are sampled, with the exposure, disease, and 
potential confounding factors measured at this group (or cluster) level.  Groups are 
generally defined on a geographic, administrative, or organizations unit basis (e.g., districts, 
towns, counties, schools, workplaces, etc.) with all exposure, disease, or confounder 
measurements made or summarized at the group level rather than at the level of the 
individual.  An ecological (group-based) study contrasts with an individual-level study in 
that in the former there is no information on whether the cases are the actual individuals 

12 The former involve measurements at a particular place and/or a particular time while the latter involves 
determinations of the proportion of cases over a given time period. 
13 Some studies can be “partially ecologic” in design in which either the exposure or the disease outcome is 
measured on a group level but the other variable is measures at an individual level with the researcher 
making inferences to the individual level. 
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with the exposure whereas in the latter exposure information is tied to the individual.  As 
an example, a study of disease rates by contaminant levels in water can be ecologic with 
respect to evaluation of the exposure, but the health outcome or disease status may have 
determined on an individual basis. In these instances, the term “semi-ecological” can 
sometimes be used when exposure is determined at the group level but outcome is 
determined at the level of the individual.   

Using this design, it is not possible to know whether all members of the exposed group 
are individually exposed (or the individual exposure levels) nor is it possible to infer 
individual-level effects from the group level effects that result.   If the intent of the study is 
to direct inferences to the group (rather than the individual), then this is not a concern and 
these studies can be appropriate, particularly if measurements are constrained or difficult 
to perform at the individual level and exposures within the group are generally 
homogenous. If the intent of the study is instead to direct inferences to the individual, then 
this study design suffers from what is termed the ecological fallacy:  the assumption that an 
observed relationship in an aggregated or grouped data set will reflect what would have 
been observed had the sampling occurred at the individual level.  In addition to this 
ecological fallacy issue, an additional bias arises a result of the inability to appropriately 
control for confounding variables at the level of the individual as opposed to the group 
when information on confounding factors is only available at the group level.     

In most cases, ecologic studies are considered as hypothesis-generating studies and 
best used for suggesting research hypotheses for future studies and may contribute to 
problem formulation.  Nevertheless, it is important to assess ecological studies on the basis 
of the quality of their design, and useful information can be gleaned from an ecologic study 
if it is well-designed (FIFRA SAP, 2010).  Ecologic studies alone generally do not have the 
ability to establish a causal association.  When taken with other these studies can be useful 
under certain circumstances and should be noted in the hazard characterization. In 
particular, stable populations, clear exposure contrasts, and large differences in risk can be 
important factors that might increase the utility of these studies.    

C.  Evaluating epidemiology studies for use in pesticide risk assessment   

OPP searches the peer reviewed literature for observational epidemiology studies of 
potential adverse acute and chronic health effects linked to chemical use. Details regarding 
literature search protocols and strategies are provided elsewhere. Epidemiologic research 
utilizing cohort, case-control, or cross-sectional study designs may provide information to 
OPP to strengthen OPP’s understanding of the potential hazards, exposure-response 
characterization, exposure scenarios. or assessment methods, and – ultimately -- risk 
characterization (van den Brandt, 2002).  In addition, compelling case reports or case 
series analysis may illumine a health effect or mechanism of action previously unidentified.  

Generally speaking, the quality of epidemiologic research, sufficiency of 
documentation of the study (study design and results), and relevance to risk assessment is 
considered when evaluating epidemiology studies from the open literature for use in OPP’s 
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risk assessments. It is important that these criteria are endpoint-specific as various 
methodological details become more or less important given the endpoint of concern. For 
example, it is important to understand relevant factors that influence outcome 
ascertainment (e.g., is there a test or a biomarker available to indicate presence of an effect, 
or are symptoms gradual and non-specific initially leading to physician diagnosis upon 
advanced disease state). In addition, for environmental and occupational epidemiology 
studies, the quality of the exposure assessment is vitally important. Prior consideration 
must be given to aspects of exposure and confounder measurement to the question under 
consideration.  

When considering individual study quality, various aspects of the design, conduct, 
analysis and interpretation of the epidemiology studies are important. These include:  

1. Clear articulation of the hypothesis, even if the study is hypothesis-generating in 
nature;

2. Adequate assessment of exposure for the relevant critical windows of the health 
effects, the range of exposure of interest for the risk assessment target population, 
and the availability of a dose/exposure-response trend from the study, among other 
qualities of exposure assessment, 

3. Reasonably valid and reliable outcome ascertainment (the correct identification of 
those with and without the health effect in the study population), 

4. Appropriate inclusion and exclusion criteria that result in a sample population 
representative of the target population, and absent systematic bias, 

5. Adequate measurement and analysis of potentially confounding variables, including 
measurement or discussion of the role of multiple pesticide exposure, or mixtures 
exposure in the risk estimates observed, 

6. Overall characterization of potential systematic biases in the study including errors 
in the selection of participation and in the collection of information; this can include 
performing sensitivity analysis to determine the potential influence of systematic 
error on the risk estimates presented (e.g., Greenland’s formula) 

7. Evaluation of the statistical power of the study to observe health effects with 
appropriate discussion and/or presentation of power estimates, 

8. Use of appropriate statistical modeling techniques, given the study design and the 
nature of the outcomes under study 

Other Federal and non-Federal entities have offered such guides (e.g., OHAT, 
Navigation Guide, National Toxicology Program [NTP] Report on Carcinogens [ROC14], IRIS, 
Cochrane ACROBAT-Non-Randomized Studies of Interventions) (Sterne et al., 2015 as well 
as the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) 
statement for observational epidemiological studies (see www.strobe-statement.org and  
Vandenbroucke et al., 2007;  Von Elm, 2014)   As OPP gains experience with integrating 
epidemiology studies into human health risk assessment, relevant adjustments to its 
evaluation approach will be made.   

14 http://ntp.niehs.nih.gov/pubhealth/roc/index.html 
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Independent study evaluation is performed and documented prior to the 
development of evidence- tables of detailed summary tables which are informative to 
hazard identification and exposure response assessment. Table 2 provides a structure to 
the major considerations evaluated and the associated weight (low, medium, high) for each 
consideration.   Table 2 provides a generic set of considerations and should not be 
considered a checklist.  The specific scientific considerations appropriate for particular 
science analysis are adjusted on a case by case basis.   

The culmination of the study evaluation process would be to provide 
professional/expert opinion as to the nature of the potential bias that may result from 
systematic errors in each specific study identified through study specific evaluations, and 
an assessment of overall confidence in the epidemiological database. In this way, data 
integration (animal, human, mechanistic, other) would be informed by level of confidence 
in the human epidemiological studies that inform human health effects of environmental 
and occupational exposures.  
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Table 2. Study Quality Considerations a (Adapted from Munoz-Quezada et al., 2013; 
LaKind et al., 2014) 

Parameter High Moderate Low 

Exposure
assessment 

Accurate and 
precise quantitative 
relationship with 
external 
exposure, internal 
dose, or target dose, 
possibly associated 
with an MOA/AOP. 

If questionnaire 
utilized, questionnaire 
and/or interview 
answered by subjects 
for chemical-specific 
exposure  

Evidence exists for a 
relationship 
between biomarker in a 
specified matrix 
and external exposure, 
internal dose, or 
target dose. 

Questionnaire and/or 
interview for chemical-
specific exposure answered by 
subjects or proxy individuals  

Poor surrogate 

Low-quality 
questionnaire and/or 
interview; information 
collected for groups of 
chemicals rather than 
chemical-specific; no 
chemical-specific 
exposure information 
collected; ever/never 
use of pesticides in 
general evaluated 

Outcome Assessment 

Standardized tool, 
validated in study 
population; medical 
record 
review/diagnosis 
confirmation by 
trained staff; 
appropriate 
consideration of 
prevalence/incidence 
of cases 

Standardized tool, not 
validated in population, or 
screening tool; or, medical 
record review, methods 
unstated  

Selected sections of 
test, or maternal 
report, other; or, 
maternal/paternal 
self-report; 
unclear/no 
consideration for 
whether prevalent or 
incident cases are 
appropriate 

Confounder control 

Good control for 
important 
confounders relevant 
to scientific question, 
and standard 
confounders 

Moderately good control 
confounders, standard 
variables, not all variables 
relevant for scientific question 

Multi-variable analysis 
not performed no 
adjustments; no 
stratification, 
restriction, or 
matching

Statistical Analysis 

Appropriate to study 
question and design, 
supported by 
adequate sample size, 
maximizing use of 
data, reported well 
(not selective) 

Acceptable methods, 
questionable study power 
(especially sub-analyses), 
analytic choices that lose 
information, not reported 
clearly  

Minimal attention to 
statistical analyses, 
comparisons not 
performed or 
described clearly  

Risk of (other) bias 
(selection, 
differential 
misclassification, 
effect size 
magnification, other) 

Major sources of other 
potential biases not 
likely present, present 
but analyzed, unlikely 
to influence 
magnitude and 
direction of the risk 
estimate 

Other sources of bias present, 
acknowledged but not 
addressed in study, may 
influence magnitude but not 
direction of estimate 

Major study biases 
present, 
unacknowledged or 
unaddressed in study, 
cannot exclude other 
explanations for study 
finding 

a Overall study quality ranking based on comprehensive assessment across the parameters. 
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1. Exposure Assessment  

Exposure assessment can be defined as the “process of estimating or measuring the 
magnitude, frequency and duration of exposure to an agent, along with the number and 
characteristics of the population exposed. Ideally, it describes the sources, pathways, 
routes, and the uncertainties in the assessment. (Zartarian et al., 2005).”  In environmental 
epidemiology, exposure assessment poses a unique challenge, particularly for toxicants 
that are found in low concentrations in environmental media (NRC, 1991; NRC, 1997).  
Given the complexity of exposure pathways, researchers have developed a number of 
different approaches to assess exposure, which vary in accuracy, precision, and resource 
requirements (Niewenhuijsen, 2003).  Some of these approaches are not specific to 
epidemiologic research but may be used to inform exposure assessment in a variety of 
scientific analyses.  These approaches include indirect methods, based on historical 
records, questionnaires, and environmental monitoring, and direct methods, based on 
personal monitoring and biomonitoring.   A brief description of each method and its 
strengths and limitations is summarized below.  

Table 3. Summary of indirect and direct exposure assessment methods.

Approach Method/Tools Example Exposure Estimation 

Indirect 

Historical Records 
Estimating proximity to 
agricultural crops using 
address information 

Dichotomous or ordinal 
exposure 

Questionnaires 
Determine potential for 
exposure based on 
pesticide-use responses 

Dichotomous or ordinal 
exposure 

Environmental Monitoring 
Measuring pesticide levels 
in community water 
drinking system 

Dichotomous or ordinal 
exposure, although 
exposure can be estimated 
using modeling

Direct 
Personal Monitoring 

Measuring pesticide 
inhalation and dermal 
contact 

Quantified exposure  

Biomonitoring Measuring pesticide levels 
in blood and urine Quantified internal dose 

Historical records and questionnaires are used to characterize key 
characteristics which may be associated with chemical exposure. When used in 
epidemiologic studies, historical records and questionnaires are not typically used to 
predict quantitative levels of exposure.  Rather, historical record information or 
questionnaire responses are used to assign categorical levels of exposure.  Examples of 
historical record information that can be used to assign exposure levels includes address in 
proximity to an agricultural crop and employment history information on job title and 
history.  Similarly, questionnaires can be used to determine if individuals recall using 
pesticides or identify individuals that perform specific job functions that increase their 
potential for exposure.  While historical records and questionnaires can be cost-effective 
sources of data on potential exposure, they do have limitations.  Data collected from 
historical records and questionnaires is only a surrogate of exposure.  As a result, these 
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data sources may be an oversimplification of exposure and not accurately rank individual’s 
exposure potential.   

Environmental monitoring is used to characterize the levels of contaminants in 
environmental media, including air, water, soil, food, and home and work environments.  
Many state and Federal programs collect environmental monitoring data that may be 
useful in epidemiologic studies.  Environmental monitoring is particularly useful for 
exposure that can be defined by geographic boundaries, such as air pollution and drinking 
water.  As such, many epidemiologic studies have utilized ambient air monitoring data and 
community drinking water system data to characterize exposure to air pollution and 
drinking water contamination, respectively.  While environmental monitoring data is useful 
for estimating exposures defined by geographic boundaries, it can be less reliable for the 
purposes of assigning individual-levels exposures, particularly when individuals live, work, 
and spend time in many different locations.   

Personal monitoring is used to characterize exposure at the point of contact of a 
body boundary.  Examples of personal monitoring include the use of dosimeters to assess 
dermal contact with pesticides, personal air sampling devices to assess inhalation 
exposure, and collection of duplicate diet samples to determine pesticide levels in food.  
The advantage of personal monitoring is that it is likely to provide more accurate estimates 
of individual-level exposure than indirect methods.  Personal monitoring also makes it 
possible to quantify exposure levels that can be useful for prioritizing the relevance of 
different routes of exposure.  Additionally, personal monitoring can also be used to assess 
longitudinal exposure when repeated measurements are taken over time.  While personal 
monitoring offers many advantages over indirect approaches, it also tends to be labor and 
resource intensive (Niewenhuijsen, 2003).  As a result, it is not typically feasible to conduct 
large-scale epidemiologic studies that assess exposure using personal monitoring.  
Furthermore, personal monitoring is highly dependent on the measurement techniques 
and analytic tools used to obtain samples and it is less likely that information that 
characterizes exposures during the relevant time period (usually in the past) will be 
available.  In addition, it is unlikely that the full range of exposures over the time period of 
interest will be captured, and sampling may not be over a sufficient time period to capture 
peaks and fluctuations  As such, it is extremely important to consider the scientific rigor 
and reliability of personal monitoring methodologies that are used in epidemiologic 
studies, and such monitoring may need to be supplemented by other monitoring (e.g., 
environmental, biological, and/or interview/questionnaire data).     

Biomonitoring is used to characterize exposure by measuring a chemical, its 
metabolite(s), or reactive product(s) in biological samples, such as blood, urine, saliva, 
milk, adipose, and other body tissues (Needham et al., 2007).  Zartarian et al. (2005) state 
that “a biomarker/biological marker has been defined as an "indicator of changes or events 
in biological systems. Biological markers of exposure refer to cellular, biochemical, 
analytical, or molecular measures that are obtained from biological media such as tissues, 
cells, or fluids and are indicative of exposure to an agent".  Thus, biomarkers can be used to 
assess exposure or as indicators of health effects (LaKind et al., 2014).  Table 4 provides 
scientific considerations for evaluating the quality and relevance of biomonitoring data 

26

 

 
 

 
 

Niewenhuijsen 2003

 
 

Needham 2007 Zartarian 2005

LaKind 2014 4
 

  

281



Page 27  

collected from epidemiology studies. Assessing exposure using biomonitoring has 
expanded rapidly as analytical tools have become more cost-effective and more biomarkers 
are identified.  Compared with self-reported questionnaire or interview data, 
biomonitoring may reduce exposure misclassification and enhance the precision of the risk 
estimates. Similarly, biomonitoring integrates exposures from different routes and can be 
used to determine the amount of exposure that is absorbed into the body (Checkoway et al., 
2004).  Furthermore, knowledge as to the role of the biomarker in the natural history of 
disease is known in certain instances, such that biomarkers may help resolve temporality 
of exposure issues.

While biomonitoring has many advantages over others exposure assessment 
methods, it also has its own limitations. In many studies, biological sample are only taken 
from a single point in time and may not reflect accurately reflect longitudinal patterns, 
particularly if exposures are highly variable.  Furthermore, evaluation of biomarkers also 
requires an understanding of degradation and metabolism of chemicals in both the 
environment and human body.  As such, biomarkers of exposure may differ between 
individuals for reasons other than exposure level. Differences in metabolism, co-
morbidities such as kidney disease in relation to urinary measurements, uncertainty as to 
whether the biomarker measures exposure to the active ingredient or the environmental 
degradates may all account for apparent differences in biomarkers of exposure among 
individuals, and possibly between comparison groups.
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Table 4. Considerations of biomonitoring data from environmental epidemiology research (Adapted from LaKind et 
al. (2014). 

Biomarker Consideration Tier 1 Tier 2 Tier 3 

Exposure biomarker 
Biomarker has accurate and 
precise quantitative relationship 
with external exposure, internal 
dose, or target dose.  

Biomarker has an unknown 
quantitative relationship with 
external exposure, internal 
dose, or target dose or is poor 
surrogate (low accuracy and 
precision) for exposure/dose. 

NA

Effect biomarker Bioindicator of a key event in a 
MOA/AOP. 

Biomarkers of effect for which 
the relationship to health 
outcome is understood 

Biomarker has undetermined 
consequences (e.g., biomarker is not 
specific to a health outcome). 

Specificity Biomarker is derived from 
exposure to one parent chemical. 

Biomarker is derived from 
multiple parent chemicals with 
similar toxicities. 

Biomarker is derived from multiple 
parent chemicals with varying types 
of adverse endpoints. 

Method sensitivity 

Limits of detection are low 
enough to detect chemicals in a 
sufficient percentage of the 
samples to address the research 
question.  

Frequency of detection too low 
to address the research 
hypothesis.  

NA

Biomarker stability Samples with a known history 
and documented stability data.  

Samples have known losses 
during storage but the 
difference between low and 
high exposures can be 
qualitatively assessed.  

Samples with either unknown 
history and/or no stability data for 
analytes of interest.  

Sample contamination Samples are contamination-free 
from time of collection to time of 
measurement (e.g., by use of 

Study not using/documenting 
these procedures.  

There are known contamination 
issues and no documentation that 
the issues were addressed 
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Biomarker Consideration Tier 1 Tier 2 Tier 3 

certified analyte-free collection 
supplies and reference materials, 
and appropriate use of blanks 
both in the field and lab).  
Research includes documentation 
of the steps taken to provide the 
necessary assurance that the 
study data are reliable.  

Method requirements 

Instrumentation that provides 
unambiguous identification and 
quantitation of the biomarker at 
the required sensitivity (e.g., GC-
HRMS, GC-MS/MS, LC-MS/MS)  

Instrumentation that allows 
for identification of the 
biomarker with a high degree 
of confidence and the required 
sensitivity (e.g., GC-MS, GC-
ECD).

Instrumentation that only allows for 
possible quantification of the 
biomarker but the method has 
known interferants (e.g., GC-FID, 
spectroscopy) 

Matrix adjustment 
Study includes results for 
adjusted and non-adjusted 
concentrations 

Study only provides results 
using one method (matrix-
adjusted or not). 

NA

FP = false positive; FN = false negative; GC-HRMS = gas chromatography/high-resolution mass spectrometry; GC-MS = gas chromatography/mass spectrometry; GC-ECD 
= gas chromatography-electron capture detector; GC-FID = gas chromatography-flame ionization detector], ICC = intra-class correlation coefficient ; NA = not applicable; 
PFP = probability of false positive 
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Indirect exposure assessment methods are common in retrospective studies and 
based on factors that are surrogates of chemical exposure.  As described above, indirect 
exposure data cannot generally be used to estimate quantitative exposure levels without 
additional modeling.  For example, a questionnaire can be used to determine if an 
individual has ever used a pesticide, but can less reliably collect data on all the 
environmental and behavioral factors that are needed to calculate that individual’s 
exposure.  As such, indirect exposure data are often used to classify exposure using a 
dichotomous exposure variable (i.e. exposed/unexposed) or ordinal exposure scale.  In 
contrast, direct exposure assessment methods are based on data on actual individual-level 
exposure through personal monitoring and biomonitoring.  Thus, direct methods can be 
used to estimate individual exposure or internal dose levels.  Direct methods are more 
common in prospective studies, but are also used in retrospective studies when existing 
biological samples are available from well-defined population groups.   

Quantified personal measurements, such as personal monitoring and 
biomonitoring, are generally considered the best source of data for estimating actual 
exposure levels (NRC, 1991; NRC, 1997).  While this is the case, accurate qualitative 
measures of exposure (e.g. dichotomous and ordinal exposure metrics) from indirect 
methods can be just as accurate for the purpose of epidemiology.  Moreover, indirect 
methods are often easier to interpret and may require less additional research and 
development to demonstrate their utility in exposure assessment.   

Regardless of the approach, exposure assessment methods should be able to 
provide exposure estimates that are reliable and valid.  In the context of epidemiology, 
reliability general refers to the ability to reproduce results and validity generally refers to 
the extent that exposure estimates reflect true exposure levels (Checkoway et al., 2004).  
When evaluating a particular exposure assessment’s reliability and validity, it is important 
to consider the exposure assessment’s strengths and weaknesses in the context of the 
study’s research objectives.  Less refined exposure assessment may be suitable for 
exploratory studies.  This is because exploratory studies help raise awareness about 
potential hazards that can encourage investment in more focused research.  Conversely, 
studies with more focused hypotheses can be greatly strengthened through the use of more 
refined exposure assessment methods.  Therefore, indirect and direct exposure assessment 
methods represent a spectrum of tools that are complimentary and can be used at different 
stages of research when exploring exposure-disease relationships.   

2. Confounding Factors  

Confounding occurs when the relationship between the exposure and disease is to some 
extent attributable to the effect of a second (confounding) risk factor. This can happen 
when this second (i.e., confounding) risk factor is an independent, causally-associated risk 
factor for the disease but is also associated -- causally or non-causally -- with the exposure 
under analysis and does not also serve as an intermediate variable in the causal pathway 
between the exposure and the outcome of interest. If not properly measured and accounted 
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for, confounders have the ability to change the magnitude (and potentially the direction) of 
the estimated association between an exposure and health outcome.  This can result in an 
over- or under-estimation of the relationship between exposure and disease because the 
effects of the two risk factors have not been appropriately separated, or “disentangled”.  As 
an example:  a given pesticide may be associated with lung cancer in a given study, but this 
may be due to a confounding effect of farm tractor diesel fumes: here, this second factor – 
farm tractor diesel fumes – would be a confounder if it was causally associated with the 
disease outcome (here, lung cancer) but also associated with pesticide exposure.  
Confounding factors may include less intuitive lifestyle exposures such as cigarette 
smoking, dietary factors (e.g., high energy/calorie laden diet), and physical activity (e.g., 
lack of physical activity) genetics, comorbidity, medication use, alcohol consumption, etc., 
all of which may adversely affect health and may be statistically associated with pesticide 
use. In epidemiological analyses, confounding factors are measured in the study sample 
and typically “adjusted for” in the final risk estimate in either the design phase of the study 
or the analysis phase.  With respect to the former, the epidemiological researcher can 
“restrict” the study population to individuals that share a characteristic which the 
researcher wishes to control; this has the result of removing the potential effect of 
confounding caused by that (now controlled) characteristic.  A second available method – 
also applicable to the design phase of the study -- is for the researcher to control 
confounding by “matching” individuals based on the confounding variable.  This ensures 
that the confounding variable is evenly distributed between the two comparison groups 
and effectively controls for this.  It is important to note that the relationship between the 
confounder and the exposure or outcome does not need to be found to be statistically 
significant in order for it to have an impact on the risk estimate for the main effect15.

At the analysis stage, one method by which confounding can be controlled is by 
stratification.  Under this means of control, the association is measured separately under 
each of the (potentially) confounding variables; the separate estimates are “brought 
together” statistically -- if determined to be appropriate -- to produce a common odds ratio 
or other effect size measure by using Mantel-Haenszel approaches which weight the 
estimates measured in each stratum.  Stratification can be difficult if there are multiple 
potential confounders that need to be controlled simultaneously.  In such cases, 
confounding is typically dealt with by means of statistical modelling. (e.g., logistic 
regression).

  It is important that careful consideration be given to confounders prior to any 
epidemiological studies being initiated in the field and it is important that any study 
adequately describe how this was done:  epidemiological studies are frequently critiqued 
for ignoring or paying insufficient attention to potential confounders. For this reason, a 
sensitivity analysis can be helpful to demonstrate the potential effects that a missing or 
unaccounted for confounder may have on the observed effect sizes (see Gustafson and 

15 This is why it is generally considered inappropriate to “statistically test” for a confounder to determine 
whether the confounder needs to be adjusted for.  Instead, some consider a change in the effect size of 10% or 
more after adjustment for (inclusion of) a potential confounder to be sufficient evidence for the confounder to 
be incorporated into the analysis.  
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McCandless, 2010). If unmeasured confounders are thought to affect the results, 
researchers should conduct sensitivity analyses to estimate the range of impacts and the 
resulting range of adjusted effect measures.  Such sensitivity analyses -- generally not 
uniformly conducted in most published epidemiological studies – can be used when 
available to estimate the impact of biases and potential confounding by known but 
unmeasured risk factors.

Depending upon the specific exposure-disease association under study, a factor may 
or may not be a confounding factor that is necessary to control: in order for a substantial 
distortion in the effect size estimate to occur due to confounding, the confounder must be 
not only a relatively strong risk factor for the disease of interest16, but also be strongly 
associated with the exposure of interest.  Assessment of potential confounding is made on a 
study specific basis and – if unmeasured confounders are thought to affect the results -- 
researchers should conduct a sensitivity analysis to estimate the range of impacts and 
resulting range of adjusted effect measures. When evaluating the quality of observational 
epidemiology studies, OPP will consider whether relevant confounding factors are properly 
identified, described, measured and analyzed such that an unbiased estimate of the specific 
association under study can be made, and, when possible, may consider sensitivity analysis 
as a potential tool to assist in determining the degree to which such confounding might 
potentially affect the estimate of the effect size.  It should be emphasized that a confounder 
must be a relatively strong risk factor for the disease to be strongly associated with the 
exposure of interest to create a substantial distortion in the risk estimate.  In such cases, it 
is not sufficient to simply raise the possibility of confounding; one should make a 
persuasive argument explaining why a risk factor is likely to be a confounder, what its 
impact might be, and how important that impact might be to the interpretation of findings.  
(p. 23-25, FIFRA SAP Report, 22 April 2010)          

Finally, it is important to distinguish between confounding, effect modification, 
synergy, and other mediating effects of covariates.   Confounding is a bias that results from 
not controlling for a variable that is associated causally with the disease and associated –
causally or non-causally -- with the exposure of interest.  Epidemiologic researchers seek to 
minimize this bias.  Effect modifiers -- on the other hand -- are variables that differentially 
affect the magnitude of the effect size, by strata (e.g., age, race/ethnicity, SES status, genetic 
polymorphisms).  Effect modifiers may or may not also be confounders.  Typically, they are 
modelled by either introducing interaction terms in multivariable models or by evaluating 
effect sizes by strata after stratifying the data by levels of the effect modifier.  A study 
frequently needs to be specifically designed to evaluate effect modifiers in order to have a 
sufficient sample size in each population strata of interest.  Epidemiologic researchers seek 
to understand effect modifiers (not minimize them, as they do with confounders) because 
they can be important in evaluating risk differences across population strata, in evaluating 
the association between exposure and the effect of interest, and in identifying susceptible 

16 Consideration needs to be given not only to ensuring that the confounding factor is indeed a risk factor on 
its own but also to ensuring not only related to the exposure of interest.  Adjusting for a factor that has an 
association with the disease of interest wholly or partly because of its association with the exposure of 
interest will lead to attenuation of the exposure-disease relationship if it truly exists. 
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subpopulations.  Effect modifiers may or may not also be confounders.  For example, 
smoking may be a confounder in a study associating lung cancer with a pesticide often used 
on tobacco, but it may also be an effect modifier if the risk of exposure to this pesticide is 
higher among smokers than non-smokers.  Synergy is often introduced as a biological or 
pharmacological/toxicological concept rather than an epidemiological one and relates to 
the ability of two chemicals, together and acting jointly, to magnify or exaggerate the effect 
beyond that which would be seen considering the (mathematical) sum of each chemical’s 
effects alone. In epidemiological and statistical terms, this is often expressed as effect 
modification or interaction.       

3. Statistical Analysis  

Epidemiologic studies are designed to measure an association between a specific 
exposure and a disease. When evaluating the quality of pesticide epidemiology studies, OPP 
will also consider the statistical methods used. Specifically, OPP will consider the extent to 
which the analytic methods described in the study are appropriate to the research 
question; the completeness of the description of the statistical methods utilized; the 
appropriateness of the methods for identification, assessment and adjustment of 
potentially confounding variables in the exposure-disease relation; and, the description, 
extent of,  and presentation of any sub-group analyses which may have been performed 
(including whether statistical corrections for multiple comparisons have been made).   

Epidemiologic investigations typically utilize statistical modeling to estimate risk (e.g. 
generalized linear models such as logistic (for odds ratios) or Poisson (for count data) 
regression. To do so, researchers must consider not only the relevant main exposure and 
outcome variables, but also consider relevant confounding factors, and whether the 
association under investigation may differ by level of these factors, i.e., effect modification 
or interaction (Szklo et al., 2004). Upon identification of a potentially confounding variable 
-- one that substantively changes the magnitude and/or direction of the association under 
study -- adjustment through regression modeling can help to isolate the risk estimate of 
interest, i.e., the association under study. In addition, OPP will evaluate the stratification of 
the association by the level of the potential effect modifier under study or evaluation of 
statistical interaction. If the magnitude and direction of the association of interest differs 
greatly by level of a third variable, then the stratified results should be considered primary. 

When performing statistical modeling when the outcome is rare or the sample size is 
relatively small, it is important to be cautious about including too many covariates in the 
model.  Any resulting effect size estimate may be too high or too low and is unlikely to 
reflect the true estimate of effect. Such issues due to rare events or low sample sizes are 
also possible when conditional methods are used (e.g., conditional logistic regression when 
the design includes matching of the comparison group under study): if too few discordant 
pairs (or discordant sets) are observed, the estimated effect size may also be unreliable.  
Thus:  while controlling for confounders and other covariates is important, the assessor 
must take care not to over-control or end up with too few degrees of freedom to produce a 
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reliable test. In these cases, it may be more important to seek parsimonious models that 
adjust for only a smaller number of the most influential confounders and other covariates 
so that the effective sample size remains adequate.   

Finally, it is important in any statistical modeling exercise to consider statistical 
significance in the context of clinical/biological/scientific significance of the result. It may 
be that some results are statistically significant but unimportant in a clinical/biological/ 
scientific context.  The reverse can be true:  it may be that results are not statistically 
significant but may be important in a clinical/biological/scientific context.  The former may 
suggest a sample size that is larger than necessary while the latter may suggest one than is 
smaller than needed.   The latter case may be important from a public health perspective 
and warrant further exploration, especially when the association is strong (despite it being 
imprecise)

4. Potential Bias in Observational Research 

Bias is a systematic error in the design or conduct of a study that gives rise to study 
results that are systematically different from the (unobserved) true situation. This 
contrasts with random errors which relate to sampling variability and precision (or, 
equivalently, confidence bounds) around the effect size measure, but which do not “drive” 
or “push” the result in one particular direction (e.g., either toward or away from the null).   

Bias is a reflection of methodological imperfections in the design or conduct of the 
study and should be addressed or discussed by researchers as part of their analysis. There 
are a number of ways that bias can be introduced into a study:  studies may be biased in the 
way in which participants are selected into the study (selection bias), or the way in which 
information about exposure and disease status is collected (information bias, including 
recall bias discussed earlier for case-control studies). One example of a common 
occupational selection bias is the “healthy worker effect” which can create an important 
bias in occupational epidemiology studies, leading to bias toward the null, and even below 
(creating the interpretation that the exposure is “protective”) No study is totally devoid of 
bias and one should consider the extent to which authors of published studies described 
potential bias in the study, and how (if at all) they attempted to address it and characterize 
it in the study.  Bias can result from differential or non-differential misclassification 
(Greenland, 1998). Differential misclassification (bias) means that misclassification has 
occurred in a way that depends on the values of other variables, while non-differential 
misclassification (bias) refers to misclassifications that do not depend on the value of other 
variables. Misclassification biases – either differential or non-differential – depend on the 
sensitivity and specificity of the study’s methods used to categorize such exposures  and 
can have a predictable effect on the direction of bias under certain (limited) conditions: this 
ability to characterize the direction of the bias based on knowledge of the study methods 
and analyses can be useful to the regulatory decision-maker since it may allow the decision 
maker to determine the extent to which, if any, the epidemiological effect sizes being 
considered (e.g., OR, RR) are likely underestimates or overestimates of the true effect 
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size17.  It is not atypical to find degrees of misclassification in the range of 10 to 20 percent 
and it can be helpful in reviewing epidemiological studies to consider a form of sensitivity 
(or “what if”) analysis which evaluates such a degree of misclassification -- and whether it 
is differential or non-differential – and the degree to which such misclassification might 
impact the odds ratio or relative risk with respect to both magnitude and direction18.
(p.25, FIFRA EPA SAP report, 22 April, 2010).   As mentioned earlier with respect to 
confounding, such quantitative sensitivity analysis is only rarely performed or practiced in 
published epidemiology studies, with bias instead more typically evaluated in a narrative 
manner without any quantitative assessment of its potential magnitude and the effect it 
may have on the epidemiological effect size estimates (Jurek at al., 2006).  This may be due 
– in part -- to a general lack of availability of computational tools for such analysis by 
epidemiologists or their unfamiliarity with them.  Such tools are becoming increasingly 
available and may be valuable in developing more rigorous quantitative methods for 
evaluation of potential biases.  

5. Interpretation of Null studies 

“Null” studies -- or well-conducted studies which report no association between 
exposure to the pesticide and an adverse health outcome -- will be evaluated carefully for 
their potential usefulness in human health risk assessment. The study may report a null 
result either because the investigated association indeed does not in reality exist, or 
because the study was conducted failed to detect an association at a given predetermined 
level of significance.  This latter result –the failure to detect an association -- should not 
necessarily be interpreted to mean that no association exists, but rather as simply one was 
not found in the particular study19,20. To evaluate which of these two conditions may be 
correct when reviewing “null” studies, one should consider other research reported 
concerning the same or similar research question, the manner in which exposure and 
outcome were assessed, the extent to which exposure misclassification may have biased 
the study to the null, the statistical methods used including the identification and analysis 
of confounding variables in the association, the extent to which the exposure is below a 
threshold at which an effect would occur or be detected, as well as the power of the study 
and its ability to detect an effect size of substantive interest.  Statistical power refers to the 
probability that researchers may correctly identify that there is a difference between the 
two comparison groups, i.e., there is an association between exposure and disease, when in 

17 The direction of bias that results from the degree of non-differential misclassification will also depend on 
the categorization of exposure (either dichotomous or polytomous).
18 Such sensitivity analyses might be especially recommended for exposure misclassification biases which in 
many cases are expected to result in more substantive effects on the effect size estimate than those from 
confounding.     
19 The old adage that “the absence of evidence does should not be interpreted as the evidence of absence” is 
true here. 
20 See also the American Statistical Association’s Statement on Statistical Significance and P-values at 
https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf
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fact there is in fact a true difference (or association). Studies that are “low powered” may 
falsely conclude there is no association, when an association actually exists21.

Finally, it is important to consider the effects of publication bias in any systematic 
review of the literature with respect to interpretation of null studies.  The term publication 
bias refers to the tendency for the available published literature to disproportionately 
exclude such null studies.   Studies that demonstrate such a “null” association between a 
disease or health outcome can be as equally informative as those that do provided that the 
study in question meets the quality criteria established as part of the epidemiological 
review process.  These may include such factors as study design; the existence of an a priori
hypothesis vs. an exploratory analysis; sample size and statistical power to detect an effect 
size of interest; proper ascertainment of outcome vis-à-vis sensitivity and specificity; the 
quality of the exposure assessment and the potential for differential and non-differential 
misclassification; adequacy of the measurement of key potential confounders and other 
forms of bias (information, selection, etc.); and evaluation of effect modifiers; appropriate 
statistical analyses, including consideration of and possible correction for multiple 
comparisons that a unsupported by a priori hypotheses, biological plausibility, or other 
supporting information.   

6. External Validity (Generalizability)  

As noted above, validity generally refers to the extent that exposure estimates 
reflect true exposure levels (Checkoway et al., 2004).  External validity, or generalizability,
refers to the ability to extend the epidemiologic study results derived from a sample of the 
population (e.g., pesticide applicators) to other populations (e.g., all agricultural workers). 
To assess external validity, comparison of characteristics in the sample to the larger 
population (if known) can be made.  Such evaluation should include not only demographic 
factors, but also whether exposures (e.g., dose, timing, duration) are similar and whether 
important effect modifiers (e.g., sensitivity of vulnerable populations) were considered.   
Generalizability is of particular importance because it is important to understand whether 
and how individual study results may be applied to the larger group or targeted sub-groups 
in regulatory risk assessment.  For example, the AHS has reported statistical associations 
between some cancer and non-cancer health outcomes for some pesticide chemicals.  OPP 
has an interest in evaluating the extent to which the reported findings may apply to 
pesticide applicators in states other than North Carolina and Iowa or to farm workers who 
primarily do post-application activities.   

21 Studies that are low-powered but find statistically significant effects may also be subject to the 
phenomenon of effect size magnification and this can be important to investigate as well.  (Ioannidis, 2008).
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V. HUMAN INCIDENT SURVEILLANCE DATA 

Generally speaking, epidemiology studies on pesticides such as those described above 
focus on lower exposures (over a longer time period) that are less likely to result in acute 
clinical symptoms. OPP is also interested in exposures that are higher and occur over 
shorter-intervals (often on an acute “one-time” basis).  This “human incident,” or poisoning 
data can be useful for evaluating short term, high exposure scenarios that can be readily 
attributed to the pesticide in question.   

OPP uses such “human incident information” for several purposes.  Most broadly, the 
program uses incident data to inform risk assessment/risk management activities; this 
forms an integral part of our registration review activities under our Pesticide Registration 
Improvement Act (PRIA) responsibilities.  To this end, OPP evaluates human incident data 
for trends over time and examines patterns in the severity and frequency of different 
pesticide exposures. In some cases, incident information can indicate need for additional 
information or additional risk management measures.  Incident information can also help 
assess the success of risk mitigation actions after they are implemented, and incident 
information is an important part of OPP’s performance accountability system to ensure the 
effectiveness of risk management actions that OPP has taken to protect human health and 
the environment.  Lastly, incident information can be useful in providing real world use 
information with respect to usage practices and also in potentially targeting enforcement 
or educational activities, where appropriate.    

OPP obtains this information from a variety of sources.  Sources of human incident data 
include both (human) medical case reports appearing in the medical and toxicological 
literature as well as information from a variety of national toxico-surveillance activities
for acute pesticide poisonings which are considered jointly to aid acute and chronic hazard 
identification and as an integral part of the risk assessment process.22

Medical case reports (first-hand accounts written by physicians) or medical case 
series (a compendium of medical case reports across individuals that share common 
source or symptomology) are valuable tools for analyzing all available evidence of health 
effects, and to complement the findings of animal studies and epidemiological studies.  In 
addition, they can identify unusual or novel occurrences of an adverse health effects 
plausibly associated with use of a specific pesticide providing “advance notice” to the 
agency for toxico-vigilance purposes.  Published case reports for pesticides typically 
describe the effects from an atypical (high exposure/dose, illegal, off-label) acute or short-
term exposure. The reports are often anecdotal and can be highly selective in nature.  They 
can, however, can be particularly valuable in identifying previously unidentified toxic 
effects in humans and in learning about the effects, health outcomes, and medical sequelae 
following high exposures.  They frequently have more detailed medical information 
(including sequelae), detailed follow-up, and generally higher quality and/or quantitative 

22 OPP is aware of efforts by IPSC to consider human incident data in risk assessment.  
http://www.who.int/ipcs/publications/methods/human_data/en/index.html
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information about dose.  If similarities are seen across multiple medical case studies or 
patterns emerge – in symptoms, exposure scenarios or usage practices -- these can provide 
valuable information for the risk assessment process and strengthen any findings.  Medical 
case studies and series that include quantitative exposure information can be compared to 
exposure estimates in the risk assessment (which are based on labeled application rates 
and surrogate exposure information) to characterize margins of exposure expected from 
typical use, when appropriate.   

The following considerations are evaluated in assessing medical case reports and 
medical case series: 

A detailed history of exposure (when, how, how much); time of onset of adverse 
effects; and signs and symptoms of the patient, are reported.  
Information on the product/chemical/pesticide, such as name, pesticide label, 
registration number, etc. 
Patient information (e.g. age, race, sex); underlying health conditions and use of any 
medications that can produce similar signs and symptoms; relevant medical history; 
and the presence of any risk factors. 
Description of events and how the diagnosis was made. 
Management and treatment of the patient, and laboratory data (before, during and 
after the therapy), including blood levels of pesticides and chemicals.  
Whether the medical report is reliable, reasonable and whether it is consistent with 
current knowledge, including other research, reviews and guidelines. 
Clinical course of the event and patient outcome (e.g. patient recovered and 
discharged from hospital; condition of patient after the discharge, any chronic 
health effects or premature death related to the pesticide or chemical exposure). 

In addition to using medical case reports/series as a source of real-world exposure and 
toxicological information, OPP also engages in toxico-surveillance activities using a variety 
of pesticide poisoning incident databases are also available. Specifically, OPP has access to 
the following five human incident data sources: the OPP Incident Data System (IDS); the 
American Association of Poison Control Centers (PCC) summary reports from their 
National Poison Data System (NPDS); data from the EPA-funded National Pesticide 
Information Center (NPIC), currently at Oregon State University; the Centers for Disease 
Control and Prevention/National Institute for Occupational Safety and Health Sentinel 
Event Notification System for Occupational Risk-Pesticides (NIOSH SENSOR-Pesticides) and 
the California Pesticide Illness Surveillance Program (PISP). Each of these are described, in 
turn below:  

OPP Incident Data System (IDS) is maintained by OPP and incorporates 
data submitted by registrants under FIFRA section 6(a)(2)23, as well as other 
incidents reported directly to EPA. OPP has compiled the pesticide related 

23 Under FIFRA 6(a)(2), pesticide registrants are required to notify EPA if and when they become aware of 
“factual information regarding unreasonable adverse effects on the environment of the pesticide.”   
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incident reports in the IDS since 1992. The IDS includes reports of alleged 
human health incidents from various sources, including mandatory FIFRA 
Section 6 (a) (2) reports from registrants, other federal and state health and 
environmental agencies and individual consumers. IDS include information 
on incidents involving humans, plants, wild and domestic animals where 
there is a claim of an adverse effect. The vast majority of IDS reports are 
received by the agency in paper format.  IDS entries act as a “pointers” to 
copies of original reports retained on microfilm and scanned images in OPP’s 
Information Service Center.  

While IDS includes both occupational and non-occupational incidents, the 
majority of incidents reported relate to non-occupational/residential 
scenarios The reports are obtained from across the U.S. and most incidents 
have all relevant product information (such as the EPA Registration Number) 
recorded. As IDS is populated mostly by information provided by pesticide 
registrants under their FIFRA 6(a)(2) reporting requirements, the agency has 
relatively high confidence in the identification of the specific product which 
is involved.  Severity rankings are included for each incident (as specified by 
CFR §159.184).  Symptom information is sometimes included in the narrative 
portion of the incident, but this information is usually not 
validated/confirmed by a healthcare professional.  IDS also includes 
narrative information on exposure scenario and hazard information.  Many 
companies use standardized, industry-developed Voluntary Incident 
Reporting Forms.   

OPP collects and evaluates the data from the IDS and identifies potential 
patterns with respect to the extent and severity of the health effects due to 
pesticides exposure. While IDS reports are broad in scope and can in some 
cases contain detailed information, the system does not necessarily 
consistently capture detailed information about incident events, such as 
occupational exposure circumstances or medical outcome.   

In addition, most cases data going into IDS is not validated or verified, though 
some reports are collected from calls to contract poison control centers. 
Nevertheless, incident information can provide an important post-marketing 
feedback loop to the agency following initial registration of the product: IDS 
incidents of a severe nature, or a suggested pattern or trend among less 
severe incidents can signal the agency to further investigate a particular 
chemical or product.  Because IDS has such extensive coverage, it can assist 
in providing temporal trend information and determining whether risk 
mitigation has helped reduce potential pesticide exposure and decreased the 
number of potential incidents reported to IDS.  Overall, IDS provides good 
information about national trends and frequency of incidents for pesticides 
and can provide valuable insights into the hazard and/or exposure potential 
of a pesticide. 
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The National Poison Data System (NPDS) -- formerly called the Toxic 
Effects Surveillance System (TESS) -- is maintained by the American 
Association of Poison Control Centers (AAPCC) and is supported with 
funding from several federal agencies.  NPDS is a computerized information 
system with geographically specific and near real-time reporting.  Although 
the main mission of Poison Control Centers is in helping callers respond to 
emergencies, NPDS data can help identify emerging problems in chemical 
product safety.  Hotlines at 61 PCC’s nationwide are open 24/7, 365 days a 
year and are staffed by specially trained nurses, pharmacists, and other 
clinical health care specialists to provide poisoning information.  Using 
computer assisted data entry, standardized protocols, and strict data entry 
criteria, local callers report incidents.  These reported incidents are retained 
locally and are updated in summary form to the national database 
maintained by AAPCC. Information calls are tallied separately and not 
counted as incidents.  The PCC system covers nearly all the US and its 
territories and has undergone major computer enhancements since 2001.  

NPDS includes mainly non-occupational incidents.  NPDS does not include 
narrative information and the product information may not be complete.  
NPDS provides severity rankings and symptom information that are 
designated/recorded by trained specialists, and the agency has relatively 
high confidence in this information.  NPDS also provides some information 
on the likelihood of the adverse effect being a result of the reported 
exposure. Overall, NPDS provides good information about national trends, 
frequency of incidents for pesticides, as well as the hazard potential for 
particular pesticides.  However, resource limitations permit the agency to 
only access AAPCC summary reports published each year (e.g., see 
http://www.aapcc.org/annual-reports/ ) and these serve as a supplement to 
other data sources for which the agency has more complete access.     

The National Pesticide Information Center (NPIC)
(http://npic.orst.edu/index.html) is funded by EPA to serve as a source of 
objective, science-based pesticide information in response to inquiries and to 
respond to incidents. NPIC functions nationally during weekday business 
hours and is a cooperative effort between Oregon State University 
(currently) and EPA; it is intended to serve as a source of objective, science-
based pesticide information and to respond to inquiries from the public and 
to incidents. Similar to Poison Control Centers, NPIC’s primary purpose is not 
to collect incident data (about 10% of NPIC’s annual calls are considered 
“incident” related), but rather to provide information to inquirers on a wide 
range of pesticide topics, and direct them to other sources for pesticide 
incident investigation and emergency treatment.  Nevertheless, NPIC does 
collect information about incidents (approximately 4000 incidents per year) 
from inquirers and records that information in a database.  NPIC is a source 
of national incident information, but generally receives fewer reports than 
IDS.  Regardless, if a high frequency is observed in IDS for a given pesticide or 
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product, NPIC provides a source of information that can prove valuable in 
determining consistency across national data sets. 

As with IDS and PCC, the incidents in NPIC are mainly non-occupational. 
NPIC incidents include narratives and product information when the caller 
provides the information. Although the scope is national, there are 
significantly fewer incidents reported to NPIC than to NPDS or IDS but 
considerably more information is provided and the agency can request 
custom reports on an as-needed basis. Hazard information includes severity 
rankings, route of exposure and symptoms – which are recorded by trained 
personnel. NPIC also provides information on how likely the link between 
exposure and adverse effect is (which they call a certainty index). NPIC also 
publishes annual reports and analyses in the open literature which are 
valuable resources. 

The Center for Disease Control and Prevention National Institute for 
Occupational Health (CDC/NIOSH) manages a pesticide surveillance program 
and database entitled the Sentinel Event Notification System for 
Occupational Risk (SENSOR)-Pesticides.24  This database includes pesticide 
illness case reports in 12 states from 1998-2013.   Participating states are: 
California, Florida, Iowa, Louisiana, Michigan, Nebraska, New Mexico, New York, 
North Carolina, Oregon, Texas and Washington. The participating states for a 
given year vary depending on state and federal funding for pesticide 
surveillance.

Cases of pesticide-related illnesses in the SENSOR-Pesticides database are 
ascertained from a variety of sources, including: reports from local Poison 
Control Centers, state Department of Labor workers’ compensation claims when 
reported by physicians, reports from state Departments of Agriculture, and 
physician reports to state Departments of Health. Although both occupational 
and non-occupational incidents are included in the database, the SENSOR 
coordinators primarily focus their follow-up case investigation efforts on the 
occupational pesticide incidents.  The SENSOR coordinator at the state 
Department of Health will follow-up with cases and work to obtain medical 
records in order to verify exposure scenario, symptoms, severity, and health 
outcome.  Using standardized protocol and case definitions, SENSOR 
coordinators at state Departments of Health enter the incident interview 
description provided by the case, medical report, physician and patient into the 
SENSOR data system.  

All SENSOR-Pesticides cases must report a minimum of two health effects in 
order to be included in the aggregate database that EPA uses for incident 

24 SENSOR-Pesticides webpage: http://www.cdc.gov/niosh/topics/pesticides/overview.html
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analyses.  Evidence for each case is evaluated, based on the NIOSH case 
classification matrix, for its causal relationship between exposure and illness.  
98% of SENSOR-Pesticides cases are classified as definite, probable, or possible, 
and 2% of the cases are classified as suspicious.  Unlikely, asymptomatic, and 
unrelated cases, as well as those with insufficient information, are not included 
in the SENSOR-Pesticides database.  

Overall, SENSOR-Pesticides provides very useful information on both 
occupational and non-occupational incidents, and sometimes valuable insights 
into the hazard and/or exposure potential of a pesticide. SENSOR-Pesticides also 
conducts analyses of its own data and publishes these in the Morbidity and 
Mortality Weekly. Unlike the aforementioned databases and although it contains 
both non-occupational/residential and occupational incidents, SENSOR’s has 
traditionally focused on occupational pesticide incidents, and is of particular 
value in providing that information.  SENSOR-Pesticides data from 1998-2011 is 
available online at: http://wwwn.cdc.gov/Niosh-whc/Home/Pesticides.

The California Pesticide Illness Surveillance Program (PISP) is maintained 
by the State of California. This database documents pesticide-related illnesses 
and injuries. Case reports are received from physicians and via workers’ 
compensation records. The local County Agricultural Commissioner investigates 
the circumstances of the exposure. Medical records and investigative findings 
are then evaluated by California’s Department of Pesticide Regulation (DPR) 
technical experts and entered into an illness registry. All reported pesticide 
illnesses in the California PISP program are investigated by the county 
agricultural commissioners, and the DPR evaluates the reports and compiles 
them into a database, which is used to improve the state’s program to protect 
workers and others from the adverse effects of pesticide exposure 
(http://apps.cdpr.ca.gov/calpiq/).

Currently, OPP evaluates human incident data on a chemical-specific basis. Incidents 
from each database are analyzed for hazard potential (deaths, frequency of more severe 
incidents, and patterns/trends of reported symptoms) and exposure potential (frequency 
of incidents/ trends over time, patterns/trends of exposure scenarios, of factors affecting 
exposure or of products). When evaluating human incident data from the above databases, 
OPP considers several general criteria.  OPP considers the relative severity and frequency 
of symptoms. Additionally, OPP generally has greater confidence in reports in which 
temporal association can be verified or are at least plausible.  Lastly, other factors that are 
used to evaluate human incident data include evidence of an exposure response 
association, consistency in reported health effects, biological plausibility of reported health 
effects, elimination of alternative causes of health effect such as pharmaceutical use, and 
the specificity of the observed symptoms and health effects.  Additionally, narratives of 
more severe incidents are often evaluated for any temporal association between time-of-
exposure and effects reported to determine whether an association is supported by the 
circumstances. For example, a heart attack in an elderly individual that occurs three 
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months following an indoor pesticide application may be determined not to be a likely 
causal association.  On the other hand, a severe incident occurring at or shortly after the 
time of exposure with symptoms consistent with known symptomology for the pesticide 
class and that occurs   without prior medical history may suggest that causal inference is 
more justified.    

In sum, then, incident data -- consisting of both medical case reports/case series 
appearing the medical and human toxicological literature and toxico-surveillance data 
derived from the databases that EPA either maintains, funds, or accesses -- can provide 
useful, complementary information that assists OPP in evaluating the real-world risks of 
pesticides.    

VI. SUMMARY & CONCLUSIONS  

This framework describes important factors in reviewing epidemiology and human 
incident data and describes a proposed WOE analysis for incorporating such data in 
pesticide human health risk assessment.  OPP uses the best available data across multiple 
lines of evidence and from in vitro, in vivo, and in silico data sources.  OPP uses a WOE 
approach when integrating data from multiple sources to take into account for quality, 
consistency, relevancy, coherence and biological plausibility using modified Bradford Hill 
criteria as an organizational tool.  Application of WOE analysis is an integrative and 
interpretive process routinely used by EPA according to in scientific analysis outlined in its 
risk assessment guidelines. The WOE analysis also evaluates the quality of the combined 
data set and is consistent with the level of effort and complexity that is appropriate for a 
particular scientific assessment (U.S. EPA, 2002).  OPP acknowledges that toxicology and 
risk assessment are currently undergoing transformational changes towards implementing 
the new vision of 21st century toxicity testing.  As these transformation changes occur, OPP 
will update this approach as appropriate.    
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