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l. PURPOSE & SCOPE

The Environmental Protection Agency’s (EPA) Office of Pesticide Programs (OPP) is
a licensing program regulating pesticides in the U.S under the Federal Insecticide,
Fungicide, and Rodenticide Act (FIFRA) and the Federal Food, Drug, and Cosmetic Act
(FFDCA). As part of this program, OPP evaluates a substantial body of toxicology and
exposure data to assess the effects of pesticides on human health and the environment. In
evaluating human health, EPA looks first for information directly evaluating the potential
for effects to people, including epidemiological data. Historically, however, few
epidemiology studies have been available to inform the potential toxicity of pesticide
chemicals. As such, OPP has in the past primarily relied on toxicology studies in laboratory
animals to assess the hazard potential and to estimate human health risk. With the
publication of numerous papers from the Agricultural Health Study? and from the National
Institute of Environmental Health Sciences (NIEHS)/EPA Children’s Centers2, among
others, the availability of epidemiology studies conducted on U.S.-relevant exposures to
pesticides is increasing. Nevertheless, since the number of pesticides for which quality
epidemiology data either exist or are being developed remains relatively low in the near
term, experimental laboratory data will likely continue to be the primary source of data for
use in quantitative risk assessment for most pesticides.

OPP’s goal is to use such information -- when available -- in a scientifically robust
and transparent way. To accomplish this, OPP has developed a general epidemiologic
framework, as described in this document, that outlines the scientific considerations that
OPP will weigh in evaluating how such studies and scientific information can be more fully
integrated into risk assessments of pesticide chemicals. The current document is neither a
binding regulation nor is it intended to be or serve as a reviewer’s guide or manual or as a
Standard Operating Procedure for assessing or using epidemiology data. Nor is it intended
to be a full treatise on more modern or advanced epidemiological methods or to adequately
convey the nuances and complexity that is important for interpreting these types of
studies. As such, it does not discuss (or does not discuss in any detail) such important
epidemiological topics as causal inference and causal diagrams (Rothman et al., 2012a;
Glymor and Greenland, 2012); more recent approaches to confounder identification,
assessment, and control; meta-analysis and heterogeneity and its assessment/evaluation
(Borenstein et al., 2009; Greenland and O’'Rourke, 2012); or sensitivity/quantitative bias
analysis for epidemiologic data (Lash et al., 2009; Lash et al,. 2014; loannidis, 2008;
Greenland and Lash, 2012; Jurek et al., 2007). All these topics, concepts, and issues can
and do apply to epidemiology studies concerning pesticides, but are not covered in this
OPP framework document. Instead, this document provides overall conceptual
considerations concerning the evaluation and use of epidemiology studies on pesticides in

L https://aghealth.nih.gov/
2 https://www.epa.gov/research-grants/niehsepa-childrens-environmental-health-and-disease-prevention-
research-centers
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the context of human health risk assessments to support OPP’s FIFRA and FFDCA activities.
An earlier version of this document was reviewed favorably by the FIFRA Scientific
Advisory Panel (SAP) in February, 2010 (USEPA, 2010; FIFRA SAP, 2010). This document
incorporates improvements recommended by the SAP, public comments, and the
experience gained since 2010 conducting assessments on several pesticides for which
epidemiological data were available, and should be considered a document that will be
updated from time-to-time as we progress and on as-needed basis

I INTRODUCTION

Two reports by the National Research Council (NRC) of the National Academy of
Science (NAS), “Toxicity Testing in the 21st Century: A Vision and A Strategy (2007)” and
“Science and Decisions (2009),” together provide new directions in toxicology and risk
assessment. These two NRC reports advocate far reaching changes in how toxicity testing
is performed, how such data are interpreted, and ultimately how regulatory decisions are
made. Specifically, the 2007 report on 21st century toxicity testing advocates a shift away
from the current focus of using apical toxicity endpoints to using toxicity pathwayss to
inform toxicity testing, risk assessment, and ultimately decision making. This approach is
based on the rapidly evolving scientific understanding of how genes, proteins, and small
molecules interact to form molecular pathways that maintain cell function in human cells.
The goal for the new toxicity testing paradigm is to determine how exposure to
environmental agents can perturb these pathways, thereby causing a cascade of
subsequent key events leading to adverse health effects. Human information like that
found in epidemiology studies, human incident databases, and biomonitoring studies, along
with experimental toxicological information are expected to play a significant role in this
new approach. Specifically, these types of human information provide insight into the
effects caused by actual chemical exposures in humans and thus can contribute to problem
formulation and hazard/risk characterization. In addition, epidemiologic and human
incident data can guide additional analyses or data generations (e.g., dose and endpoint
selection for use in in vitro and targeted in vivo experimental studies), identify potentially
susceptible populations, identify new health effects, or confirm the existing toxicological
observations.

This new vision of toxicity testing and risk assessment will involve data from
multiple levels of biological organization ranging from the molecular level up to
population-based surveillance with a goal of considering chemical effects from their source
to the ultimate health outcome and effects on populations. Such data will come from in
vitro and in vivo experimental studies along with in silico and modeled data. OPP’s
framework for incorporating epidemiology and incident data is conceptually consistent
with the 2007 NRC report on 21st century toxicity testing in that both emphasize the use of
the best available information from multiple data sources are compiled in a weight of the
evidence (WOE) analysis.

3 Toxicity pathways are cellular response pathways that, when sufficiently perturbed, are expected to result
in adverse health effects.
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As a general principle, occupational and environmental epidemiology studies are
conducted only on widely used pesticides; these pesticides also tend to have to be well-
studied in the scientific literature. Thus, OPP expects in many cases where epidemiologic
data are available, a significant body of literature data on toxicology, exposure,
pharmacokinetics (PK), and mode of action/adverse outcome pathway information
(MOA/AOP) may also be available. Human incident data are available on a broader range
of chemicals, some of which have robust databases and others which do not. In those
situations, where there are significant human incident cases and little is known about the
MOA/AOP or PK of a particular pesticide, the WOE analysis can be used to identify areas of
new research.

OPP’s approach in this framework for incorporating epidemiology and human
incident data is not a new or novel approach. Instead, this approach is a reasonable, logical
extension of existing tools and methods. This document relies on existing guidance
documents and frameworks (Table 1) as the starting point for reviewing and evaluating
epidemiology and human incident data for use in pesticide risk assessment. This
framework on using epidemiology and incident data in human health risk assessment is
consistent with the recommendations of the NRC in its 2009 report on Science and
Decisions, and with the agency’s recent Human Health Risk Assessment Framework
(USEPA, 2014a) with respect to emphasizing the use of problem formulation as a tool for
scoping, planning, and reviewing available, particularly in the context of risk management
needs.

Similarly, OPP’s framework is consistent with updates to the World Health
Organization/International Programme on Chemical Safety MOA/human relevance
framework, which highlights the importance of problem formulation and the need to
integrate information at different levels of biological organization (Meek et al., 2014). The
MOA/HR framework begins with identifying the series of key events that are along the
causal path, that are established on weight of evidence, using principles like those
described by Bradford Hill, taking into account factors such as dose-response and temporal
concordance, biological plausibility, coherence and consistency (Hill, 1965). Using this
analytic approach, epidemiologic findings can be evaluated in the context of other human
information (including human incident findings) and experimental studies and for
identifying areas of uncertainty and future research. However, it is noteworthy that the
availability of a fully elucidated MOA/AOP is a not requirement for using epidemiology
studies in human health risk assessment. As the agency continues to move forward in
implementing the transformative approach in the 2007 and 2009 NRC reports and as OPP
gains experience in integration of epidemiology and human incident information, OPP wiill
re-evaluate and update this framework as appropriate.

Page 5
160



Figure 1. Schematic of the adverse outcome pathway. Adapted from Ankley et al.

(2010).
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Table 1. Key guidance documents and frameworks used by OPP

1983: Risk Assessment in the Federal Government: Managing the Process

1994: Science and Judgment

2007: Toxicity Testing in the 21st Century

NAS
2009: Science and Decisions: Advancing Risk Assessment
2011: NAS report on Formaldehyde
2014: Review of EPA's Integrated Risk Information System (IRIS) Process
2001-2007: Mode of Action/Human Relevance Framework
WHO/IPCS 2005: Chemical Specific Adjustment Factors (CSAF)

2014: New developments in the evolution and application of the WHO/IPCS
framework on mode of action/species concordance analysis.
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1991-2005: Risk Assessment Forum Guidances for Risk Assessment (e.g., guidelines for
carcinogen, reproductive, developmental, neurotoxicity, ecological, and exposure
assessment, guidance for benchmark dose modeling, review of reference dose and
reference concentration processes)#

EPA 2000: Science Policy Handbook on Risk Characterization

2006b. Approaches for the Application of Physiologically Based Pharmacokinetic
(PBPK) Models and Supporting Data in Risk Assessment

2014a. Framework for Human Health Risk Assessment to Inform Decision Making.

2014b. Guidance for Applying Quantitative Data to Develop Data-Derived
Extrapolation Factors for Interspecies and Intraspecies Extrapolation

2001: Aggregate risk assessment

OPP

2001 and 2002: Cumulative risk assessment

OECD 2013: Organisation for Economic Co-operation and Development Guidance Document
On Developing And Assessing Adverse Outcome Pathways

Although there are other sources of human information, the focus of this framework is
on interpreting and using epidemiology and human incident data in human risk
assessment; other sources of human information are not addressed in this document in any
depth. Specifically, this document does not extensively discuss research with pesticides
involving intentional exposure of human subjects® or on studies done to measure dermal or
inhalation exposures in agricultural workers as they perform their activities®7 .

4 https://www.epa.gov/osa/products-and-publications-relating-risk-assessment-produced-office-science-
advisor

5 Both the conduct of such research and OPP’s reliance on data from such research are governed by EPA’s
Rule for the Protection of Human Subjects of Research (40 CFR Part 26.) Among other things, these rules
forbid research involving intentional exposure of pregnant or nursing women or of children, require prior
review of proposals for new research by EPA-OPP and by the Human Studies Review Board (HSRB), and
require further review by EPA-OPP and the HSRB of reports of completed research.

6 In the last several years, OPP has extensively evaluated existing observational studies with agricultural
workers in efforts to improve the data and approaches used in worker exposure assessment; those
evaluations can be found elsewhere (http://www.epa.gov/scipoly/sap/meetings/2007/010907_mtg.htm)
7 For additional information on how such worker exposure studies are conducted and used by OPP, see PPP-
48 “Pesticides and human Health Risk Assessment: Policies, Processes, and Procedures “available at
https://www.extension.purdue.edu/extmedia/PPP/PPP-48.pdf.
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I11. SYSTEMATIC REVIEW IN PESTICIDE RISK ASSESSMENT: EPIDEMIOLOGY

In recent years, the NRC has encouraged the agency to move towards systematic
review processes to enhance the transparency of scientific literature reviews that support
chemical-specific risk assessments to inform regulatory decision making (NRC 2011,
2014). The NRC defines systematic review as "a scientific investigation that focuses on a
specific question and uses explicit, pre-specified scientific methods to identify, select,
assess, and summarize the findings of similar but separate studies" (NRC, 2014).
Consistent with NRC’s recommendations, the Office of Chemical Safety and Pollution
Prevention (OCSPP) employs fit-for-purpose systematic reviews that rely on standard
methods for collecting, evaluating and integrating the scientific data supporting our
decisions.

According to the NRC, systematic reviews “have several common elements:
transparent and explicitly documented methods, consistent and critical evaluation of all
relevant literature, application of a standardized approach for grading the strength of
evidence, and clear and consistent summative language (NRC, 2014).” In recent years,
several groups (Rooney et al., 2014; Woodruff and Sutton, 2014; Hartung, 2010) have
published systematic review approaches for use in environmental health sciences. The
OCSPP approach to systematic review is consistent with the principles articulated in the
Cochrane Handbook for Systematic Reviews of Interventions for evidence-based medicine
and with the principles of the Grading of Recommendations Assessment, Development and
Evaluation (GRADE). GRADE guidelines used by systematic review approaches for
environmental health sciences developed by the National Institute of Environmental Health
Sciences (NIEHS) Office of Health Assessment and Translation (OHAT) (Rooney et al.,
2014) and University of California, San Diego (Woodruff and Sutton, 2014). According to
the Cochrane Handbook, the key characteristics of a systematic review are:

o aclearly stated set of objectives with pre-defined eligibility criteria for studies;

« anexplicit, reproducible methodology;

e asystematic search that attempts to identify all studies that would meet the
eligibility criteria;

« anassessment of the validity of the findings from the identified studies;

e asystematic presentation and synthesis of the characteristics and findings of the
included studies.

Each approach mentioned above share common themes and workflow starting with a
statement of scientific context (e.g., problem formulation or protocol) followed by
literature review with explicit search strategy methods, analysis of study quality (often
called risk of bias), evaluation of the quality of the totality of the evidence (e.g., integration)
and ultimately leading to a conclusion(s). Each approach recommends transparent and
pre-determined criteria for inclusion/exclusion of scientific literature, evaluation of study
quality, and reporting of study quality (e.g., high, medium, low). Each approach
recommends a pre-stated tool for data integration that provides the foundation for the
conclusion(s).
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So far, no single nomenclature has been agreed upon by the risk assessment
community for systematic review and OCSPP expects terminology to evolve over time as
more broad experience is gained. OCSPP considers its systematic review process and
workflow as starting with problem formulation followed by data collection, data
evaluation, data integration, and summary findings with critical data gaps identified.
Scientific analysis is often iterative in nature as new knowledge is obtained.

A. Problem Formulation

In the NRC report Science and Decisions-Advancing Risk Assessment, the National
Academy of Sciences (NAS) recommended to EPA that risk assessments and associated
scientific analyses be developed to be useful to policy makers; in order to attain this goal,
the NRC recommended that the agency more broadly use problem formulation in
developing its risk assessments. In response to the NRC, the agency published the Human
Health Risk Assessment Framework (USEPA, 2014) which highlights the importance of
problem formulation. Problem formulation entails an initial dialogue between scientists
and risk managers and provides the regulatory context for the scientific analysis and helps
define the scope of an analysis. Problem formulation draws from regulatory, decision-
making and policy context of the assessment, informs the technical approach to the
assessment and systematically identifies the major factors to be considered. As such, the
complexity and scope of each systematic review will vary among the different risk
assessment contexts. In other words, an OCSPP systematic review is conducted as “fit-for-
purpose” (NRC, 2009) based on the pre-determined scope and purpose determined from
problem formulation.

The problem formulation involves consideration of the available information along
with key gaps in data or scientific information. OPP uses problem formulation as a tool to
identify exposure pathways and potential health outcomes along with the appropriate
methods, data sources, and approaches for the scientific analysis. If missing data are
critical to the assessment, options are discussed as to how best to obtain that information
(e.g., required testing, research). The peer review process is identified and the timeline for
completing the assessment is defined.

Systematic review provides a transparent tool for organizing available information
and identifying gaps in information for the regulatory purpose for the analysis. As such, in
problem formulation, the regulatory context of a scientific analysis is described which in
turn defines the scope of and purpose for collection and evaluation of scientific literature.
Some considerations in problem formulation may be related to population or life-stage,
exposure pathways (e.g., route, duration, frequency), and/or health outcomes of interest
identified from in vitro or in vivo laboratory studies along with epidemiology or human
incident studies along with resources available and regulatory timeframe. In the context of
considering epidemiology and human incident information, an initial evaluation of the
study quality, study design, and uncertainties are considered.
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Key scientific issues related to hazard assessment considered in problem
formulation include: What are the effects associated with exposure? What are the
MOA/AOPs associated with these effects? What are the temporal aspects of the effects?
Are there susceptible populations and if so, who are they and what factors contribute to
susceptibility? Are there differences in PK or pharmacodynamics (PD) between laboratory
animals and humans? Exposure information is also evaluated in problem formulation. Key
scientific issues related to exposure assessment considered in problem formulation
include: How is the pesticide used? What are all of the relevant use sites of exposure? To
what chemical substances will people be exposed? What are the routes, durations, and
frequencies of exposures? Who may be exposed? Does the exposure pose different risks to
different groups (e.g., due age or activity patterns?) In the specific case of epidemiology
data, this review considers a variety of factors including, but not limited to, research
hypothesis, study design (i.e., sample size, sufficient controls, quality of measurements,
etc.), exposure dose/concentration, statistical analysis, and conclusions.

B. Data Collection

The data collection phase of systematic review is the collection of available information
from various published and unpublished sources, such as the open scientific literature and
submitted studies for pesticide registration. OPP reviews data collected under the
Organisation for Economic Cooperation and Development (OECD) test guidelines, OCSPP
harmonized test guidelines, and other pesticide (OPP guidelines). These guideline studies
are collected primarily from in-house databases of submitted studies and are found
through searches of such internal databases.

In the case of epidemiology, most studies are expected to be found in the open
scientific literature. Although in some cases supplemental analyses or information may be
available, dialogue with the researchers may provide additional, important information not
published in the original paper in understanding and interpreting epidemiology studies.
The sources of human incident information are summarized in Section IV.

Open literature search strategies use specified criteria to retrieve health effects
information from the open scientific literature and unpublished sources. After identifying
and selecting the most appropriate sources/databases and determining the most resource
effective strategy utilizing classification codes, medical subject headings, and/or keywords,
a search is conducted of the literature. Depending on the complexity of the scientific
evaluation, support from a reference librarian may or may not be needed. The goal of a
human health literature search is to perform a reliable and reproducible literature search
by providing proper documentation of the literature search process. The following steps
are conducted to retrieve relevant studies:

e The purpose of the scientific analysis and inclusion criteria are established.

e Combinations of terms/key words and/or MeSH (Medical Subject Heading) terms
and their Boolean combinations (AND; OR; NOT) are used and documented.
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Advanced Search and Field Search by author, title, keywords or subject heading may
also be performed as needed. Knowledge of database structure, and using a
separate search strategy for a specific database is helpful in retrieving relevant
studies. In addition to an initial comprehensive search, periodic searches may be
conducted to update the literature list.

e The search strategy is documented, including the date(s) of the search(es)to ensure
that all the searches of all the databases are reproducible.

e Reference lists of retrieved articles are examined? for additional background and to
look for articles that were not discovered in the initial search.

e After combining the retrieved articles from different databases and removing
duplicates, the available titles and abstracts are screened. For some of the articles
where relevance could not be determined from the title and the abstract, the article
is retrieved for further review.

¢ Following the initial screening, articles that were not relevant (exclusion criteria) —
such as opinion articles, studies not in English, and those consisting only of abstracts
are excluded. Additional exclusion criteria can be identified on a case by case basis.
All exclusion criteria are documented. The rest of the articles, even those that found
no adverse health effects, are included for review and evaluation.

C. Data Evaluation

In the data evaluation phase, data quality is reviewed and conclusions are made about
the utility of such data. Study quality reflects the overall confidence that reports findings
are correct (Balshem et al., 2011). As such, study quality can include:

e reporting quality (how well or completely a study is reported);

e how credible the findings are based on the design and conduct of the study;

¢ and how well the study addresses the topic under review (Rooney et al.,
2014).

Study quality is first considered on an individual study basis, and the quality is judged.
For example, one may have stronger confidence in a well conducted case control study than
a poorly conducted cohort study. Credibility of the scientific findings, often called risk of
bias, is evaluated using pre-determined criteria for specific domains related to study design
and conduct (See Table 2).

OPP initially developed a guidance on using the open scientific literature
considerations called the “Guidance for Considering and Using Open Literature Toxicity
Studies to Support Human Health Risk Assessment” (USEPA, 2012) and generally continues
to follow this guidance. However, with the acceleration of systematic review in risk
assessment, some aspects of the literature guidance may need updating in the future.
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Conclusions about the quality of the data are made and can be described in conclusion
statements or categories (e.g., acceptable/not acceptable; low, medium, high).

Specific considerations used in evaluating epidemiology studies on pesticide chemicals
are provided in Section I11.C below. As part of the data review, a concise written review of
the study is developed. This written review describes the study design, results,
conclusions, and the strengths and weaknesses of the study. The quality of the
epidemiologic exposure assessment is an important factor in determining what role
epidemiologic data will play in the risk assessment. As such, it is important to fully
characterize the assumptions used in the epidemiologic exposure assessment and the
degree to which these assumptions affect the interpretation and generalizability of the
epidemiologic findings. The evaluation of the epidemiologic exposure assessment may
include a consideration of past and present exposure patterns (e.g., exposed populations,
pathways, routes, and levels of exposure) and may include significant changes in use
patterns (e.g., risk mitigation actions or new use patterns). With regard to evaluating meta-
analyses, reporting guidelines for Meta-analysis Of Observational Studies in Epidemiology
(MOOSE) have been developed by Stroup et al., (2000) that are useful in evaluating the
quality and interpreting meta-analysis.

D. Data Integration: Weight of Evidence (WOE)

OPP’s human health characterizations involve the consideration of all available and
relevant data, including but not limited to human studies/epidemiology, biomonitoring
data, in vitro and in vivo experimental laboratory toxicological studies, MOA/AOP
information, pharmacokinetic studies, and structure-activity relationships (SAR). Once the
different types of hazard data are collected and a full evaluation of each relevant study is
conducted and documented, the next step is to integrate multiple lines of evidence.

Data integration is based on the principle of reaching a judgment of the totality of
the available negative and positive data for relevant hazards. OPP uses a WOE analysis for
evaluating epidemiology and human incident data, such conclusions are made on the
preponderance of the information rather than relying on any one study. OPP uses the
modified Bradford Hill criteria like those in the MOA/human relevance framework as a tool
for organizing and integrating information from different sources (Hill, 1965; U.S. EPA,
1999, 2005; Sonich-Mullin et al., 2001; Meek et al., 2003; Seed et al., 2005; OECD AOP Wiki
Users Handbook®). It is important to note that the Hill Criteria are not intended as a check
box approach but instead are points to consider when evaluating the totality of evidence.
In addition, the availability of a fully elucidated MOA/AOQP is a not requirement for using
epidemiology studies in human health risk assessment. However, even in the absence of a
fully developed MOA/AOQP, collection and evaluation of mechanistic data may provide
support for biological plausibility and help explain differences in tissue sensitivity, species,
gender, life-stage, or other factor. The MOA/human relevance framework is a flexible tool
which provides a foundation for organizing information without rigidity. It is this

8 https://aopwiki.org/wiki/index.php/Main_Page#OECD_User_Handbook
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flexibility that makes it a useful tool for a variety of purposes such as evaluating causality,
integrating information across multiple lines of scientific evidence, and identifying data
gaps and areas of future research. In this analysis, epidemiologic findings and human
incident data can be evaluated in the context of other human information and experimental
studies to evaluate biological plausibility, to identify areas of uncertainty and areas of
further research. To describe how Bradford Hill aspects are considered in the WOE
evaluations, OPP has used some definitions of terms as outlined in EPA’s Preamble to the
Integrated Science Assessments (ISAs) which serve as a scientific foundation for the review
of EPA’s National Ambient Air Quality Standards (NAAQS). (USEPA, 2015).

e Keyevents. Incases where the MOA/AOP are established for a particular health
outcome, a clear description of each of the key events (i.e., measurable parameters)
that underlie the MOA/AOQP are given. Data to inform the key events may come from
a combination of in vitro or in vivo data sources (human or animal). These key
events can be a combination of PK and PD events. However, it noteworthy that the
availability of a fully elucidated MOA/AOP is a not requirement for using
epidemiology studies in human health risk assessment.

e Biological Gradient/Exposure-Response/Dose-Response Concordance &
Relationships. The Preamble to the ISAs notes that “In the context of epidemiology,
a well-characterized exposure-response relationship (e.g., increasing effects
associated with greater exposure) strongly suggests cause and effect, especially
when such relationships are also observed for duration of exposure (e.g., increasing
effects observed following longer exposure times) (USEPA, 2015).” When the
MOA/AORP is known, dose-response relationships are identified for each key event.
Dose-response relationships are compared among key events. In some cases, the
earlier key events may be more sensitive than later key events. In other cases, key
events may share similar dose-response curves.

e Temporal association. Evidence of a temporal sequence between the introduction
of an agent and appearance of the effect constitutes another argument in favor of
causality (USEPA, 2015). The Preamble to the ISAs notes that “Strong evidence for
causality can be provided through ‘natural experiments’ when a change in exposure
is found to result in a change in occurrence or frequency of health.”

This analysis considers key events which occur rapidly (e.g., metabolism to an active
metabolite which could occur within minutes of exposure) and those which occur after
longer durations (e.g., development of a tumor) to ensure coherence of the effects. Specific
to considering epidemiology data, the temporal relationship between the exposure and
health outcome may be considered.
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e Strength, consistency, and specificity.

Consistency: An inference of causality is strengthened when a pattern of elevated risks is
observed across several independent studies. The reproducibility of findings constitutes
one of the strongest arguments for causality. Statistical significance is not the sole criterion
by which the presence or absence of an effect is determined. If there are discordant results
among investigations, possible reasons such as differences in exposure, confounding
factors, and the power of the study are considered (USEPA, 2015).

Consistency of findings across studies is informed by the repeated observation of effects or
associations across multiple independent studies. Further support is provided by
reproducibility of findings in different populations under different circumstances.
However, discordant results among independent investigations may be explained by
differences in study methods, random errors, exposure, confounding factors, or study
power, and thus may not be used to rule out a causal connection (USEPA, 2015).

Strength of the observed association: The finding of large, precise risks increases
confidence that the association is not likely due to chance, bias, or other factors. However,
it is noted that a small magnitude in an effect estimate may or may not represent a
substantial effect in a population (USEPA, 2015).

Specificity of the observed association: Evidence linking a specific outcome to an
exposure can provide a strong argument for causation. However, it must be recognized that
rarely, if ever, do environmental exposures invariably predict the occurrence of an
outcome, and that a given outcome may have multiple causes (USEPA, 2015).

e Biological plausibility and coherence.

Coherence: An inference of causality from one line of evidence (e.g.,
epidemiologiccontrolled human exposure, animal, or ecological studies) may be
strengthened by other lines of evidence that support a cause-and-effect interpretation of
the association. There may be coherence in demonstrating effects from evidence across
various fields and/or across multiple study designs or related health endpoints within one
scientific line of evidence (USEPA, 2015).

When animal and human data show a similar toxic profile, both quantitatively and
qualitatively, there is high confidence in the human health risk assessment. Whereas in
other cases, animal and human data may show a qualitatively similar toxic profile but
quantitative differences are observed. For example, a particular chemical exhibits the
same MOA/AOQP in animals and humans but there may be species differences in dose-
response characteristics. These dose-response differences could be due to tissue
dosimetry (i.e., PK) or from different response characteristics (i.e,, PD). In contrast, animal
and human data can, in some instances, show qualitatively dissimilar outcomes. This
situation highlights the need to fully and objectively evaluate all available information in a
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transparent and comprehensive manner to consider factors such as species, gender, and
life-stage differences and potential susceptibilities along with study design considers and
exposure potential.

Biological plausibility: An inference of causality is strengthened by results from
experimental studies or other sources demonstrating biologically plausible mechanisms. A
proposed mechanism, which is based on experimental evidence and which links exposure
to an agent to a given effect, is an important source of support for causality (USEPA, 2015).

Similarly, information on MOA/AOQOP for a chemical, as one of many structural analogs, can
inform decisions regarding likely causality. Structure activity relationships and
information on the agent’s structural analogs can provide insight into whether an
association is causal (USEPA, 2015).

EPA’s Cancer Guidelines (2005) indicate:

“evaluation of the biological plausibility of the associations observed in epidemiologic
studies reflects consideration of both exposure-related factors and toxicological
evidence relevant to identification of potential modes of action (MOASs). Similarly,
consideration of the coherence of health effects associations reported in the
epidemiologic literature reflects broad consideration of information pertaining to the
nature of the biological markers evaluated in toxicologic and epidemiologic studies. [p.
39]”

However, The Cancer Guidelines further state that “lack of mechanistic data, however, is not
a reason to reject causality [p. 41].” As such, lack of established MOA/AOP is not necessary
knowledge when using epidemiology data and epidemiology associations may still be valid
even in the absence of an established MOA/AOP and may also provide insight into potential
MOA/AOP.

e Uncertainties. Uncertainties are discussed in the WOE transparently and
objectively.

E. Overall conclusions, recommendations for risk assessment, statement
of areas of confidence and uncertainty

It is important to document a summary of the evidence, the procedures or methods
used to weigh the evidence, the basis for the WOE conclusion or recommendation, any
uncertainties and areas for further research. Recommendations are made on the role of the
epidemiologic or human incident data in the risk assessment. Generally, OPP does not use
human incident information for quantitative risk assessment but instead to inform risk
assessment/risk management activities such as indicating a potential need for a new risk
assessment or new risk management measures, evaluating the success of risk mitigation
actions after they are implemented, and targeting possible enforcement activities. In
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contrast to more limited role of human incident data, epidemiology studies have the
potential to help inform multiple components of the risk assessment in a variety of ways.
High quality studies with robust exposure assessment may be used to estimate a risk
metric quantitatively. Alternatively, outcomes reported in epidemiologic studies may be
compared qualitatively with those seen in in vitro and animal studies to evaluate the
human relevance of animal findings (Hertz-Picciotto, 1995) and may be useful in assessing
the biological plausibility of epidemiologic outcomes. In the final portion of the proposed
WOE analysis, the overall conclusions along with statement of areas of confidence and
uncertainty. This section also identifies areas of additional research. This section
recommends the source of data for regulatory values and the appropriate approach for
extrapolating between species (if necessary) and among humans.

IV. REVIEWING EPIDEMIOLOGY STUDIES FOR USE IN PESTICIDE RISK ASSESSMENT

A. Introduction

Epidemiology is a science that seeks to identify and evaluate relationships between
exposure to chemical, physical or biological agents, and the health status of populations
(Boyes et al., 2007). It has been defined as the “study of how disease is distributed in
populations and the factors that influence or determine this distribution” (Gordis, 2009).
More broadly, it is considered as “the study of the occurrence and distribution of health-
related events, states, and processes in specified populations, including the study of the
determinants influencing such processes and the application of this knowledge to control
of relevant health problems” (Porta, 2014). The objective of much epidemiologic research
is to obtain a valid and precise estimate of the effect of a potential cause on the occurrence
of disease. A key objective of epidemiology, like other sciences, is determining cause and
effect or - said differently - of identifying the etiology of a disease or health outcome and
the risk factors with which it might be associated. Calderon (2000) described four major
uses of such studies: 1) describe the health status of a population and discover important
time trends in disease and exposure frequency; 2) explain the occurrence of diseases by
identifying factors that are associated with specific diseases or trends; 3) predict the
number of disease occurrences and the distribution of health states in specific populations;
and 4) improving the health status of the population by identifying factors that affect
environmental or human health. In the case of pesticides, epidemiology focuses on the
relation between exposure and adverse health effects in the general population and in
specific sub-populations, such as occupationally exposed workers or applicators.

Epidemiology studies have the potential to help inform multiple components of the risk
assessment in a variety of ways. High quality studies with robust exposure assessment
may be used to quantitatively estimate risk or an appropriate risk surrogate such as an
odds ratio or risk ratio. However, many epidemiology studies that deal with pesticides and
pesticide exposure suffer some limitations in size, scope, exposure assessment, or data
analysis which prevent or otherwise impede their full use in quantitative risk assessment
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(Ntzani et al., 2013). Pesticide use in the US has changed significantly over the last few
decades. As the use changes, so does the exposure to workers. Changes in pesticide use
have occurred due to risk mitigation actions by EPA, resistance management activities,
introduction of new chemistries, and increased use of genetically modified crops. These
significant changes in exposure have to be taken into account when interpreting
epidemiology studies and, ultimately, the decision to use such studies in quantitative risk
assessment. Even so, epidemiology studies may be used to compare with evidence from
experimental animal studies to characterize assumptions used in deriving such values. In
other cases, outcomes reported in epidemiologic studies may be compared qualitatively
with those seen in in vitro and laboratory animal studies to evaluate biological plausibility
or human relevance of animal findings (Hertz-Picciotto, 1995). Human information like
that found in epidemiology studies are expected to potentially play a significant role in the
new vision of toxicity testing recommended by the NRC (2007). Specifically, epidemiology
studies can provide insight on health outcomes that may arise from real-world chemical
exposures in humans and thus can contribute to problem formulation and hazard/risk
characterization. Human information may guide additional studies (e.g., dose and endpoint
selection for use in in vitro and targeted in vivo experimental studies); and identify novel
health effects or host susceptibilities which can be investigated with future research.

When laboratory data from animal studies provide the primary source of information
for hazard characterization, one potential source of uncertainty is the relevance of animal
models to humans. In the absence of data to support the contrary, animal findings are
assumed to be relevant to humans. Furthermore, EPA assumes that humans are more
sensitive than laboratory animals in the absence of data to support the contrary. In
actuality, humans may be more or less sensitive to pesticides than other animal species.
Epidemiology and human incident data can provide scientific information and support to
inform uncertainties associated with species extrapolation. With respect to population
variability, epidemiology studies better characterize potential variability than do animal
studies. Specifically, epidemiologic data include the genetic diversity, and variability
inherent in human populations and thus can better account for and represent actual
population response to environmental chemicals than laboratory animals (Calderon, 2000).

With respect to dose-response characterization, animal toxicology studies have the
benefit that studies can be designed to cover a broad range of exposure levels. However,
animal toxicology studies generally use exposures which are much larger (sometimes
orders of magnitude) than those that occur in the environment. These high exposure levels
in animal studies dictate the need for extrapolation from high to low doses. This
extrapolation introduces added uncertainty into the risk assessment. Epidemiology studies
and human incident data involve actual real-world exposures and thus high dose
extrapolation may in many cases not be needed. Epidemiology studies conducted over a
range of exposures (from low to high) are most useful.

Animal studies do not replicate the length, magnitude, duration, routes of exposure and
variability in exposure experienced by humans (Calderon, 2000). Human exposure often
occurs through multimedia exposure pathways, including food, water, air, and indoor and
outdoor environments. In contrast, controlled laboratory studies typically use a single
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route of exposure. In addition, humans may experience exposure to multiple chemicals
and/or non-chemical stressors simultaneously, whereas most animal studies involve a
single chemical stressor. On one hand, this multi-chemical exposure in epidemiology
studies can provide a challenge when attempting to attribute epidemiologic outcomes to a
single pesticide chemical. On the other hand, epidemiologic research considers real-world
exposures and may help, when considered along with experimental approaches, address
questions associated with multiple chemical exposures which can be difficult to evaluate in
an experimental setting.

B. Types of Epidemiology Studies

The major types of observational epidemiologic studies are described briefly below
with consideration of their strengths and weaknesses (Lilienfeld and Lilienfeld, 1979;
Mausner and Kramer, 1985; Kelsey et al., 1996; Rothman and Greenland, 2012; Paddle and
Harrington, 2000; USEPA, 2005; Purdue Pesticide Programs, PPP-43).

Cohort studies begin with a group of people that share common characteristics—the
cohort—and evaluate their health over an extended follow-up time period during which
the occurrence of disease is recorded (see figure box from van den Brandt et al. (2002)).
The common characteristic is often the presence vs. absence of “risk factors” (such as
exposures)®. In such studies,

differences in disease occurrence
between the “exposed” and “non-
exposed” individuals are identified
and studied over time to determine . Direction of research

differences in the rate of disease19, «| With disease

This difference in the rate of disease _ Cobpae | o
occurrence is then investigated to population] TR | ket [+ -

Design of prospective cohort study

Time

determine if the rate of disease [ dcusce | Lonf ot exponed | o] Wit cssase|
differs between the exposed and 4 Modisease |
non-exposed groups. Cohort studies

have the ability to simultaneously = Exposure measurement FOLLOWUP

evaluate multiple disease outcomes
under study (which is not true for case-control studies, which are generally limited to
evaluating only a single (pre-specified) disease outcome, discussed below). Cohort studies
can also be performed either prospectively, like the Agricultural Health Study (AHS,
http://aghealth.nci.nih.gov/), or retrospectively from historical records. A prospective
cohort design focuses on a group of people from a current point in time through a future
point in time. A retrospective cohort design focuses on a group exposed at some pointin
the past, and compares disease rates after exposure occurred (generally through existing

9 While exposure is often dichotomized on an exposed vs. non-exposed basis in cohort studies, exposure can
also be measured on a quantitative scale (e.g., by a continuous measure or by quantiles)

10 Cohort studies commonly study differences in rates of disease, but these can also include other focal
outcomes of interest such as birth weight, mental abilities, blood pressure, etc.
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available exposure databases (or records) available on a person-by-person (individual)
basis). Prospective cohort studies can be relatively lengthy and expensive to conduct,
particularly for rare diseases, and require a large number of subjects to be under study.
Importantly, significant resources and professional staff are required for a long period of
time to collect high quality data.

Case-control studies are studies in which groups of individuals with (cases) and
generally without (controls) a given disease are identified and compared with respect to
(generally past!?) exposure to determine whether those with the disease of interest are

more likely or no more likely to have

been exposed to the agent(s) or Case-Lontnod design

factor(s) of interest. That is, the Tiwe .

analysis of case-control studies L ek

contrasts the frequency of exposure of

the agent or factor in the cases with foposed =

those in the controls to determine if —— bt s it '

these differ and, thus, whether there is a

differential association. In case-control — — pomdde
e ; —

studies, determination of the disease
status (i.e., cases with the disease; rreprrry o g

controls without) generally precedes '
determination of the exposure status

Biri

(see figure box from van den Brandt et
al. (2002)) Because disease has already occurred at the time of selection into the case-
control study, this study design is particularly useful in studying uncommon diseases or
diseases with long latency and can be utilized to evaluate the relation between many
different exposures and a specific (pre-specified) disease outcome of interest . And because
case-control studies begin with individuals who have the disease, the studies can involve
fewer subjects than cohort studies and can be completed in a comparatively shorter time
frame. Challenges in case-control investigations include the selection of an appropriate
control group and the assessment of exposures which may have occurred long before the
disease was diagnosed (Rothman, 2012; Wacholder et al. 1992a; Wacholder et al. 1992b;
Wacholder et al. 1992c; Shultz and Grimes, 2002; Grimes and Schultz, 2005). Case-control
studies can be particularly susceptible to “recall bias” in which diseased individuals may
remember exposures or events differently (generally better) than those who serve as the
controls and are healthy.

Nested case-control studies are an example of a hybrid design and contain the
elements of a cohort and a case-control study. These designs can be useful when the
analytical costs for determining pesticide exposure are too high for the entire cohort to be
studies. For example, a cases that that have developed the disease or health outcome in an

111t is possible for case-control studies to be done prospectively in which the cases have not yet developed
the disease until after the study begins under which circumstance the cases are enrolled in the study over
time.
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ongoing cohort study can be matched with appropriate controls from the study that have
not yet developed the disease or outcome of interest at the time of the analysis. One
recognized advantage of the nested case-control study (as opposed to a more standard
case-control study) is that the issues of selection bias and recall bias are minimized.

Cross-sectional studies focus on the prevalence of disease (e.g., birth defects, small-
for-gestational age or SGA), symptoms, biological/physical and physiologic response
measurements (e.g., pulmonary function tests, blood pressure, chest X-ray, clinical
examinations, liver and kidney biomarkers). A key feature of such studies is that they are
observational studies which focuses on the prevalence as a frequency measure, with the
presence or absence of disease determined at the time of sampling or over a sampling
period. Prevalence is the proportion of individuals in a population that has the disease and
can either be determined as a “point prevalence” or as a “period prevalence”.12 A
prevalence is a proportion not a rate and thus the cross sectional studies do not involve a
follow up period. Typically, the exposure status (e.g., exposed or unexposed), disease
status/outcome, and demographic characteristics are determined at a point in (or over)
time. The major comparison in this study design is a comparison of the prevalence of the
outcome in the exposed population vs. the prevalence of that outcome in the non-exposed
population, with the risk measure being the prevalence risk ratio or odds ratio. Cross-
sectional studies are generally used to identify patterns or trends in disease occurrence
over time or in different geographical locations, and can be conducted quickly and
relatively inexpensively. However, they measure the prevalence of a disease outcome
which is affected by both incidence - the rate of occurrence of new cases — and duration of
the disease, and it can be difficult in any analysis to sufficiently separate these factors.
Thus, they involve “survivor populations” and do not measure, evaluate, or consider those
that have left the population of interest because they became ill. Another important
limitation of cross-sectional studies is they do not allow one to determine whether
exposure precedes the disease. As such, cross-sectional studies are unable to establish
temporal relationships between disease and exposure and typically require additional
studies to confirm a hypothesized causal association suggested by a cross-sectional study.

Ecologic studies examine exposure and disease patterns using information reflecting
group or population-level data. In an ecologic study, the unit of analysis is a group and not
an individual13. Here, groups of subjects are sampled, with the exposure, disease, and
potential confounding factors measured at this group (or cluster) level. Groups are
generally defined on a geographic, administrative, or organizations unit basis (e.g., districts,
towns, counties, schools, workplaces, etc.) with all exposure, disease, or confounder
measurements made or summarized at the group level rather than at the level of the
individual. An ecological (group-based) study contrasts with an individual-level study in
that in the former there is no information on whether the cases are the actual individuals

12 The former involve measurements at a particular place and/or a particular time while the latter involves
determinations of the proportion of cases over a given time period.

13 Some studies can be “partially ecologic” in design in which either the exposure or the disease outcome is
measured on a group level but the other variable is measures at an individual level with the researcher
making inferences to the individual level.
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with the exposure whereas in the latter exposure information is tied to the individual. As
an example, a study of disease rates by contaminant levels in water can be ecologic with
respect to evaluation of the exposure, but the health outcome or disease status may have
determined on an individual basis. In these instances, the term “semi-ecological” can
sometimes be used when exposure is determined at the group level but outcome is
determined at the level of the individual.

Using this design, it is not possible to know whether all members of the exposed group
are individually exposed (or the individual exposure levels) nor is it possible to infer
individual-level effects from the group level effects that result. If the intent of the study is
to direct inferences to the group (rather than the individual), then this is not a concern and
these studies can be appropriate, particularly if measurements are constrained or difficult
to perform at the individual level and exposures within the group are generally
homogenous. If the intent of the study is instead to direct inferences to the individual, then
this study design suffers from what is termed the ecological fallacy: the assumption that an
observed relationship in an aggregated or grouped data set will reflect what would have
been observed had the sampling occurred at the individual level. In addition to this
ecological fallacy issue, an additional bias arises a result of the inability to appropriately
control for confounding variables at the level of the individual as opposed to the group
when information on confounding factors is only available at the group level.

In most cases, ecologic studies are considered as hypothesis-generating studies and
best used for suggesting research hypotheses for future studies and may contribute to
problem formulation. Nevertheless, it is important to assess ecological studies on the basis
of the quality of their design, and useful information can be gleaned from an ecologic study
if it is well-designed (FIFRA SAP, 2010). Ecologic studies alone generally do not have the
ability to establish a causal association. When taken with other these studies can be useful
under certain circumstances and should be noted in the hazard characterization. In
particular, stable populations, clear exposure contrasts, and large differences in risk can be
important factors that might increase the utility of these studies.

C. Evaluating epidemiology studies for use in pesticide risk assessment

OPP searches the peer reviewed literature for observational epidemiology studies of
potential adverse acute and chronic health effects linked to chemical use. Details regarding
literature search protocols and strategies are provided elsewhere. Epidemiologic research
utilizing cohort, case-control, or cross-sectional study designs may provide information to
OPP to strengthen OPP’s understanding of the potential hazards, exposure-response
characterization, exposure scenarios. or assessment methods, and — ultimately -- risk
characterization (van den Brandt, 2002). In addition, compelling case reports or case
series analysis may illumine a health effect or mechanism of action previously unidentified.

Generally speaking, the quality of epidemiologic research, sufficiency of
documentation of the study (study design and results), and relevance to risk assessment is
considered when evaluating epidemiology studies from the open literature for use in OPP’s
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risk assessments. It is important that these criteria are endpoint-specific as various
methodological details become more or less important given the endpoint of concern. For
example, it is important to understand relevant factors that influence outcome
ascertainment (e.g., is there a test or a biomarker available to indicate presence of an effect,
or are symptoms gradual and non-specific initially leading to physician diagnosis upon
advanced disease state). In addition, for environmental and occupational epidemiology
studies, the quality of the exposure assessment is vitally important. Prior consideration
must be given to aspects of exposure and confounder measurement to the question under
consideration.

When considering individual study quality, various aspects of the design, conduct,
analysis and interpretation of the epidemiology studies are important. These include:

1. Clear articulation of the hypothesis, even if the study is hypothesis-generating in
nature;

2. Adequate assessment of exposure for the relevant critical windows of the health
effects, the range of exposure of interest for the risk assessment target population,
and the availability of a dose/exposure-response trend from the study, among other
gualities of exposure assessment,

3. Reasonably valid and reliable outcome ascertainment (the correct identification of
those with and without the health effect in the study population),

4. Appropriate inclusion and exclusion criteria that result in a sample population
representative of the target population, and absent systematic bias,

5. Adequate measurement and analysis of potentially confounding variables, including
measurement or discussion of the role of multiple pesticide exposure, or mixtures
exposure in the risk estimates observed,

6. Overall characterization of potential systematic biases in the study including errors
in the selection of participation and in the collection of information; this can include
performing sensitivity analysis to determine the potential influence of systematic
error on the risk estimates presented (e.g., Greenland’s formula)

7. Evaluation of the statistical power of the study to observe health effects with
appropriate discussion and/or presentation of power estimates,

8. Use of appropriate statistical modeling techniques, given the study design and the
nature of the outcomes under study

Other Federal and non-Federal entities have offered such guides (e.g., OHAT,
Navigation Guide, National Toxicology Program [NTP] Report on Carcinogens [ROC14], IRIS,
Cochrane ACROBAT-Non-Randomized Studies of Interventions) (Sterne et al., 2015 as well
as the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology)
statement for observational epidemiological studies (see www.strobe-statement.org and
Vandenbroucke et al.,, 2007; Von Elm, 2014) As OPP gains experience with integrating
epidemiology studies into human health risk assessment, relevant adjustments to its
evaluation approach will be made.

14 http://ntp.niehs.nih.gov/pubhealth/roc/index.html
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Independent study evaluation is performed and documented prior to the
development of evidence- tables of detailed summary tables which are informative to
hazard identification and exposure response assessment. Table 2 provides a structure to
the major considerations evaluated and the associated weight (low, medium, high) for each
consideration. Table 2 provides a generic set of considerations and should not be
considered a checklist. The specific scientific considerations appropriate for particular
science analysis are adjusted on a case by case basis.

The culmination of the study evaluation process would be to provide
professional/expert opinion as to the nature of the potential bias that may result from
systematic errors in each specific study identified through study specific evaluations, and
an assessment of overall confidence in the epidemiological database. In this way, data
integration (animal, human, mechanistic, other) would be informed by level of confidence
in the human epidemiological studies that inform human health effects of environmental
and occupational exposures.
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Table 2. Study Quality Considerations 2 (Adapted from Munoz-Quezada et al., 2013;

LaKind et al., 2014)

to scientific question,
and standard
confounders

variables, not all variables
relevant for scientific question

Parameter High Moderate Low
Accurate and Poor surrogate
precise quantitative . . g
relationship with Evidence exists for a
external relationship
exposure. internal between biomarker in a Low-quality
doE:e or t:ar et dose specified matrix questionnaire and/or
Exposure ossibl assgociated’ and external exposure, interview; information
ass?essment \F/)vith anyMOA/AOP internal dose, or collected for groups of
' target dose. chemicals rather than
If questionnaire chemical-specific; no
ut(i]Iized Lestionnaire Questionnaire and/or chemical-specific
and/or ’ir?terview interview for chemical- exposure information
answered by subiects specific exposure answered by | collected; ever/never
for chemica?/-s eéific subjects or proxy individuals use of pesticides in
exposure P general evaluated
\S/;?ir:jiig?jlizrfgt?g; Selected sections of
population; medical test, or mater.nal
. report, other; or,
record Standardized tool, not
. . . X - ) maternal/paternal
review/diagnosis validated in population, or self-report:
Outcome Assessment | confirmation by screening tool; or, medical uncleaf')/n(;
trained staff; record review, methods consideration for
appropriate unstated
consideration of yvhfather prevalent or
prevalence/incidence |nC|dent_cases are
of cases appropriate
Good control for Multi-variable analysis
important Moderately good control not performed no
confounder control confounders relevant | confounders, standard adjustments; no

stratification,
restriction, or
matching

Statistical Analysis

Appropriate to study
question and design,
supported by
adequate sample size,
maximizing use of
data, reported well
(not selective)

Acceptable methods,
questionable study power
(especially sub-analyses),
analytic choices that lose
information, not reported
clearly

Minimal attention to
statistical analyses,
comparisons not
performed or
described clearly

Risk of (other) bias
(selection,
differential
misclassification,
effect size
magnification, other)

Major sources of other
potential biases not
likely present, present
but analyzed, unlikely
to influence
magnitude and
direction of the risk
estimate

Other sources of bias present,
acknowledged but not
addressed in study, may
influence magnitude but not
direction of estimate

Major study biases
present,
unacknowledged or
unaddressed in study,
cannot exclude other
explanations for study
finding

aQverall study quality ranking based on comprehensive assessment across the parameters.
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1. Exposure Assessment

Exposure assessment can be defined as the “process of estimating or measuring the
magnitude, frequency and duration of exposure to an agent, along with the number and
characteristics of the population exposed. Ideally, it describes the sources, pathways,
routes, and the uncertainties in the assessment. (Zartarian et al., 2005).” In environmental
epidemiology, exposure assessment poses a unique challenge, particularly for toxicants
that are found in low concentrations in environmental media (NRC, 1991; NRC, 1997).
Given the complexity of exposure pathways, researchers have developed a number of
different approaches to assess exposure, which vary in accuracy, precision, and resource
requirements (Niewenhuijsen, 2003). Some of these approaches are not specific to
epidemiologic research but may be used to inform exposure assessment in a variety of
scientific analyses. These approaches include indirect methods, based on historical
records, questionnaires, and environmental monitoring, and direct methods, based on
personal monitoring and biomonitoring. A brief description of each method and its
strengths and limitations is summarized below.

Table 3. Summary of indirect and direct exposure assessment methods.

Approach Method/Tools Example Exposure Estimation
L Est|_mat|ng prOX|m|t¥ to Dichotomous or ordinal
Historical Records agricultural crops using
. . exposure
address information
: : Determine potential for Dichotomous or ordinal
Indirect Questionnaires exposure based on exposure
pesticide-use responses
. . Dichotomous or ordinal
Measuring pesticide levels
. - . . exposure, although
Environmental Monitoring | in community water .
o exposure can be estimated
drinking system : .
using modeling
Measuring pesticide
Personal Monitoring inhalation and dermal Quantified exposure
Direct contact
Biomonitoring Measurlng pest_|(:|de levels Quantified internal dose
in blood and urine

Historical records and questionnaires are used to characterize key
characteristics which may be associated with chemical exposure. When used in
epidemiologic studies, historical records and questionnaires are not typically used to
predict quantitative levels of exposure. Rather, historical record information or
questionnaire responses are used to assign categorical levels of exposure. Examples of
historical record information that can be used to assign exposure levels includes address in
proximity to an agricultural crop and employment history information on job title and
history. Similarly, questionnaires can be used to determine if individuals recall using
pesticides or identify individuals that perform specific job functions that increase their
potential for exposure. While historical records and questionnaires can be cost-effective
sources of data on potential exposure, they do have limitations. Data collected from
historical records and questionnaires is only a surrogate of exposure. As a result, these
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data sources may be an oversimplification of exposure and not accurately rank individual’s
exposure potential.

Environmental monitoring is used to characterize the levels of contaminants in
environmental media, including air, water, soil, food, and home and work environments.
Many state and Federal programs collect environmental monitoring data that may be
useful in epidemiologic studies. Environmental monitoring is particularly useful for
exposure that can be defined by geographic boundaries, such as air pollution and drinking
water. As such, many epidemiologic studies have utilized ambient air monitoring data and
community drinking water system data to characterize exposure to air pollution and
drinking water contamination, respectively. While environmental monitoring data is useful
for estimating exposures defined by geographic boundaries, it can be less reliable for the
purposes of assigning individual-levels exposures, particularly when individuals live, work,
and spend time in many different locations.

Personal monitoring is used to characterize exposure at the point of contact of a
body boundary. Examples of personal monitoring include the use of dosimeters to assess
dermal contact with pesticides, personal air sampling devices to assess inhalation
exposure, and collection of duplicate diet samples to determine pesticide levels in food.
The advantage of personal monitoring is that it is likely to provide more accurate estimates
of individual-level exposure than indirect methods. Personal monitoring also makes it
possible to quantify exposure levels that can be useful for prioritizing the relevance of
different routes of exposure. Additionally, personal monitoring can also be used to assess
longitudinal exposure when repeated measurements are taken over time. While personal
monitoring offers many advantages over indirect approaches, it also tends to be labor and
resource intensive (Niewenhuijsen, 2003). As a result, it is not typically feasible to conduct
large-scale epidemiologic studies that assess exposure using personal monitoring.
Furthermore, personal monitoring is highly dependent on the measurement techniques
and analytic tools used to obtain samples and it is less likely that information that
characterizes exposures during the relevant time period (usually in the past) will be
available. In addition, it is unlikely that the full range of exposures over the time period of
interest will be captured, and sampling may not be over a sufficient time period to capture
peaks and fluctuations As such, it is extremely important to consider the scientific rigor
and reliability of personal monitoring methodologies that are used in epidemiologic
studies, and such monitoring may need to be supplemented by other monitoring (e.g.,
environmental, biological, and/or interview/questionnaire data).

Biomonitoring is used to characterize exposure by measuring a chemical, its
metabolite(s), or reactive product(s) in biological samples, such as blood, urine, saliva,
milk, adipose, and other body tissues (Needham et al., 2007). Zartarian et al. (2005) state
that “a biomarker/biological marker has been defined as an "indicator of changes or events
in biological systems. Biological markers of exposure refer to cellular, biochemical,
analytical, or molecular measures that are obtained from biological media such as tissues,
cells, or fluids and are indicative of exposure to an agent”. Thus, biomarkers can be used to
assess exposure or as indicators of health effects (LaKind et al., 2014). Table 4 provides
scientific considerations for evaluating the quality and relevance of biomonitoring data

Page 26
181



collected from epidemiology studies. Assessing exposure using biomonitoring has
expanded rapidly as analytical tools have become more cost-effective and more biomarkers
are identified. Compared with self-reported questionnaire or interview data,
biomonitoring may reduce exposure misclassification and enhance the precision of the risk
estimates. Similarly, biomonitoring integrates exposures from different routes and can be
used to determine the amount of exposure that is absorbed into the body (Checkoway et al.,
2004). Furthermore, knowledge as to the role of the biomarker in the natural history of
disease is known in certain instances, such that biomarkers may help resolve temporality
of exposure issues.

While biomonitoring has many advantages over others exposure assessment
methods, it also has its own limitations. In many studies, biological sample are only taken
from a single point in time and may not reflect accurately reflect longitudinal patterns,
particularly if exposures are highly variable. Furthermore, evaluation of biomarkers also
requires an understanding of degradation and metabolism of chemicals in both the
environment and human body. As such, biomarkers of exposure may differ between
individuals for reasons other than exposure level. Differences in metabolism, co-
morbidities such as kidney disease in relation to urinary measurements, uncertainty as to
whether the biomarker measures exposure to the active ingredient or the environmental
degradates may all account for apparent differences in biomarkers of exposure among
individuals, and possibly between comparison groups.
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Table 4. Considerations of biomonitoring data from environmental epidemiology research (Adapted from LaKind et

al. (2014).

Biomarker Consideration

Tier 1

Tier 2

Tier 3

Exposure biomarker

Biomarker has accurate and
precise quantitative relationship
with external exposure, internal
dose, or target dose.

Biomarker has an unknown
quantitative relationship with
external exposure, internal
dose, or target dose or is poor
surrogate (low accuracy and
precision) for exposure/dose.

NA

Effect biomarker

Bioindicator of a key eventin a
MOA/AOQP.

Biomarkers of effect for which
the relationship to health
outcome is understood

Biomarker has undetermined

consequences (e.g., biomarker is not

specific to a health outcome).

Specificity

Biomarker is derived from

exposure to one parent chemical.

Biomarker is derived from
multiple parent chemicals with
similar toxicities.

Biomarker is derived from multiple
parent chemicals with varying types

of adverse endpoints.

Method sensitivity

Limits of detection are low
enough to detect chemicals ina
sufficient percentage of the
samples to address the research
guestion.

Frequency of detection too low
to address the research
hypothesis.

NA

Biomarker stability

Samples with a known history
and documented stability data.

Samples have known losses
during storage but the
difference between low and
high exposures can be
qualitatively assessed.

Samples with either unknown

history and/or no stability data for

analytes of interest.

Sample contamination

Samples are contamination-free
from time of collection to time of
measurement (e.g., by use of

Study not using/documenting
these procedures.

There are known contamination
issues and no documentation that
the issues were addressed
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Biomarker Consideration

Tier 1

Tier 2

Tier 3

certified analyte-free collection
supplies and reference materials,
and appropriate use of blanks
both in the field and lab).
Research includes documentation
of the steps taken to provide the
necessary assurance that the
study data are reliable.

Method requirements

Instrumentation that provides
unambiguous identification and
quantitation of the biomarker at
the required sensitivity (e.g., GC-
HRMS, GC-MS/MS, LC-MS/MS)

Instrumentation that allows
for identification of the
biomarker with a high degree
of confidence and the required
sensitivity (e.g., GC-MS, GC-
ECD).

Instrumentation that only allows for

possible quantification of the
biomarker but the method has
known interferants (e.g., GC-FID,
spectroscopy)

Matrix adjustment

Study includes results for
adjusted and non-adjusted
concentrations

Study only provides results
using one method (matrix-
adjusted or not).

NA

FP = false positive; FN = false negative; GC-HRMS = gas chromatography/high-resolution mass spectrometry; GC-MS = gas chromatography/mass spectrometry; GC-ECD
= gas chromatography-electron capture detector; GC-FID = gas chromatography-flame ionization detector], ICC = intra-class correlation coefficient ; NA = not applicable;

PFP = probability of false positive
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Indirect exposure assessment methods are common in retrospective studies and
based on factors that are surrogates of chemical exposure. As described above, indirect
exposure data cannot generally be used to estimate quantitative exposure levels without
additional modeling. For example, a questionnaire can be used to determine if an
individual has ever used a pesticide, but can less reliably collect data on all the
environmental and behavioral factors that are needed to calculate that individual’s
exposure. As such, indirect exposure data are often used to classify exposure using a
dichotomous exposure variable (i.e. exposed/unexposed) or ordinal exposure scale. In
contrast, direct exposure assessment methods are based on data on actual individual-level
exposure through personal monitoring and biomonitoring. Thus, direct methods can be
used to estimate individual exposure or internal dose levels. Direct methods are more
common in prospective studies, but are also used in retrospective studies when existing
biological samples are available from well-defined population groups.

Quantified personal measurements, such as personal monitoring and

biomonitoring, are generally considered the best source of data for estimating actual
exposure levels (NRC, 1991; NRC, 1997). While this is the case, accurate qualitative
measures of exposure (e.g. dichotomous and ordinal exposure metrics) from indirect
methods can be just as accurate for the purpose of epidemiology. Moreover, indirect
methods are often easier to interpret and may require less additional research and
development to demonstrate their utility in exposure assessment.

Regardless of the approach, exposure assessment methods should be able to
provide exposure estimates that are reliable and valid. In the context of epidemiology,
reliability general refers to the ability to reproduce results and validity generally refers to
the extent that exposure estimates reflect true exposure levels (Checkoway et al., 2004).
When evaluating a particular exposure assessment’s reliability and validity, it is important
to consider the exposure assessment’s strengths and weaknesses in the context of the
study’s research objectives. Less refined exposure assessment may be suitable for
exploratory studies. This is because exploratory studies help raise awareness about
potential hazards that can encourage investment in more focused research. Conversely,
studies with more focused hypotheses can be greatly strengthened through the use of more
refined exposure assessment methods. Therefore, indirect and direct exposure assessment
methods represent a spectrum of tools that are complimentary and can be used at different
stages of research when exploring exposure-disease relationships.

2. Confounding Factors

Confounding occurs when the relationship between the exposure and disease is to some
extent attributable to the effect of a second (confounding) risk factor. This can happen
when this second (i.e., confounding) risk factor is an independent, causally-associated risk
factor for the disease but is also associated -- causally or non-causally -- with the exposure
under analysis and does not also serve as an intermediate variable in the causal pathway
between the exposure and the outcome of interest. If not properly measured and accounted
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for, confounders have the ability to change the magnitude (and potentially the direction) of
the estimated association between an exposure and health outcome. This can resultin an
over- or under-estimation of the relationship between exposure and disease because the
effects of the two risk factors have not been appropriately separated, or “disentangled”. As
an example: a given pesticide may be associated with lung cancer in a given study, but this
may be due to a confounding effect of farm tractor diesel fumes: here, this second factor —
farm tractor diesel fumes —would be a confounder if it was causally associated with the
disease outcome (here, lung cancer) but also associated with pesticide exposure.
Confounding factors may include less intuitive lifestyle exposures such as cigarette
smoking, dietary factors (e.g., high energy/calorie laden diet), and physical activity (e.g.,
lack of physical activity) genetics, comorbidity, medication use, alcohol consumption, etc.,
all of which may adversely affect health and may be statistically associated with pesticide
use. In epidemiological analyses, confounding factors are measured in the study sample
and typically “adjusted for” in the final risk estimate in either the design phase of the study
or the analysis phase. With respect to the former, the epidemiological researcher can
“restrict” the study population to individuals that share a characteristic which the
researcher wishes to control; this has the result of removing the potential effect of
confounding caused by that (now controlled) characteristic. A second available method —
also applicable to the design phase of the study -- is for the researcher to control
confounding by “matching” individuals based on the confounding variable. This ensures
that the confounding variable is evenly distributed between the two comparison groups
and effectively controls for this. Itis important to note that the relationship between the
confounder and the exposure or outcome does not need to be found to be statistically
significant in order for it to have an impact on the risk estimate for the main effect?5.

At the analysis stage, one method by which confounding can be controlled is by
stratification. Under this means of control, the association is measured separately under
each of the (potentially) confounding variables; the separate estimates are “brought
together” statistically -- if determined to be appropriate -- to produce a common odds ratio
or other effect size measure by using Mantel-Haenszel approaches which weight the
estimates measured in each stratum. Stratification can be difficult if there are multiple
potential confounders that need to be controlled simultaneously. In such cases,
confounding is typically dealt with by means of statistical modelling. (e.g., logistic
regression).

It is important that careful consideration be given to confounders prior to any
epidemiological studies being initiated in the field and it is important that any study
adequately describe how this was done: epidemiological studies are frequently critiqued
for ignoring or paying insufficient attention to potential confounders. For this reason, a
sensitivity analysis can be helpful to demonstrate the potential effects that a missing or
unaccounted for confounder may have on the observed effect sizes (see Gustafson and

15 This is why it is generally considered inappropriate to “statistically test” for a confounder to determine
whether the confounder needs to be adjusted for. Instead, some consider a change in the effect size of 10% or
more after adjustment for (inclusion of) a potential confounder to be sufficient evidence for the confounder to
be incorporated into the analysis.
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McCandless, 2010). If unmeasured confounders are thought to affect the results,
researchers should conduct sensitivity analyses to estimate the range of impacts and the
resulting range of adjusted effect measures. Such sensitivity analyses -- generally not
uniformly conducted in most published epidemiological studies — can be used when
available to estimate the impact of biases and potential confounding by known but
unmeasured risk factors.

Depending upon the specific exposure-disease association under study, a factor may
or may not be a confounding factor that is necessary to control: in order for a substantial
distortion in the effect size estimate to occur due to confounding, the confounder must be
not only a relatively strong risk factor for the disease of interest6, but also be strongly
associated with the exposure of interest. Assessment of potential confounding is made on a
study specific basis and — if unmeasured confounders are thought to affect the results --
researchers should conduct a sensitivity analysis to estimate the range of impacts and
resulting range of adjusted effect measures. When evaluating the quality of observational
epidemiology studies, OPP will consider whether relevant confounding factors are properly
identified, described, measured and analyzed such that an unbiased estimate of the specific
association under study can be made, and, when possible, may consider sensitivity analysis
as a potential tool to assist in determining the degree to which such confounding might
potentially affect the estimate of the effect size. It should be emphasized that a confounder
must be a relatively strong risk factor for the disease to be strongly associated with the
exposure of interest to create a substantial distortion in the risk estimate. In such cases, it
is not sufficient to simply raise the possibility of confounding; one should make a
persuasive argument explaining why a risk factor is likely to be a confounder, what its
impact might be, and how important that impact might be to the interpretation of findings.
(p. 23-25, FIFRA SAP Report, 22 April 2010)

Finally, it is important to distinguish between confounding, effect modification,
synergy, and other mediating effects of covariates. Confounding is a bias that results from
not controlling for a variable that is associated causally with the disease and associated —
causally or non-causally -- with the exposure of interest. Epidemiologic researchers seek to
minimize this bias. Effect modifiers -- on the other hand -- are variables that differentially
affect the magnitude of the effect size, by strata (e.g., age, race/ethnicity, SES status, genetic
polymorphisms). Effect modifiers may or may not also be confounders. Typically, they are
modelled by either introducing interaction terms in multivariable models or by evaluating
effect sizes by strata after stratifying the data by levels of the effect modifier. A study
frequently needs to be specifically designed to evaluate effect modifiers in order to have a
sufficient sample size in each population strata of interest. Epidemiologic researchers seek
to understand effect modifiers (not minimize them, as they do with confounders) because
they can be important in evaluating risk differences across population strata, in evaluating
the association between exposure and the effect of interest, and in identifying susceptible

16 Consideration needs to be given not only to ensuring that the confounding factor is indeed a risk factor on
its own but also to ensuring not only related to the exposure of interest. Adjusting for a factor that has an
association with the disease of interest wholly or partly because of its association with the exposure of
interest will lead to attenuation of the exposure-disease relationship if it truly exists.
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subpopulations. Effect modifiers may or may not also be confounders. For example,
smoking may be a confounder in a study associating lung cancer with a pesticide often used
on tobacco, but it may also be an effect modifier if the risk of exposure to this pesticide is
higher among smokers than non-smokers. Synergy is often introduced as a biological or
pharmacological/toxicological concept rather than an epidemiological one and relates to
the ability of two chemicals, together and acting jointly, to magnify or exaggerate the effect
beyond that which would be seen considering the (mathematical) sum of each chemical’s
effects alone. In epidemiological and statistical terms, this is often expressed as effect
modification or interaction.

3. Statistical Analysis

Epidemiologic studies are designed to measure an association between a specific
exposure and a disease. When evaluating the quality of pesticide epidemiology studies, OPP
will also consider the statistical methods used. Specifically, OPP will consider the extent to
which the analytic methods described in the study are appropriate to the research
question; the completeness of the description of the statistical methods utilized; the
appropriateness of the methods for identification, assessment and adjustment of
potentially confounding variables in the exposure-disease relation; and, the description,
extent of, and presentation of any sub-group analyses which may have been performed
(including whether statistical corrections for multiple comparisons have been made).

Epidemiologic investigations typically utilize statistical modeling to estimate risk (e.g.
generalized linear models such as logistic (for odds ratios) or Poisson (for count data)
regression. To do so, researchers must consider not only the relevant main exposure and
outcome variables, but also consider relevant confounding factors, and whether the
association under investigation may differ by level of these factors, i.e., effect modification
or interaction (Szklo et al., 2004). Upon identification of a potentially confounding variable
-- one that substantively changes the magnitude and/or direction of the association under
study -- adjustment through regression modeling can help to isolate the risk estimate of
interest, i.e., the association under study. In addition, OPP will evaluate the stratification of
the association by the level of the potential effect modifier under study or evaluation of
statistical interaction. If the magnitude and direction of the association of interest differs
greatly by level of a third variable, then the stratified results should be considered primary.

When performing statistical modeling when the outcome is rare or the sample size is
relatively small, it is important to be cautious about including too many covariates in the
model. Any resulting effect size estimate may be too high or too low and is unlikely to
reflect the true estimate of effect. Such issues due to rare events or low sample sizes are
also possible when conditional methods are used (e.g., conditional logistic regression when
the design includes matching of the comparison group under study): if too few discordant
pairs (or discordant sets) are observed, the estimated effect size may also be unreliable.
Thus: while controlling for confounders and other covariates is important, the assessor
must take care not to over-control or end up with too few degrees of freedom to produce a
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reliable test. In these cases, it may be more important to seek parsimonious models that
adjust for only a smaller number of the most influential confounders and other covariates
so that the effective sample size remains adequate.

Finally, it is important in any statistical modeling exercise to consider statistical
significance in the context of clinical/biological/scientific significance of the result. It may
be that some results are statistically significant but unimportant in a clinical/biological/
scientific context. The reverse can be true: it may be that results are not statistically
significant but may be important in a clinical/biological/scientific context. The former may
suggest a sample size that is larger than necessary while the latter may suggest one than is
smaller than needed. The latter case may be important from a public health perspective
and warrant further exploration, especially when the association is strong (despite it being
imprecise)

4. Potential Bias in Observational Research

Bias is a systematic error in the design or conduct of a study that gives rise to study
results that are systematically different from the (unobserved) true situation. This
contrasts with random errors which relate to sampling variability and precision (or,
equivalently, confidence bounds) around the effect size measure, but which do not “drive”
or “push” the result in one particular direction (e.g., either toward or away from the null).

Bias is a reflection of methodological imperfections in the design or conduct of the
study and should be addressed or discussed by researchers as part of their analysis. There
are a number of ways that bias can be introduced into a study: studies may be biased in the
way in which participants are selected into the study (selection bias), or the way in which
information about exposure and disease status is collected (information bias, including
recall bias discussed earlier for case-control studies). One example of a common
occupational selection bias is the “healthy worker effect” which can create an important
bias in occupational epidemiology studies, leading to bias toward the null, and even below
(creating the interpretation that the exposure is “protective”) No study is totally devoid of
bias and one should consider the extent to which authors of published studies described
potential bias in the study, and how (if at all) they attempted to address it and characterize
itin the study. Bias can result from differential or non-differential misclassification
(Greenland, 1998). Differential misclassification (bias) means that misclassification has
occurred in a way that depends on the values of other variables, while non-differential
misclassification (bias) refers to misclassifications that do not depend on the value of other
variables. Misclassification biases — either differential or non-differential — depend on the
sensitivity and specificity of the study’s methods used to categorize such exposures and
can have a predictable effect on the direction of bias under certain (limited) conditions: this
ability to characterize the direction of the bias based on knowledge of the study methods
and analyses can be useful to the regulatory decision-maker since it may allow the decision
maker to determine the extent to which, if any, the epidemiological effect sizes being
considered (e.g., OR, RR) are likely underestimates or overestimates of the true effect
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sizel?. Itis not atypical to find degrees of misclassification in the range of 10 to 20 percent
and it can be helpful in reviewing epidemiological studies to consider a form of sensitivity
(or “what if”) analysis which evaluates such a degree of misclassification -- and whether it
is differential or non-differential — and the degree to which such misclassification might
impact the odds ratio or relative risk with respect to both magnitude and direction?8,
(p.25, FIFRA EPA SAP report, 22 April, 2010). As mentioned earlier with respect to
confounding, such quantitative sensitivity analysis is only rarely performed or practiced in
published epidemiology studies, with bias instead more typically evaluated in a narrative
manner without any quantitative assessment of its potential magnitude and the effect it
may have on the epidemiological effect size estimates (Jurek at al., 2006). This may be due
—in part -- to a general lack of availability of computational tools for such analysis by
epidemiologists or their unfamiliarity with them. Such tools are becoming increasingly
available and may be valuable in developing more rigorous quantitative methods for
evaluation of potential biases.

5. Interpretation of Null studies

“Null” studies -- or well-conducted studies which report no association between
exposure to the pesticide and an adverse health outcome -- will be evaluated carefully for
their potential usefulness in human health risk assessment. The study may report a null
result either because the investigated association indeed does not in reality exist, or
because the study was conducted failed to detect an association at a given predetermined
level of significance. This latter result —the failure to detect an association -- should not
necessarily be interpreted to mean that no association exists, but rather as simply one was
not found in the particular study920, To evaluate which of these two conditions may be
correct when reviewing “null” studies, one should consider other research reported
concerning the same or similar research question, the manner in which exposure and
outcome were assessed, the extent to which exposure misclassification may have biased
the study to the null, the statistical methods used including the identification and analysis
of confounding variables in the association, the extent to which the exposure is below a
threshold at which an effect would occur or be detected, as well as the power of the study
and its ability to detect an effect size of substantive interest. Statistical power refers to the
probability that researchers may correctly identify that there is a difference between the
two comparison groups, i.e., there is an association between exposure and disease, when in

17 The direction of bias that results from the degree of non-differential misclassification will also depend on
the categorization of exposure (either dichotomous or polytomous).

18 Such sensitivity analyses might be especially recommended for exposure misclassification biases which in
many cases are expected to result in more substantive effects on the effect size estimate than those from
confounding.

19 The old adage that “the absence of evidence does should not be interpreted as the evidence of absence” is
true here.

20 See also the American Statistical Association’s Statement on Statistical Significance and P-values at

https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf
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fact there is in fact a true difference (or association). Studies that are “low powered” may
falsely conclude there is no association, when an association actually exists?1.

Finally, it is important to consider the effects of publication bias in any systematic
review of the literature with respect to interpretation of null studies. The term publication
bias refers to the tendency for the available published literature to disproportionately
exclude such null studies. Studies that demonstrate such a “null” association between a
disease or health outcome can be as equally informative as those that do provided that the
study in question meets the quality criteria established as part of the epidemiological
review process. These may include such factors as study design; the existence of an a priori
hypothesis vs. an exploratory analysis; sample size and statistical power to detect an effect
size of interest; proper ascertainment of outcome vis-a-vis sensitivity and specificity; the
quality of the exposure assessment and the potential for differential and non-differential
misclassification; adequacy of the measurement of key potential confounders and other
forms of bias (information, selection, etc.); and evaluation of effect modifiers; appropriate
statistical analyses, including consideration of and possible correction for multiple
comparisons that a unsupported by a priori hypotheses, biological plausibility, or other
supporting information.

6. External Validity (Generalizability)

As noted above, validity generally refers to the extent that exposure estimates
reflect true exposure levels (Checkoway et al., 2004). External validity, or generalizability,
refers to the ability to extend the epidemiologic study results derived from a sample of the
population (e.g., pesticide applicators) to other populations (e.g., all agricultural workers).
To assess external validity, comparison of characteristics in the sample to the larger
population (if known) can be made. Such evaluation should include not only demographic
factors, but also whether exposures (e.g., dose, timing, duration) are similar and whether
important effect modifiers (e.g., sensitivity of vulnerable populations) were considered.
Generalizability is of particular importance because it is important to understand whether
and how individual study results may be applied to the larger group or targeted sub-groups
in regulatory risk assessment. For example, the AHS has reported statistical associations
between some cancer and non-cancer health outcomes for some pesticide chemicals. OPP
has an interest in evaluating the extent to which the reported findings may apply to
pesticide applicators in states other than North Carolina and lowa or to farm workers who
primarily do post-application activities.

21 Studies that are low-powered but find statistically significant effects may also be subject to the
phenomenon of effect size magnification and this can be important to investigate as well. (loannidis, 2008).
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V. HUMAN INCIDENT SURVEILLANCE DATA

Generally speaking, epidemiology studies on pesticides such as those described above
focus on lower exposures (over a longer time period) that are less likely to result in acute
clinical symptoms. OPP is also interested in exposures that are higher and occur over
shorter-intervals (often on an acute “one-time” basis). This “human incident,” or poisoning
data can be useful for evaluating short term, high exposure scenarios that can be readily
attributed to the pesticide in question.

OPP uses such “human incident information” for several purposes. Most broadly, the
program uses incident data to inform risk assessment/risk management activities; this
forms an integral part of our registration review activities under our Pesticide Registration
Improvement Act (PRIA) responsibilities. To this end, OPP evaluates human incident data
for trends over time and examines patterns in the severity and frequency of different
pesticide exposures. In some cases, incident information can indicate need for additional
information or additional risk management measures. Incident information can also help
assess the success of risk mitigation actions after they are implemented, and incident
information is an important part of OPP’s performance accountability system to ensure the
effectiveness of risk management actions that OPP has taken to protect human health and
the environment. Lastly, incident information can be useful in providing real world use
information with respect to usage practices and also in potentially targeting enforcement
or educational activities, where appropriate.

OPP obtains this information from a variety of sources. Sources of human incident data
include both (human) medical case reports appearing in the medical and toxicological
literature as well as information from a variety of national toxico-surveillance activities
for acute pesticide poisonings which are considered jointly to aid acute and chronic hazard
identification and as an integral part of the risk assessment process.22

Medical case reports (first-hand accounts written by physicians) or medical case
series (a compendium of medical case reports across individuals that share common
source or symptomology) are valuable tools for analyzing all available evidence of health
effects, and to complement the findings of animal studies and epidemiological studies. In
addition, they can identify unusual or novel occurrences of an adverse health effects
plausibly associated with use of a specific pesticide providing “advance notice” to the
agency for toxico-vigilance purposes. Published case reports for pesticides typically
describe the effects from an atypical (high exposure/dose, illegal, off-label) acute or short-
term exposure. The reports are often anecdotal and can be highly selective in nature. They
can, however, can be particularly valuable in identifying previously unidentified toxic
effects in humans and in learning about the effects, health outcomes, and medical sequelae
following high exposures. They frequently have more detailed medical information
(including sequelae), detailed follow-up, and generally higher quality and/or quantitative

22 OPP is aware of efforts by IPSC to consider human incident data in risk assessment.
http://www.who.int/ipcs/publications/methods/human_data/en/index.html
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information about dose. If similarities are seen across multiple medical case studies or
patterns emerge — in symptoms, exposure scenarios or usage practices -- these can provide
valuable information for the risk assessment process and strengthen any findings. Medical
case studies and series that include quantitative exposure information can be compared to
exposure estimates in the risk assessment (which are based on labeled application rates
and surrogate exposure information) to characterize margins of exposure expected from
typical use, when appropriate.

The following considerations are evaluated in assessing medical case reports and
medical case series:

o Adetailed history of exposure (when, how, how much); time of onset of adverse
effects; and signs and symptoms of the patient, are reported.

o Information on the product/chemical/pesticide, such as name, pesticide label,
registration number, etc.

o Patient information (e.g. age, race, sex); underlying health conditions and use of any
medications that can produce similar signs and symptoms; relevant medical history;
and the presence of any risk factors.

o Description of events and how the diagnosis was made.

o Management and treatment of the patient, and laboratory data (before, during and
after the therapy), including blood levels of pesticides and chemicals.

o Whether the medical report is reliable, reasonable and whether it is consistent with
current knowledge, including other research, reviews and guidelines.

o Clinical course of the event and patient outcome (e.g. patient recovered and
discharged from hospital; condition of patient after the discharge, any chronic
health effects or premature death related to the pesticide or chemical exposure).

In addition to using medical case reports/series as a source of real-world exposure and
toxicological information, OPP also engages in toxico-surveillance activities using a variety
of pesticide poisoning incident databases are also available. Specifically, OPP has access to
the following five human incident data sources: the OPP Incident Data System (IDS); the
American Association of Poison Control Centers (PCC) summary reports from their
National Poison Data System (NPDS); data from the EPA-funded National Pesticide
Information Center (NPIC), currently at Oregon State University; the Centers for Disease
Control and Prevention/National Institute for Occupational Safety and Health Sentinel
Event Notification System for Occupational Risk-Pesticides (NIOSH SENSOR-Pesticides) and
the California Pesticide IlIness Surveillance Program (PISP). Each of these are described, in
turn below:

U OPP Incident Data System (IDS) is maintained by OPP and incorporates
data submitted by registrants under FIFRA section 6(a)(2)23, as well as other
incidents reported directly to EPA. OPP has compiled the pesticide related

23 Under FIFRA 6(a)(2), pesticide registrants are required to notify EPA if and when they become aware of
“factual information regarding unreasonable adverse effects on the environment of the pesticide.”
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incident reports in the IDS since 1992. The IDS includes reports of alleged
human health incidents from various sources, including mandatory FIFRA
Section 6 (@) (2) reports from registrants, other federal and state health and
environmental agencies and individual consumers. IDS include information
on incidents involving humans, plants, wild and domestic animals where
there is a claim of an adverse effect. The vast majority of IDS reports are
received by the agency in paper format. IDS entries act as a “pointers” to
copies of original reports retained on microfilm and scanned images in OPP’s
Information Service Center.

While IDS includes both occupational and non-occupational incidents, the
majority of incidents reported relate to non-occupational/residential
scenarios The reports are obtained from across the U.S. and most incidents
have all relevant product information (such as the EPA Registration Number)
recorded. As IDS is populated mostly by information provided by pesticide
registrants under their FIFRA 6(a)(2) reporting requirements, the agency has
relatively high confidence in the identification of the specific product which

is involved. Severity rankings are included for each incident (as specified by
CFR 8159.184). Symptom information is sometimes included in the narrative
portion of the incident, but this information is usually not
validated/confirmed by a healthcare professional. IDS also includes
narrative information on exposure scenario and hazard information. Many
companies use standardized, industry-developed Voluntary Incident
Reporting Forms.

OPP collects and evaluates the data from the IDS and identifies potential
patterns with respect to the extent and severity of the health effects due to
pesticides exposure. While IDS reports are broad in scope and can in some
cases contain detailed information, the system does not necessarily
consistently capture detailed information about incident events, such as
occupational exposure circumstances or medical outcome.

In addition, most cases data going into IDS is not validated or verified, though
some reports are collected from calls to contract poison control centers.
Nevertheless, incident information can provide an important post-marketing
feedback loop to the agency following initial registration of the product: IDS
incidents of a severe nature, or a suggested pattern or trend among less
severe incidents can signal the agency to further investigate a particular
chemical or product. Because IDS has such extensive coverage, it can assist
in providing temporal trend information and determining whether risk
mitigation has helped reduce potential pesticide exposure and decreased the
number of potential incidents reported to IDS. Overall, IDS provides good
information about national trends and frequency of incidents for pesticides
and can provide valuable insights into the hazard and/or exposure potential
of a pesticide.
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U The National Poison Data System (NPDS) -- formerly called the Toxic
Effects Surveillance System (TESS) -- is maintained by the American
Association of Poison Control Centers (AAPCC) and is supported with
funding from several federal agencies. NPDS is a computerized information
system with geographically specific and near real-time reporting. Although
the main mission of Poison Control Centers is in helping callers respond to
emergencies, NPDS data can help identify emerging problems in chemical
product safety. Hotlines at 61 PCC’s nationwide are open 24/7, 365 days a
year and are staffed by specially trained nurses, pharmacists, and other
clinical health care specialists to provide poisoning information. Using
computer assisted data entry, standardized protocols, and strict data entry
criteria, local callers report incidents. These reported incidents are retained
locally and are updated in summary form to the national database
maintained by AAPCC. Information calls are tallied separately and not
counted as incidents. The PCC system covers nearly all the US and its
territories and has undergone major computer enhancements since 2001.

NPDS includes mainly non-occupational incidents. NPDS does not include
narrative information and the product information may not be complete.
NPDS provides severity rankings and symptom information that are
designated/recorded by trained specialists, and the agency has relatively
high confidence in this information. NPDS also provides some information
on the likelihood of the adverse effect being a result of the reported
exposure. Overall, NPDS provides good information about national trends,
frequency of incidents for pesticides, as well as the hazard potential for
particular pesticides. However, resource limitations permit the agency to
only access AAPCC summary reports published each year (e.g., see
http://www.aapcc.org/annual-reports/ ) and these serve as a supplement to
other data sources for which the agency has more complete access.

U The National Pesticide Information Center (NPIC)
(http://npic.orst.edu/index.html) is funded by EPA to serve as a source of
objective, science-based pesticide information in response to inquiries and to
respond to incidents. NPIC functions nationally during weekday business
hours and is a cooperative effort between Oregon State University
(currently) and EPA, it is intended to serve as a source of objective, science-
based pesticide information and to respond to inquiries from the public and
to incidents. Similar to Poison Control Centers, NPIC’s primary purpose is hot
to collect incident data (about 10% of NPIC’s annual calls are considered
“incident” related), but rather to provide information to inquirers on a wide
range of pesticide topics, and direct them to other sources for pesticide
incident investigation and emergency treatment. Nevertheless, NPIC does
collect information about incidents (approximately 4000 incidents per year)
from inquirers and records that information in a database. NPIC is a source
of national incident information, but generally receives fewer reports than
IDS. Regardless, if a high frequency is observed in IDS for a given pesticide or
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product, NPIC provides a source of information that can prove valuable in
determining consistency across national data sets.

As with IDS and PCC, the incidents in NPIC are mainly non-occupational.
NPIC incidents include narratives and product information when the caller
provides the information. Although the scope is national, there are
significantly fewer incidents reported to NPIC than to NPDS or IDS but
considerably more information is provided and the agency can request
custom reports on an as-needed basis. Hazard information includes severity
rankings, route of exposure and symptoms — which are recorded by trained
personnel. NPIC also provides information on how likely the link between
exposure and adverse effect is (which they call a certainty index). NPIC also
publishes annual reports and analyses in the open literature which are
valuable resources.

U The Center for Disease Control and Prevention National Institute for
Occupational Health (CDC/NIOSH) manages a pesticide surveillance program
and database entitled the Sentinel Event Notification System for
Occupational Risk (SENSOR)-Pesticides.?* This database includes pesticide
iliness case reports in 12 states from 1998-2013. Participating states are:
California, Florida, lowa, Louisiana, Michigan, Nebraska, New Mexico, New York,
North Carolina, Oregon, Texas and Washington. The participating states for a
given year vary depending on state and federal funding for pesticide
surveillance.

Cases of pesticide-related illnesses in the SENSOR-Pesticides database are
ascertained from a variety of sources, including: reports from local Poison
Control Centers, state Department of Labor workers’ compensation claims when
reported by physicians, reports from state Departments of Agriculture, and
physician reports to state Departments of Health. Although both occupational
and non-occupational incidents are included in the database, the SENSOR
coordinators primarily focus their follow-up case investigation efforts on the
occupational pesticide incidents. The SENSOR coordinator at the state
Department of Health will follow-up with cases and work to obtain medical
records in order to verify exposure scenario, symptoms, severity, and health
outcome. Using standardized protocol and case definitions, SENSOR
coordinators at state Departments of Health enter the incident interview
description provided by the case, medical report, physician and patient into the
SENSOR data system.

All SENSOR-Pesticides cases must report a minimum of two health effects in
order to be included in the aggregate database that EPA uses for incident

24 SENSOR-Pesticides webpage: http://www.cdc.gov/niosh/topics/pesticides/overview.html
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analyses. Evidence for each case is evaluated, based on the NIOSH case
classification matrix, for its causal relationship between exposure and illness.
98% of SENSOR-Pesticides cases are classified as definite, probable, or possible,
and 2% of the cases are classified as suspicious. Unlikely, asymptomatic, and
unrelated cases, as well as those with insufficient information, are not included
in the SENSOR-Pesticides database.

Overall, SENSOR-Pesticides provides very useful information on both
occupational and non-occupational incidents, and sometimes valuable insights
into the hazard and/or exposure potential of a pesticide. SENSOR-Pesticides also
conducts analyses of its own data and publishes these in the Morbidity and
Mortality Weekly. Unlike the aforementioned databases and although it contains
both non-occupational/residential and occupational incidents, SENSOR’s has
traditionally focused on occupational pesticide incidents, and is of particular
value in providing that information. SENSOR-Pesticides data from 1998-2011 is
available online at: http://wwwn.cdc.gov/Niosh-whc/Home/Pesticides.

U The California Pesticide Illness Surveillance Program (PISP) is maintained
by the State of California. This database documents pesticide-related illnesses
and injuries. Case reports are received from physicians and via workers’
compensation records. The local County Agricultural Commissioner investigates
the circumstances of the exposure. Medical records and investigative findings
are then evaluated by California’s Department of Pesticide Regulation (DPR)
technical experts and entered into an illness registry. All reported pesticide
ilinesses in the California PISP program are investigated by the county
agricultural commissioners, and the DPR evaluates the reports and compiles
them into a database, which is used to improve the state’s program to protect
workers and others from the adverse effects of pesticide exposure
(http://apps.cdpr.ca.gov/calpig/).

Currently, OPP evaluates human incident data on a chemical-specific basis. Incidents
from each database are analyzed for hazard potential (deaths, frequency of more severe
incidents, and patterns/trends of reported symptoms) and exposure potential (frequency
of incidents/ trends over time, patterns/trends of exposure scenarios, of factors affecting
exposure or of products). When evaluating human incident data from the above databases,
OPP considers several general criteria. OPP considers the relative severity and frequency
of symptoms. Additionally, OPP generally has greater confidence in reports in which
temporal association can be verified or are at least plausible. Lastly, other factors that are
used to evaluate human incident data include evidence of an exposure response
association, consistency in reported health effects, biological plausibility of reported health
effects, elimination of alternative causes of health effect such as pharmaceutical use, and
the specificity of the observed symptoms and health effects. Additionally, narratives of
more severe incidents are often evaluated for any temporal association between time-of-
exposure and effects reported to determine whether an association is supported by the
circumstances. For example, a heart attack in an elderly individual that occurs three
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months following an indoor pesticide application may be determined not to be a likely
causal association. On the other hand, a severe incident occurring at or shortly after the
time of exposure with symptoms consistent with known symptomology for the pesticide
class and that occurs without prior medical history may suggest that causal inference is
more justified.

In sum, then, incident data -- consisting of both medical case reports/case series
appearing the medical and human toxicological literature and toxico-surveillance data
derived from the databases that EPA either maintains, funds, or accesses -- can provide
useful, complementary information that assists OPP in evaluating the real-world risks of
pesticides.

VI. SUMMARY & CONCLUSIONS

This framework describes important factors in reviewing epidemiology and human
incident data and describes a proposed WOE analysis for incorporating such data in
pesticide human health risk assessment. OPP uses the best available data across multiple
lines of evidence and from in vitro, in vivo, and in silico data sources. OPP uses a WOE
approach when integrating data from multiple sources to take into account for quality,
consistency, relevancy, coherence and biological plausibility using modified Bradford Hill
criteria as an organizational tool. Application of WOE analysis is an integrative and
interpretive process routinely used by EPA according to in scientific analysis outlined in its
risk assessment guidelines. The WOE analysis also evaluates the quality of the combined
data set and is consistent with the level of effort and complexity that is appropriate for a
particular scientific assessment (U.S. EPA, 2002). OPP acknowledges that toxicology and
risk assessment are currently undergoing transformational changes towards implementing
the new vision of 21st century toxicity testing. As these transformation changes occur, OPP
will update this approach as appropriate.
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prevention-research-centers

g

208



ALEDOLRFTONN— 9 1%, 2010 4E 2 H 2 FIFRA B3R 3% /1 (SAP) 12 X » ThFEHIC
L Ea2—&N7- (USEPA. 20104, FIFRA SAP. 20104F) . ZO3CEIL, SAP BRI 5k
TR, NT Uy a A NED 2010 FLARRICE T — 2 BRIHFTRE Th o I BIEOFHM > & 15
OBV IAENTEBY , EHE LK ONEIZS D TR ERINAZ LEELEZLIRETTHD,

II. FFE

EARFET BT I— (NAS) OXKEWE#S (NRC) 12X£5 2 co@EE, 21 o
PERBR © B a L (2007 4F) | & TRFA L BORHE (2009 4F) ) 13, ECHEMEF L U 2
IO - A R LTS, b 2 5D NRC #4EEIL, RO Hik, 75—
Z OfFIRTE, Z LCREANCHH EOBURHE O HIEICRE RETEIRE L TV 5, BRI
X, 21 O FERERICBIT 5 2007 FFOMEETIX, FHERBR, U A7 3L, & L TR
BORRA IS ARt 272012, BIEOmEET Y RARA v FOFERICESEZ Y Teb o
5, mHERERESZHEHT 2LV 7 M T D2 LEBEBLTVWS, 207 Fe—F%, Eis
F. BRI RS FRED LD ITHAEEM LT MIBOMEE Z#ER T 5 0 FRE 2B L
TWE ) E W) BRI LT RV RAVBR I RSV CWn D, T LWEERBR O X1 L0 BiE
X, BERF~OIRXSBERINLORELAZ EOLHITETHEHALMNCL, FUT L > THER
(RIS N D EE R F S A S S E TR EZHA LM TD 2 ETHD, ZDHL
W7 e —F T, EEE, B RTOERT —F X=X XA FE=F VY THHRICALND
X o7t OB E ERBEEFOBERPEEREEH 2 RI-TZ LRSI TWD, BRI,
IO XS MEBIZ, BEOFEWEIE BICLIRBIIOWTO AR L, MEoERX
BN —F /U 27 ORMEFHICE#RT 2 2 &N TE 5, S6I2, EETFT—F°e h TOEH
F—=H1%, BINOMEHeT — 2 ARk (Bl 21E. in vitroi R AE & 4% in vivoilkBR T 5
TEODOHESLT Y RARA » FORIR) OfREHE 720, BEEZITOTWERMEZRELZY ., Hi
IR AR E L2, BEFOBEE ISR EZMRA LTV TN TE D,

ZOFEMRERE Y R ZFMOF LWEY g i, AR OSSR LV (OF L
U AL TEE OB L Z ORI O RS R R B ER ~DRBEE TEETHI L%
B L L-EMEZRICLERAEL LV ET) OF— 20" gGEN5, 20O X757 —H2I2iE.
in vitro RBRR0 in vivoi B HIBE SN DT —Z DIEMNNT, in silico®T VT —EZ N5, EFET
— 2 LHFTF —FEZED ANDS OPP O 7 L—AT—27 %, 21 Ao HFMRERICET % 2007 4F
D NRC OEZELMEHINC L TEBY, EL0LZMEERT —X ) —ANDLELNDRE
DIEHRORFIT= T o ZAOELHT (WOE) HTICE LD THHT L Z 2L T\ 5,

3 W MER BRI LT, TR EL S NGB ICH ER R R RS MIET 2 E N TFRIN S MG
B DOZ L Th D,
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— 7 Al & LT, PEEBRBEEFMIUIIIAFEH EIN TV D RBEO LA RRIZHE SN TE
D, ZNHDEELRLH SRR CTHIICM RSN T DILERS D, LIN-T, EFET—FN
FIHATREZ2 2 < DA, wmiE, 1X<&E. Epihie (PK) | EAEY A E5ERERE (MOA/
AOP) DOIEFHMIZEET 5 X B2 kT — & bFIHARETHDH L OPP I P LTWA, B R TOHE
BT — 21, XV IREBHOLFEWEIZOWTATARETH DA, HFITIXIEMERT — X X— R & Ff
DHLDEFFE VL ONH D, B NTOERLEHRH D, FFED KD MOA,/AOP X PK (2
DNTIEEA LN T2 WEAIZIE, WOE T2 W Tz et 2 R e 5 2 &0
T 5,

BT — 2 L N TOHEFT —F BPATLTZODYE T L —L T — 7 IZBITDH OPP 7 7
n0—FF, FIOTOLOL LIITFH LW DO TRV, e LA, ZOT7 7 u—FiL, BEHFEDOY —
N FEEAEMDOMBEMICIER LZb D TH D, YskeEIL, BERY 27 E AT 5%
FT— X KO N TOFHT — X 2t T 572 00HFEEE LT, BEFEOTA X ALER T
L—2ATU—7 (£ 1) [EFELTWD, & FOREY A 7FHIICBIT 52EFT — % kKO R TO
FHIT =2 OFEFICET Y%7 L— LT —7 X, 2009 FED [ FEEBRHAE (BT DM
FETO NRC DEER., FRC U A7 EHOLEM.ROSUIRT, FIFAFHREZR b O &4, B, MR
T 57D — & LTRBEOERILOME 25803 28128 LT, BUFEBEOR#HT O b MMaH
VDA77 L—2AU—2 (USEPA, 20144 a) & —EHLTW5,

FIZ, OPP © 7 L— AT —7 %, MEOER(LOEEM & AMFEHIE RO ZEEER LR
JVTC DG S OB A R U7z TS OREHEES b E Oz VBT 5 EE 7 v 7T A
MOA, 't FEHMMOA, HR) 7L —2ATU—7 | OFHRE —HLTWD (Meek 5. 2014 4)
MOA /HR 7 L — AU —7 %, HEMGCRM—E, 725 NNTAEMZE 224590, BEELD
—F M POBEE L EEIC AN T, Bradford Hill (Lo Tt &=k 9 2FAIZ#HEH L T,
T BT U ADBEBMITIZE DN TS SRR I > 7o —HOBEERFERELRFET H 2 &
MHIEE S (Hill, 19654F) . ZOfffT 7T 7 a—F 2 N5 2 LT, ERIE R, ho e
W (e hCTORERFPFTREZET) SORBRMIMIEO IR TRHMEIT 5 2 &N TE, RHEESIF5H#O
IR ET DI LN TED, UL, BRICHH I MOA/AOP n"H5HZ L3, E b
fFE Y A 7 M E e 2 R T 572D OB TIXRWZ EIFFEHICET 5, BUFHER 2
2007 4} TN 2009 4F D NRC G ZHITH A LT 27 7 —FOFE iz 5| ki X D, OPP 3%
FiEHE v F TORFFROHKE OREREZFELH T, OPP (X4i% 7 L — AU — 7 ZiE I fit
fiL, FHR LTV PETH 5.
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1. A EMERHFERKROMIKX, Ankley 5 (20104) KV 3|H,
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F1LOPPRFEALTCWAEERITA XL LV ALELE T L—LT—F

1983 HFEFIZH T AV RATZTEAA Lk Tak A0EH

1994: B &

2007: 21 i D 7R

NAS 2009: BFE L BORIRA © U A7 7B A Ak OHEHE
2011: ARV LT LT B RIZEET 5 NAS #tE#
2014: EPA OFfEA U A7 1EH T A7 4 (IRIS) 7utADRE L
2001~2007: fEIBE & hEEED 7 L— LT —7

WHO /IPCS 2005: {L W EE A OMIEFRE (CSAF)

2014: {ERMEF FED 2 a—X o AfENTIZE 35 WHO,/ITPCS 7 L —
LT — 7 OEAL &SRB DB 77 R
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1991~2005: U AT AR NDIZDODY AT THEAA L N T +—T A
Feet (AL, AnbErE, BAERME, wRkErtE, AREEE NI E
SO - DFE, N TF~v—7 HEeT ) oo 0fEE, EUER
HEEHMEEFES a AD L Ea—7p L) 4

2000: U A7 OHIEICET HRFBR N RT v 7

BRERAET 2006b. AP EIRE (PBPK) £ L0 Y 2 7 fli~DEH D7t D
T a—FEEORMNTE DT —H

2014a. BURHAE ICHEREMET 27200 MEFEY 27 o7 L—LU
—7

2014b. BAERH - FEMOHEE DD DT —Z Ak OHEERE AT 5
72O DERNT — X OWHTA X A

2001: ¥EHI72 U R 7 G

-2 S/ a=2/0 N
2001 & 2002 4 BFE Y A 7 7l

20131 A EMEFR BB OB & A0 I BT 2 85 W 7 B A
R W RS (Organisation for Economic Co-operation and Development) #' A % >
A3E

tb@%ﬁﬁﬁmm%%éﬁ\:®7V%AU~7®§E@\bk@Ux?ﬂﬁK%ﬁé&
EF— L b P TOFEHT—Z DR & FH LI EH B e FOFHRFIZOWTIE S
LETEL TV, Bio, Y: ﬁif il%@bb%ﬁ%&bti< 2R 5
OIS0, BEMNFEH OIEEN ﬁéﬁ&%&ﬂ L DIEBEEWET D=0 Tz
672D TiE, JEL R L TUh7an,

4 https://www.epa.gov/osa/products-and-publications-relating-risk-assessment-produced-office-
science-advisor

5 Z D& D RAFFEDFEN S Y OPP 23 Z D K 5 b JEin bR b e 7 — 2 IKFT 5 2 &1,
EPA OHFFExt G (R#ERIHI (40 CFR Part 26) ([Z X > TEHIN TN D, TOMIZ, ZOH
At , =3k, TE~OBXMRIL< BICBET 28220, EPA-OPP °t ~FSC RN
ZE% (HSRB) (2 X2 HHMIZERHE OSEaTRHTE. 72 & OCNIHFFERCR SR & DR 4 3K 6D T

o
6 M ELAERIZ OPP 1T, BENEFHOIXE Trfﬂﬁ Jj“iﬂﬂ SINDT =27 e —F2YETD
TeOlZ, REMFEEZRR L LI FOBIEE HPHIZEHE L C& 7o, 00D ORI

(http://www.epa. gov/sc1poly/sap/meet1ngs/2007/010907_mtg.htm) THETZ 5,
TOPP DEEMFEE IS BEMRZ DL DICE L, BEREFHT 5020 TOBIEHRIE
PPP-48 I3 L v Mt Y A 7 5l : Policy, Processes, and Procedures]
(https://www.extension.purdue.edu/extmedia/PPP/PPP-48.pdf TAFAJHE) 2D Z L,
TR—=
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ML BEDOY R 7 MBI B ARATT 4 v 7 L a—: E%

T, NRC 1%, #if EOBCKREICER A IRAT 2720 0L W EE A O VU A 7§l 2 3R
— M AR L Ea—DBHAMEZED L1010, YATYT 4 v b a—7 0k AlE
1792 85 BUFEBIC SR L Tuv% (NRC, 2011 4, 2014 ) , NRC IV AT~T 4 v/ L
Va—% [RPEORMICESZY T, WM CTHEINIHE SNZRFTEE T, FEHEUL Ty
2 DIBIME DM FE DORE R A FFE, BN, FHM. ERTLHRFRMRA] LEHZL TS (NRC,
2014 ) . NRC O#iEIZIH > T, {bFWELSE - AFEH LR (OCSPP) 1%, BURHAL Xz
LHRVFIT — 2 OIE, T, A OO OEERN 2 B KT 5, BRIC)» Ry AT~
T4 v I L Ea—ZBALTND,

NRC LD &, PAT~7 4 v 7 LEa2—IZiX, "HAMN D Y AfEICCE LS L, B
BTN TOXFDO —E LI LW, =87 v A0S 25Hi 5 72 o Ok S iz 7
7un—FOmMH, HET—EHR0H 5MFEMHEE (NRC, 2014 4F) "W ) W< OO B EER
N5, wHE, W HOPDOEH (Rooney . 2014 4 ; Woodruff and Sutton, 2014 4 ;
Hartung, 2010 42) 2, BRERERIFCTHEHT 72OV AT~T 4 v 7 L2 —D7 S —
FERERBLTNWD, VATYT 4 v 7 LE2—T0O OCSPP ®7 7 ru—F(%, Cochrane
Handbook for Systematic Reviews of Interventions for evidence-based medicine (ZBHFE 41T
WA R H] & Grading of Recommendations Assessment, Development and Evaluation
(GRADE) O JFHI & —F L CTWwWb, GRADE # A K7 A &, [E 7R RER SRR

(NIEHS) fEHFEAH - #I5R)% (OHAT) (Rooney ©. 2014 ) L Hh VU 74 L=7 KRF¥EV T
4 = 3 (Woodruff and Sutton. 2014 %) 23BH3E L7-BREE (R 2D DT AT ~T 4 v 7
LE2=T77u—=FTHEASNTNLEbDTH D, 77 N T2l be Y AT<T
A7 L E2—OLERRFEZLLTO®Y TH 5,

- ARSI R SIVCH D | BIEDERIEEER & 51 LOER S TND 2 L,
BRI CRBRED b 2 I,

BRI & 72T~ C OB T 70 O RBHIRTE,

W SIVTZTFIED &8 LT R TS PE D R,

RS IO R & 5L & RRIICIRR L. AHICE LD b o,

FROET Fu—F 3 EoT -~ U —r Tu—Z#HE L TRV, B SOR (B2,
FIEOEAERLT 7 b =) OFREEN ST Y | PR O ik z VTSR L B a—,
WEDE DN (LIXLIEANA T ADY A7 LIHEND) | =87 AREOEOFE (6] 213,
ME) « £ L TREMICHWICED ETOWNERLTWD, TRAENDT 7'u—F TiE, B+
RO E S BRSN. WHEOE OFHE, HFFEOE (B m. T K OMEDTZODOEAMLED H D
HANCERE SN REEEZHR L T D, £7 70 —F T, MmoOEME 257 —2HEaDD
DOHEANZED LY — L EHES L T D,
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INETDEZA, VAT EAA MIBRTLOIALZDHETIE, YAT~¥T 4y 7L Ea—
D= O —DOMAFEITIEESINTE 5T, OCSPP (X, LV IA&EZARBEAEEN D IO TH
ENENL LTS ZEEZBIFEL TS, OCSPP 1E, Y AT ~YT 4 v/ LbEa—D7ukRALU
—77u—%, MEOERNGIHEY, T—2NE, T—F¥E, TG, TLTEE
RT—A Xy v T EFELIERBROENEEZ TN D,

BRI AT, T LWEREDN S O DTN, BV LIThN D Z E R0,

A. D ERAL

NRC Oo#iEE [ Science and Decisions-Advancing Risk Assessment (Fl5 & E/EE- UV X
2 G OMELE) | (2B WT, 2KR%ET 77 I — (NAS) 1% EPA X LT, BORNZHICHEH
70U A7l & BT AR 2 BT A L o B L, O HBEERDO7-DIZ NRC I3,
BUMHERIIZ S LT U 2 7 FHl OIS IRV T — iR A < O ER b ad v 5 &5 @ Lz,
NRC 0#)E %51 T, USEPAIX It MU 2737 L—2AU—2 ] (USEPA, 2014 4F)
EaFRL, BEOERMOEEEZHRFAL WD, REOERIX, BIFEE LV X7 EHEOM
DOHHAKIEEZED LOTH Y . BRI OO OEH| Eo E 2140 L, fTO#E % 5%
DO, BEOER I, FHE OS], BORRER OBCROE s bE & s, FHo
e 7 e —FofFRERIE L, BETANEEERBERAERRNRHET DO THDH, =
DEINZ, HFYATYT 4w 7 L Ea—OBMES EfHIL. B2 U A 7FHEOIRIC L > TS
FEETHD, Nz NIE, OCSPP OV AT ~F 4 w7 LY a—i%, RIERTHHFERNICKR
E SN &iPH & HIZE Wiz THRIZ 725 @) (NRC, 2009 4) & LCHEishb,

MEoERIbIciE, FIHATERERE & bICT — 2R EMEROTE X vy v 72 EET D
ZEMEEND, OPP 1, X< BRI L IBENREREZ/ET D200 Y — v L CRE
DOERLERNTE Y, @8k, HHREL ORI OT 7a—F L L HIER LTV 5,
KIBT — 2 PFHMIICB W CTEERGA, HHR BIX, HEE SRR 258572 00KED
BN #ERSIND, BT b Ea—7 o 2RES, fMEiZ5E T 272004 A 574 0
EFIND,

VATIT 4 w7 L a—d, FIHATRERIEImAEE L, TSR 2 H I BE T S 1
DX ¥ v TEFFET HTOOHARY — LV ERMET S, 2oL 52, MEORETIX, BsnfE
Hr OB EO TR S 40, E3UT L - TREPRISCHRO IR & R ot & BN ER SN D,
RIEOBREICBITDBEIT NS FH T, EHFIEITA 7 AT —2, 1T HERE (B &K,
i, #EE) KO/ F721% in vitro £721% in vivo DFEERETOMIE, EFFE-1de hOFKIZ L
DG BREE ST B ORERRE R, 70 & ONSHIH FTeE e & IR & ORI O R+ 5 Z &
Th 9, EFHEHRLOE N TOREFIFHREZZRT 2 CRTIE, RBEOE, BT A ROAR
EFNEDHHFHE N ZE I D,
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MO E TEE I D Y — R BE T 2 EAaR2EIZLL FTo@h Th 5, X< &
\ZBET 2B L (X002 2D OREBICE#ET S MOA/AOPs 1ZED X 57 b D2 5 ED
AL 2 B A2 Z T WEMBH 200, D T, ToEHIT#ETHY, Yok
IRBERIZ L > TREBZZITOT VO, FEREWE L FofT PK XK 15 (PD) I[ZEWE
HDN2 Fiz, ELBEBRIFMEORTEICBWTHLIMIEEIN D, MEOHRE TERBINDIXL #E
SR BE 9D E R RARREIILL T o@ ) ThDH, BRI EOLIITHER SN0 2 XL §#E
OIS A HBEFTOTRTITEDL IR b D2 B MIED L S IMLEMEICIESBESND D
MNEL BOFE, B, HEIZEOL IR b0 2 #ENITL BEINDLTREMERH H 02 1T #
TR HEH (B 2T, EECITEINRNZ — o D)) [CRRD U R 7261 6T 002 EET —
2 DEARPIRr —ATIX, 2OV a—"7TiX, G, T A1 v (Thbb, o7
AR, o 7ext R WEFIEOERE) | X< ERE IS BRE, FEHRNT K O R A2 ST,
ZHAUDICERIE SNk 2 72 BER &2 B 8 L CREtd 5,

B. F—Z &

VATRT A v LV Ea—DOT —ZUEEME T, ABRNE SISO BRSO DI S
ToMFGERR S0 &L K& 728 « RABIOIEHRIE ) SR H e 2 M 2 INET 5, OPP Tk, &
H B3RS (OECD) Bt A K74 >, OCSPP FHFfIRBRT A RTA R OEET A T
4> (OPP A KTZ74 ) ICESWTNESNTET —F¥%ZLEBa—LTWS, ZRHDHA R
TA MR SR, BRI NTEHTEO-NT —Z RXR—=2ANBINE S, TDO X RN T —
HR—=ZADRBIZ L > THAIND,

EEOEA, 1TE A EOMFERITABR SN TR ERICEFH I N TS Z EnTFHEIND,
BAI X o TIM BRI R CIERN B OND Z 2 b D0, TR & OxEhlc L - T, B3
e B UMRIN 2 B¢, JRER CICTEE S T ARVvBMoBEERFERA GO b d
5, b hTOEFOHERFITEZ a IVICEEDLN TS,

INBASCHRIR SR HEIE Cld, BB ORIEZ FHWW T, A STV D BHZ SRR TR O HRIFE S
(R A WA MR T D, RLEYRERE T — 2 _XR—2A 2T L CGRIRL, SEa— R, E
FHEEORH LR/ 3 —U—FE2RA LKD) V) —AZRO B VERESE 2 F714 L2,
LHROMB P TPON D, FHEREHOBME SIS U T, CIEHELE OV R — MR LERIEA
LdhiE, RETRWESLH D, B NOBEEICET S CHBREO BIEEX, XRE 7 n k20
WE R SCEEARMET 2 2 L Ic L0, BEENE HBMOH LMK EITTH L Thb, AH
R R T DX, LFOFIETIT 5,

o FLFEHIRMT O B & SR ER L STV D,
o HFE/F—U— R MeSH (Medical Subject Heading) FHREDOMAGLHE L, TN HD
T —NVERDOMAE DY (AND; OR; NOT) #fEHA L. XELT 5,
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VEITIG LT, EHEL, ZA L, F—U—F, FEAHLICLIEERBRS T 4 —
NVRRBRBEITHI L L TED, T RXR—ADOEELMY | FFEDT — X X—ATx L
THIDORRFRHRIE 2 32 2 Lk, ARSI E BT DRI D, RO wfE
MI7ZRRFRITINZ T, kY A M2 EHT DO EMNRBRBEITO> b b D,

o TRTOT—HARXR—ADTXTOMBEVFIHARETH D Z & ZRIET H7-HOIT, MRk
IR D B2 & TXEL SN TV D,

o MBINIZFHXLDOY 77 LAY R R 2L, BIOSAREFARTZY | RO TITFE A
SN2 Teim L ER LD T DI Tn D,

o BIRDLT—HR—ANLMBINTZRLEMAEDE CEELBRELLZE., FIUHTRER
HA MVEERERRT D, XA R EEHRH S BIEME VAW T X 72 o T2 ER ST DN
T, ZOWMXERBL, SOLRDLIEMRMNEIT,

o FAIDERHIDK, HRAMEOROERIC (FRAMENE) -Fl 21X, FFamoim . JEE Tl S h
TWRWFFERR S, BRI O A THER S -0, RN S D, BINOERAN LT AE 5
MICHE SND, T RTORIIEETICELL SN TND, EY ORI, A5 dHEY
BRROLNRPST2bDTH-TH, MetEdMio=OIcEg TN 5,

C. 7 — 5 ¥4

TSRS TR, T2 OEPBE SN, DX T — 2 ORI OV TR S
b, MROEIE, MG SNTERENELW &V 2IEMREREEL KT 5 (Balshem 5,
20114F) , 2O X2, WFEOEIZIIUTOL Y b OndH 5,

o WMEDHE WIEOHMENLEDEREIZTITHDLN, ELFTBETHDID) .

o HBROTYA v EFEMITHANT, RERFERD EOREIZEEEDOH 5B D,

o X DHIT, TOWZENFHE DO ERIC EDREIZ 537255 LTS5 (Rooney 5.
2014 4F)

WFIEDE L, F M8~ OHFFEREAE THET S, TOEDPHEB SN D, BIAIE, Rl S
Wiz =R — MFJEL Y b WUNI RN S N AEGDS IR O 7 MEBMEITEWEE R & 5., B
HIE R OEFNEZ, LIXZUIEAA 7 2D Y 27 LT, REBROT YA & TR B 2 55 E
DEFBIZHONT, HOENTOED SN EEZ AN TIMicsh D (R 25H) |

OPP 134, Tt FO#EHEY R 75 & S8R9 2 72 D AR STV DRSO B ENTIE
OfgEEt EFEHIZEST 5 A 4> A (Guidance for Considering and Using Open Literature
Toxicity Studies to Support Human Health Risk Assessment) (USEPA, 2012 4) &3
HARSNTWDOIRFXEROZ ZDOFEMICET DA X A EERl L, —RIINZIXZOTA X
- TWD, LinL, VAZFHBICBIT DT AT T 4 v 7 L E 2 —OREIZE, 2D
BRATA 2 2 A2 O—FRORTE VTR TS LB/ D AT 8 5
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T =2 OEIZOWTOREGEmAH S, MmOtk £330 7 2V — (B, 7AW/ RN
R By om) TRiR S NS,

EIRIZBE T 2RO W B D BRI E 21X, LT Do' 7 v a > ILC IZFE#E S
nNTnd, 79— L ta—0O—kRE LT, MADHEERRLVE 2 —XHELERTDH, ZOLE2—
LEIZIE, RO T VA v, fER. fme. MMEOEFEEFTNTREH I N TND, EFPIEE
SO 1L, BT —Z N ) A7 FHRICBW T ED L ) kB A R E AT S L TEE
RERTHDH, 20D, EPINX EHI CHEH SNIARE & & ORGEDE FHIE LO IR
E—ALDFIREMEIC EORRERE L 5 X 203% + 0 IR 56 2 E RN EHEETH 5, FFEIL
CEIHMmICIE, WEKROBRIEDIXS TBEAY —r Bl X< EER, X< E R, 1X<EFHIE
LIS FELIL) ORRFNE £, £, HHAY = ORIERZE(L (FIZIX, U R 7 @&
BT NRZ =) BEENTODIHEERDHDH, A X GHTOFMIZE L TIiX, Stroup

(2000 ) ko THEINT HEFRICBIT 2BEMED A X T F U 2 2] Meta-analysis Of
Observational Studies in Epidemiology (MOOSE) DA A KT A M, A X OB OFHE<e
fERIZEMTH %,

D. F—##hA : TETF U ADEAFHT (WOE)

OPP Ot MEFREFNMTIL, & N TORE E¥, "M AET=FV 7T —¥_ in vitro D
BHERBL O in vivo OEMERER. MOA AOP f&#. HyEhieilin, MEiE MR (SAR) 72
Erate (AL, ZNHIZRESNRY) FIHABER TR COMET — X 2 ZETHLENH D,
SFEIERFBHFONY — RT—Z ZINE L, BT 2 KRB OS2 5 2 50 L CFisk L7721,
WDAT > T IIEEO T LV AEHETHIETHD,

T A, BET N — RICOWCHIHRRR AT T 4 T T — 2 R T 4 T T — 2 %
RARNHWTT 2 &V o FANC RSV TS, OPP X, BT —X KUt hTOHREFIT—Z D
FHMZ WOE fiffT 2 H LT\ A 23, fsimiE. € OWFSEITIKIL T 5 D Tid7e <. 1EHROEBME
WZHASWTHEN S, OPP 13, BAR2ERENODOEREZEE L TRET LAY —1E L
T. MOA/HR @ X 9 7zfEIE & 7= Bradford Hill E#¥EA A L CW\5 (Hill, 1965 4; U.S.
EPA. 1999 4, 2005 4F; Sonich-Mullin &, 2001 4F; Meek ©. 2003 4 Seed ©. 2005 4F;
OECD AOP Wiki Users Handbook®) , Hill Z#X, F= v 7R v 7 AHFXTIE7e< T, =7
VADKEWRHIORF 2 RE L TWAHZ EIZERT A ENEETH DL, £72. MOAAOP
DERICHIAINTND Z LiE, b MEEY X 7 3HMlIE A 2RI T 5 72D O MZESRMETIX
2, L, BRI S MOA/AOP B2 WA TH, A =X LT — X OIUE & 7T
X, TR ZEYEOEM T LY | ARERRORSE, AT, Wl S T7AT -V &
721X Z OO ER TOENZ T 2 OISO REMEN H 5, MOA/HR X, B Tldun g
WEBBT LD ORI Ry — L ThH D,

8 https://aopwiki.org/wiki/index.php/Main_Page#OECD_User_Handbook

12—

217



VTR RBIR O, B ORI FHRILC E S IBEROFES . T—F DX ¥ v RSB OISR
DEHORER EOA IR BINCHER Y — N E R DA 2 TV D, T ONT TR, EEEN
MRS N TOFEFT— XX, EWFN7e Y2 MET 272012, o b MEHRSCRER O SR
TRl &L, RNHEFE G4 ?‘ﬁODEﬂ”‘”’\%’%%ETé LN TX %, Bradford Hill Ol 23
WOE FHli CED L B EEN DN EHIT 572012, OPP X, EPA OA KR RKRXVE U
(NAAQS) DU E 2—D 7= DRI AR L 72 AR5 ISA) @ EPA fisCIZii#ish
TWDHEDOEZEEFEHA L 5 (USEPA, 2015 4F)

o HEHEL, RFEDREEEIZSOWT MOA /AOP 2N SN TWAEEIZIZ. MOA,AOP
DOHBEL 70D EEEG (Thbb, WERRRR/ T A—F) 2ZNENWMICTELRT 5, &
FHEL L RTT — XX, invitro ¥ 7213 invivoDT —X Y —A (b FE7138Y) OMAE
bﬁ#%%%héﬁ%@ﬁ%éo:h%@i%%%ﬁ\HK%%&PD%%@%#%@ET
H5, L, BRICIH S MOA/AOP ZFHT& 5 Z &1, & MERY 273
R R T D72 OMESME TR W LITERICET 5,

o LWFEHAEL 1L B-KIG/ AE-RKIGD— ﬁ&%ﬁ ISAs ORIXTIX, HEFOXRT
R ;<%@of%ﬂti< SORER (B XK BEENR S VI ERERENT D) 1
FRIIZ< MM (1 *ﬁﬁ#ﬁ<ﬁék%@ﬂﬁm¢é>_owf%I%%M%ﬁ<
‘ﬂﬁﬂ“@ (USEPA, 2015) LR LTS, MOA/AOP RGN TH 555 %EEE
GUZOWTHEMIGBERBREE SN D, HEKSBERIE, EE%%WTm@énéo Al
iofm\W%@i%%ﬁ@ﬁﬁ&%@i%%&i@%Wf@mw%Aﬂ&éoM®%éf
1L, BERHRGIEAL L8O E A LT 0nh LivZen,

o FRRIMIRBEE(T T, A O & EEO B L ORICEEMBZRIEF R H 5 &) =B F v AT,
KRR E XFT 2589 1 SDOMRMLE 72 % (USEPA, 2015 4) ., ISAs O Tix, NE
SEOEDRFEEEORBIETZIIHREMEOEE LT Z LB LIS ki\
FEHARERR] 28 U TR A R T HE 2= T v AT N TES ) LEHL
TW5,

ZOfENT TR, RBOBAMEAMMRT 570 OICRIRICEER T 2 BEEER (FIAX, 1 T<EEK
Sy UPRIZ BT DIGMHEAGH ~ DR & RWAkEIRH D% %ﬁ?éﬁ%%%(ﬁ i\ﬁr

DFAE) BB L TWD, EFT —F 2R DBRI013, 1X< 8 & BB O M O R HABIFR
ERINnD,
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o MMEME, —Bcik, RRE,

—FHE, EEOMNL LIZFE T A7 O ERNSBIEINIZGEIT. KRB OHER 58 E 2 7
%, REROBFIMEIIERRERE R TR OB RIBILO —>TH D, Mitle B BT, ROF
M2 HIBr 3 2 ME— O IHETIT 2, MR TR —E R RDZH 25615, IXBEOE, ZHEIX
T RO 17 EOBBNE 2 5vs (USEPA, 2015 4)

EEOMITICEB T DRERO—E M, EEOIMSE U780 2205 F 7213 BE AT ofk v
ELOBENOHELND, SDHIZ, BRI T TORLDZEMIBIT HREOHIMICE -
ThEEENS, L, M LEZTEOM TOMEOR—FIT, FAEHFIEDOE N, T ¥ LT
F— 1T B, BKRF. IO OB L - THIH SN D ATREMENH Y | KR
BEBETHEOIMERTS 2 LidTc& v (USEPA, 2015 4) .

BER S 7k BELSF 1T DABEIE, KIFRECIEMEZR ) A7 OFRIE, BIEAHT 2MBIR, WY £721F
ZOMOERIZE D DO TIERWATREERE W E WO EEEZHEOND, LvL, BEOHEEI /N
SWGAIE, BEMICB T 2HEMREEZRTLAELONE, £ TRVWEELHH Z EITHE
ENNLETHD (USEPA, 2015 4F) |

BIEE X 17 BT DR, FrEORKEZIZ BT =7 v 213, REBRE R
FTHRVRILE 725, L L., REIZKEDBROBEZLT TR TELZ LITHTHY . FERIC
ITEEDIRK DN B 5 ATREME 2385 L 22T uiEZe & 7220y (USEPA. 2015 4F)

< AR RS L BAE

BAM, 1 DO EF A (B, EEMICERShZ e bolE @FgE, BB, £72
(FAERRTEMRER) O ORRBROHERNL, BT ORRBEROMIRE XFFT oo
AN Ko THLEND ZERH D, 1 DORFEHZET VAT N—TOH T, I FIETHIC
bl T VA, HEORBRT VA VilblzbT T v A, @RS EICEET =T
VAMNS, R ERTEBHERH DL Ltz (USEPA, 2015 4F)

Y CcoOT—2Le NTOT—2N, EEMICHEEMICORKOEFEET e 7 7 A L Z R LT
L4, B MERY 27 FHIOGEE TSV, —FH, B ToOT—% L N TOT — X BNEMKER
IR L7e@m 7 r 7 7 A VR LT T S, ERIBRHAENBIEZEINLIHZELH D, B2,
HAEWENEM E v FTIZFE CMOA/AOPZ R L TW T, AERIGENEICHEEN H 55
GRS DH, ZOX ) RHEKISHEOMET, ARMAEIEENE (T2 6PK) IZEKT 55,
FIITR R D OGFE (T2 DBHPD) ICERTLAREERH D, —FH, B ToT—FZ Lt b
TOT—ZIL, GAICE o TUTEMICRR IR ETRT DD, 20X 5 Rnn,
PERIR ONT A T AT — T DENCEIEM 72 M7y EOBER 2 Z BT 572012, AFAlfER TR
TOEREBAMED & 2 OFEN 722 7T DO BB 2 LEMENI S 2o 7=,
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YRR, RIEBROHERNT, EWFINT Y2 A D = A L m T iWlBRE 72132 oftho
BEHRFENSOFERICL > TibENDd, EINTZ A=A AF, BRI ET > RAZHESNT
BY., HE5WE~DIE BEEEONREITHE ST 5 L0 T, KRR E R4 2 EE R ERIR
T&H 5 (USEPA, 2015 4) .

FIERIZ, < OFENERO 1oL L TOLFEWE D MOA,/AOP [ZEET 5 1FHIx. KR
RO RIREMEDS E NN E D DY T D Z LN TE 5, AEISETE MR B M OSEHA o K i o HE 2L
BT AIEHRIE, BEMENRERRICH 20 E 9 oW ToREN It S 5 (USEPA,
2015 4F)

EPA DINAHTA K742 (20056 4) LA TOMED T L TWD,

VS SF I TBIES S 417 BT 1T DB FHI 22 24 M DFFMlIE, B TEHIEA )7 (MOA) @
FFIENZ BT B ZEFHIT B 2 R 13 BB 7 D & ZE L7 b D Th S, [akki,
FEZHI I TR S I/ B B D BT 1T DI & BT 5 = L1t FIPERRE 2
GE T S 7 R FHI~ — 0 —DFFIEIC BT S IFR 1A BT 53R L TS
[p.39] . |

LL, ZOHA RTANEEBIT, T LDPLZEFE, X=X AT—5DXANLIRBIE &
BET SEAIICIF0 67200 [pal]l | LT W5b, 2D L HIT, HELENT= MOA, AOP ®OK
mx, EET X EHEHT DM E R TR <, ML ST MOAAOP 2372 < THES
FIBEFMHTII AN TH L ATREERH V| £, BTEMN 7 MOA AOP IZ5WTHE B E L5 ]
BN S 5,

o FHEEM, RHEEMEITX WOE THAMNOFEICRRS5N TV D,
E. &R, UV A7 MEOHREIE, F8EM & RlEEED S O BR

TETUADQHEK), TET U AOEAAMPIFIHERA L FIEE 2135, WOE OfEim £ 72138)
HOMRA, FHEFEER NE IR 5080852 CETHZENREETH D, o, U AZFH0ICE
T AEFNT — X Eide NEROT — X OFENZHOWTHHER I LTV D, — 1z, OPP
Xt P TOEHIERE EEN Y X7 FHMTIEER Ly, 2oRo0Ic, ezl X7 i<
72V A7 EBEEOMEEEZRT 2 L U A7 SR E DS FEHE S A7 1% O R & Rl 5
ZEROHREME O H DA TIRE 2R e T 52 L. VRAIZRHME U A EHOIEE & 55 b
T 5,
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b R CORFFIF 2 OEFEN L BERTH S0 & TR, ST~ 2 HETY 2
0 G O O BRI A R EET 5 OISR S TR A > TG, IEHEZRIE < BAFA 2
FolEOBOIITEIL, U A2 58 % R HE T 5 - T 5 2 L W TE 5.

F 72, ERAAFGE TR SRR, In vitro RBRCEMRBR TR O RS E & BRI I
L CEWRBROMS RO N ~DOR 245 Z & b T (Hertz-Picciotto, 1995 4) |
JEFRE R DA FHZ LM EZ TN T Z IV AR TH D, EINTWD WOE fiftr o i f4
DO TlE, BRI iEm S EEME L AEEEOSFORBR N IThND, Zo®v s v a T,
BIFEOSBELREL TS, At 7 v a Tk, HEEOREHRFE LY (MEIZG T T) FERE
Ot kOB TOIMEETOREE D= DY /2T 7 a—F 2R L T\ 5,

IV. EED Y X 7 FMICHWS 12O DEEFEDO L B 2 —
A WS

EREL AL, RN, F XA FER O #& & EH OIS & OBIfRE RFE L.
TS Z LA HIETHEETH S (Boyes 6., 2007 4F) , EEL X, THEHICBT 2HEFE D5
e, ZODMMICEELG5 2720, AELEZYTHEROMNIE] LEHRESN TS (Gordis,
2009 ) , X VIRFEICIE., HEoEHICBT HEFEICEET A2 HES, R, Yok 2oRE
ENARDOZETH Y, TDO LI T v ACHEL 52 HDHEEROMIE L, Z OMmikz BE
HIEREMEORIN ST 5 = & 25T  (Porta, 2014 4F) 2 E2 5N TW5, %< O
ZED HIE, RO AEITK T DIBTEMN 2 RN OB L H DO IEMICHET HZ L ThbH, &
FOERBEML, MORFEREERIC, FKEREFEREALNICTLHZLETHY, HIOFWHEZTR
. IRCEEREORK E ZICEET 2 EEOH Y AV RTE2ETDHZETH D,
Calderon (20004F) 1%, 2D X I RWED 4 >OFELMEAZHPA L TWD, 1) EH ORI
REZ Ll L, BRI BAHE O EERMOEMEZ R AT 528, 2) FEEOERCHEM ISR
T DK T ERFET D E CTHRFBORELZDITHZ L. 3) FrEOEMIZIIT DHHORAELK
RMqEFRIEDO DA TFHIT 5 2 L, 4) BRESCE MEFEICEREL RIFTR T2 ETH2L T
LHIOREFREZUET L2 L. ThdH, BIEOLAE, EHE, —MEME, B RXESN
7 AR I 7 & DR E O /NERIZ 1T DT < 5B LR~ D B L O BRICE S
YT TV D,

PEEMFIRIE, ka2 IET Y A7 Sl O O BRI R A TR T D DITESLOAEEER H 5,
EREREL B 21T o 2 E OB WAIZEIL, U A7 ZEBIICHEE T 572012, HHWITA v R
oY A7 D &9 Zpi@tie ) A7 - rual—K ((RE) 2HWAsZ EnTEs, LnL, B
RREIXBEEW O EFHREOL I, B, P, X< @M, X7 —FEITIC R A B0
DOHIRERH D . ENRNERE Y R 7 FHli~DO+ 2372 FIHZ 51T T b (Ntzani ., 2013 4)
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KETOREEAT, 2B HETRES B L, RN T D &, BEEFEE~DIFL
BHLENT D, BIEMEHOEIT, EPA 2k 2V A7 8HEE, KPEE S, B Luvbs
WBE O A, Ea A O HEOINC L > TAE L TWD, B2 R L. i
WZIZEEMN Y A7 I ED X S 2R EFEHT 2089 EFEET BRI, X<TRITBITS
INHOREXBRENEZBE L2TNE LR, £ ThoTh, EFEMRIT, EBRIEMII
MNEBEBLNETET U ALE LT, F0 k9 72l X HTBORE % ST 5 7= D2
THIEMARETH D, T, EEIRTHE SINTERE in vitro RBSCEWREBR THE LT
AR L EMEMIC IR L C, B FEBR T DAL RS R OB 2 4 M0 AR & o B 2 BT
L85 b5 (Hertz-Picciotto, 1995 4F) , EFAMETH LN L 5 e F TOFHIL, NRC
(2007 4F) DHEET A HMRBOFT LWV E D g VTR WTEEREE 2 B geMENH 5 &
I TWns, BRI, BRI, b hOFELSTOEWEIZ B4 L 25 alHetE
DI DREFLBIZOWNWTOMAZIRA L, ZOFEER., MEORESCAY— R U 27 ORI
WCHERT 22N T& D, B N TOBERIT, BMBRHE (B, in vitro BRCEIE L 55
nvivorlRBR CHEHT 570D HERT L RARA » FORBIR) OFERHE 720 5% O THlHES
D BT e R B M A R ET H 2 &N TE B,

B EERD S5 DN ERT — 2 AP — FOREIM O 720 0O FERERIE L R 254, B
TER R A HEEEDIRRDO—o L LT, BWET LD Fh~OBEENETOND, KT S
T NN, ORI FEOBEENRH D EEEIND, 5 EPA It b
IXEBREY L0 BISZERE OV ERE L TWDR, TNEEBMT T —2 03720, EBICIE, b
MIoBRE LV & EEKICK L TEZEREWEE BIRWEE LS 5, BT —Z K R T
OFEFT — 21X, BHERRIEREZRA L, SMFETOHEEICEI#E T 2 RiEEEEZ R X D7D DR
1T &0 155, BEMOEEMEICE L CiX, BRI 0 HEFEO T BN IBEIER 72 Bt %
DR AE LKL TWD, BRI, ERT—XI1E, b N OENICHEA OB L £ )
PEEtel-, EREMW XLV QBRECFEDEICHT D EEOEMA TOMIGE LV K<L, 1t
#THZ ENTEDH (Calderon, 2000 4F) .

FHESOGOFRFERERIZBI LT, o EERBRICix, RO E LV E D=5 L9
BT A o TEHLWVWIHIFLERDH D, L., BomERiR ek, —RacEsEdhcolx
KELVED BT 0ITEy (RFIZIFHTED D) IZ<ELABRHWLILTNWS, BT
. ZOXEIREWVIESBELARNH LD, BHENDIERHABEOINFIETCOHERLETH D,
ZOIMFEETOHEEIT Y A7 GBI A MEENEE b2 D3, EFMET — 2t h TOHEFIT—4
. B hOEASTOIFEBELBZATWVDIED, 2 O5A, mHAROIMNFIETOHEEITLER
WEEZLND, BEFMETERHENOEHEE TORWTHEOIES BEBRRKLAHTH S,

FYEER ClX. b FORERT I FEORM, R, #R., 1T <EREE NI EOLEMEZ
BET25HOTEARY (Calderon, 2000 ) , B hTORXSFEIL, &, K, X, BRSO

REZG0ZEOIIBERE 2L TITON D Z L1320, MR, §ll S 72 EZR=ETOMF
ZETIE, WE, B—0IX<BERKTH D,
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EHIT, FEALOEWRBR TIZE —D(LFAA P L ARFZHNTWEDICH L, b b Tl
B o FwE &U/iti#M%mXFVXI%«®i< %% [FIRFIC 2T T D ATREMEDN B 5,
—Ji T, F%ﬁn B HEHOATFE~DIXL BT, EFHROFEDE—DREITFRE S
LY ETHHAICHEL R VED, — 5T, EFHRIIFELESOIEL #E %%ﬁbfh@ FEhR
m77m—%&%ﬁf%ﬁﬁé & T, EBREEE CIXEHm A N E#E e E R oL E I (2 B
U 7= BREL KL 2 DTS O FTRENENS B 5

B. MR DOTEIR

BREFHROERIA T %, TORFEARNEZEBRB LN OLLU FICHBEICHI TS

(Lilienfeld and Lilienfeld, 1979 4; Mausner and Kramer, 1985 #; Kelsey ©. 1996 #;
Rothman and Greenland., 2012 #; Paddle and Harrington., 2000 4; USEPA., 2005 4F;
Purdue Pesticide Programs, PPP-43)

ad— MFRTIE, HBEOREE AT DAL OEH (Fh— 1) PHIED . FROREND
ﬁéh(b\éﬁ%ﬁ@ﬁ%ﬂ;ﬁﬁ Tz o TRFEREZ G 24T 9 (van den Brandt & (2002 )

Mol O EZR)  JE %@%ﬁf

. LU TV 22"+ (E<E& Design of prospective cohort study

RE) I DHEETHSD, 0k o

77‘13—(\ ﬂiﬁﬁ%ﬁﬁﬁgﬁ@éb A %:}l]/\\ é 71:— Direction ;f research

oo TESBE) & I HE) O .

OB EROENERE L, W <::> | (o {fmmmm
Population

ZNT CTIHAT 210, RIZ, ZDOHRIRF | Stblects A
FWAEROELZFMAEL T, NI ERE) '
& IR EwRE) DM THRIRFEAERD

%] Mo disease

the i .
disease tewoel Notexposed |.w With disease ‘

RADINE S PE T D, ak— b 3 Nodsease |
MFIEIE, IO A % IR RF I R
TAHRETIH > CTWD (2 AUTIERI%F &= Rxposure measurement FOLLOW-UP

FRAFZE CIIS TIXE B2V, JER IR
MFEClIE, —PIZIZRER T2 L ICHE—0O (FNCHEEINTT) ERELEOLZFMT 5 2 &
WZIREEND) .

27— MFgEIE. Agricultural Health Study (AHS, http://aghealth.nci.nih.gov/) @ K& 9 IZHi
METHEMTHZIELELTEDHL, WEOLENOHZRARSICEETHZEHTE S, AiME AR
— MIFZEIE, @%E@ﬁﬁ?ﬁ)%ﬁ‘ﬂ%@ﬁﬁi“f@/\ﬁ DEMIZEREZY T TS, BAMEaR—
MFZEIX, WEDH DRFA T B INTEMCESZ Y T, XS EDDRAE LICBRORFEL T
BIT260THL (—aviziE, —A (EAN) Q'E—'ﬂfﬂﬂﬂ“(% LGOI BET —FX—R (F
cIXEiER) ZFIH) .

9 aR— MFETIEH, F<EF LT UIRIEKERE LIFISBEE I s n, X< EFEEDN
REE (Bl Z 0%, EEfehy RE F 72 130E 1*@‘) THETDHZ ELARETH D,

10 R — MFFE TR, —MRIICERIFRAEROE A L CWA, 2D OIS, HAER
DORE, HIA \mfﬁk\%%@%ém@@%%ﬁﬁﬁ%éinéo
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A& A — MFSEIE, FRICAR D IRIROS G RIS SLEAIR R 230 0 o BRI 2 &0
b0, RS E R D EREDRPENC ERLETH S, BEARZ LT, BOBmT—4 211
FFBIBITiE, BHIRICDE > TERARERE EMAY v TRRETHH LD 2 & Th b,

FEGIX BT, FEOFzFi> (GEFD EAL, £ 95 TRy GIHR) EADERZRE L,
T<E (RAITITBEVOIXCE) ICBALTHKT 22 LT, BRLLIEREFOAR, Bk
b HEERH D WVFTERITITBE SN TGN Z AT 2R TH D, T 7bb, JEFX T

FEDRMT TIE, FEFNZ W TR & % A
FITEROE < BHE & BB Gase-control dosin
DI BHE AR ESH T, T B Rk Tiwa :
HZME I, BT LHICEHERHLNE D I R P
W %, JEBS RAFZE T, — R
W2, EIIRRE (T bbb, RKIN & B EH Tpeasd . cures

LI R F T B ORTRRE) A WET S D b T

753‘\ ﬁﬁ'\ pi< %%ﬁﬁ@%}ﬁﬁ&:f‘ﬁjofﬁ Kaleaprsrd : [ TR

Pisd (vanden Brandt &, (2002 4F) 7> e e
SEIHOMEZR)  ZOMET YA T Squnml Srebris

SiE 6 BB ZE R IR &S 72 B T IO . N
JRBFEEL TWD DT, FRBIR-CHRI] | Rt el ]
MOREWEROMETHICAEHATHY . % '

KOOI B\BLERS 2R ED (FANZHEE ot

INT2) BIREA L OBEM 2T 5 72

DICFIHT D2 ENTE D, Eo, EFIXBIFICIX. ZOERICHEE L T DEAEZRIGE LT
WAHDT, ak— MR THEEBRE N D7 < PE W TR T 556 2 R TE 5,
JEG SR ORI, @O 7t BEORINE | IR NZW D o L ANTHEAE L7 lREED
HHIE EOFHBTH S (Rothman, 2012 4F; Wacholder &, 1992 4F a; Wacholder 5, 1992 4
b; Wacholder ©. 1992 4 ¢; Shultz and Grimes. 2002 4; Grimes and Schultz, 2005 4F) , JiE
BIxRRAFZRIE, RRIC" AR AL T A" OB Z 0T, Jiud, BELZZANT. BBV
RN &R TR BOHKFEEZESTE T (—IICIE L) BRATWDAEERH B,

ad— FEBISTRIFZE L. A TV v RFEFA o O—FITH Y, ak— MHFE & SEF] R
TOEFZEG L TND, ZOMETVIA L, BRI BERET H7200MHT 2 X MR, &7
XC, afr— MEEHET LN TERVWEASICANTH S,

1L IR 2 75 2 TRIEAC B L T RIS T C IR BIAA B 3 R L C U /R MR TR & I
SIS IRRF 2 2 S 5 = & IR ATRE T 5,
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B 21, BUEEITH O 3R — MIFFE TR £ 7213 @FE B 4 4 UEmIL, MTEHc R d 29K
R E L U T2 W b O U e xtHREE L HAGDLEDL Z ENHEETH D, 2Fh— AN
JEB R TE (BEUER 72 iE 6 BT & 1k FRIFIZ) ORI E L CERRR SN TV D D1, IR
AT A ETERNAA T ZAORENR/NRICHABNEZ ETH D,

BRWGRFZE T, % (B2, e RMERS . IRIERERIE (SGA) ) | Bk, £/ Jik
AR VA2 RS OREE (B 20X, FtERemAr, ME, FEmXHR, ERARMA, Tl OV bk
DNAF~—H—) OFRFBIZEREZYTTWD, ZOXI RO ERFFBIX. o7V oo
REE 7TV 7V TR FICRB O EAHE L, AREEHEEORE L L CEMA L-8Isf
HTHHENWIZELTHD, AWFELIT. HHEHOPFTREL WD ANDEIEGTHY, KA
) EIL THIRARE] & LTGREIND 2, AWRFRITHETIIRL, BEThHHTD,
Wit 78 CILBRRE I 2 LB & L, —fRaic, IX<EIRE W E, <@ 3dkE<
) . W OIRRE RAE, NORFFERREZ. H AR (7013 ORERLIE) CTREIR S,
ZOMGET A BT D ARl E, 1X< BERICI T DRI EDOH I LI < BEMIC
B 2HERBEEOAREOUE TH Y, VAT REIFAHREY A7 E34y X Thd,
WrRIF 21, — AR, RARIC DT DR A £ I BAIC B2 DT D3 7 — o 211 &
DN DO S, Bl DRI FEET H Z &N TE S, LL, IO OE
Tk, BIRORAER CIHUEROFRAESR) LHRIFOFHEHIM O G ICHE SN D IEREEDH T
BEUELTNDTD, ZNUDOEREZHDIZHEET S Z E1E, EO X5 NI W T S IR
REANH D, LIn-T, THOOMZEE EFEEEN] 2805 LTEY, HFRICko 27
DICBRH HDEMNGEEL T LE -7 AZJIE, §Hli, BT 252 LixZen., #EsEod 5 —
OOBEERBRIT. IS BEIEBICEIT L TWDENE I DA TE RN L THD, TDD,
FEWTIIFZE T3 & 1E < BORFREIIBER A ML 5 Z &N TEF, AWML CRIB Sz G
FES K REBMR A TR T D 72012, BMOWIEE VB L T 500K TH D,

AR TIL, J N — 7 E£RIFEMDO L~V TOTF —F Z i LT HZ2 D TELS B
PR DN — 2 g%, ARRFHINIFE T, T OBAIIEAN TIER<ERTH D13, 22T
X, EBREOEANY Y S, XK E, R AOEBTERN R SER 2, Zo%H (£
37 7 A% —) LYV THIESND, SEHIT—KBICHIPRRY, 1TBHY, #RkEY 72 AL (] 20X,
i, BT, BB, AR, Bke &) TERIN., TRTOEE, IR, BIKFOREIR. EA
DL~V TERL, EHDO LTI, 2o 35, AEFRN (ER~—2X)
IR, A L~V DOBFZE & I3 IR TH VO | BT TIHEFIN T < B SN FZEOEA TH 5 0
EDDOREFEB DI x L, #%E TIEIE < BIEFHEAME AT RN TN D,

2 {iiE IR E DT RO E 73R E DR TOWE TH L DITKE L, H“FITFEDOHMICIB T
LIEF DOEIG OWMAETH 5,

1B —EORFETIE, X< BEITBFIHREDONTNDPER O L~V TRIE S LD 2, o2
THEAD L~V THIE S, FRFIIEAND LV THEIIZAT 5 vy o TR RIS BB )
WL H 5,
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B ZIE, KT OTBEGEE L~ KD RROHFEE, (X< EOFHMICE L TIERFENTH D
B, EFGCESLPIRREBIIEA THRE SN TV EERH 5, 2ok Ge, E<BITEAY
NVTIRESND D, FERITEAN VL TRHE S NS HEIC PRAERSR] &V ) HEEMMEH S
N2 endbs,

ZOWRET A T, B BEAOTRTORA U AN=PMEFIIZSBEINTHDNE I M
(FFEADIELSBE L) DL EIEXTERVL, ZA—7 L DRENLE AN L~ L
DEBEHNTHZ b TERY, RO BEIN (EATIERL) EM~DEHEN RN Z BB
ELTWADEAICE., ZAUIME T2 L FRICEA L~V TORENHK STy | R
Thol20 ., EHANDIZ B —KANHE TH o120 THEAITIE. 2D KD RN #EY]T
bHEBZEZLND, MROBERMEAN~OERENZHERN TH D56, ZONET A i34 RES
PRRB EMINAMEA A TWD Z bk d, BAEFERIIIN—TbEnicT—4% k&> N THl
BINTBES, ALV TH 7Y TP TON TWELBEINTWTHAD T L E X
Mg 25 EWVWIIRETH D, ZOARRFEEEORBEIZINZ T, 3K F IR 2 RN ER L
LT LMELNZRWGAE . R & TR A L~ TR AR A MY hr—/LTER
WEER . IBIND A T A4S D,

FE A DA, ARFOMEIIEERZ EA T LB OGN TEBY | S%OMEDTZHD
MG ETRRET D2 DIKETH Y . MEOREICEMT 2R H 5, LTz, EEFr
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l. PURPOSE & SCOPE

The Environmental Protection Agency’s (EPA) Office of Pesticide Programs (OPP) is
a licensing program regulating pesticides in the U.S under the Federal Insecticide,
Fungicide, and Rodenticide Act (FIFRA) and the Federal Food, Drug, and Cosmetic Act
(FFDCA). As part of this program, OPP evaluates a substantial body of toxicology and
exposure data to assess the effects of pesticides on human health and the environment. In
evaluating human health, EPA looks first for information directly evaluating the potential
for effects to people, including epidemiological data. Historically, however, few
epidemiology studies have been available to inform the potential toxicity of pesticide
chemicals. As such, OPP has in the past primarily relied on toxicology studies in laboratory
animals to assess the hazard potential and to estimate human health risk. With the
publication of numerous papers from the Agricultural Health Study?! and from the National
Institute of Environmental Health Sciences (NIEHS)/EPA Children’s Centers2, among
others, the availability of epidemiology studies conducted on U.S.-relevant exposures to
pesticides is increasing. Nevertheless, since the number of pesticides for which quality
epidemiology data either exist or are being developed remains relatively low in the near
term, experimental laboratory data will likely continue to be the primary source of data for
use in quantitative risk assessment for most pesticides.

OPP’s goal is to use such information -- when available -- in a scientifically robust
and transparent way. To accomplish this, OPP has developed a general epidemiologic
framework, as described in this document, that outlines the scientific considerations that
OPP will weigh in evaluating how such studies and scientific information can be more fully
integrated into risk assessments of pesticide chemicals. The current document is neither a
binding regulation nor is it intended to be or serve as a reviewer’s guide or manual or as a
Standard Operating Procedure for assessing or using epidemiology data. Nor is it intended
to be a full treatise on more modern or advanced epidemiological methods or to adequately
convey the nuances and complexity that is important for interpreting these types of
studies. As such, it does not discuss (or does not discuss in any detail) such important
epidemiological topics as causal inference and causal diagrams (Rothman et al., 2012a;
Glymor and Greenland, 2012); more recent approaches to confounder identification,
assessment, and control; meta-analysis and heterogeneity and its assessment/evaluation
(Borenstein et al., 2009; Greenland and O’Rourke, 2012); or sensitivity/quantitative bias
analysis for epidemiologic data (Lash et al., 2009; Lash et al,. 2014; loannidis, 2008;
Greenland and Lash, 2012; Jurek et al., 2007). All these topics, concepts, and issues can
and do apply to epidemiology studies concerning pesticides, but are not covered in this
OPP framework document. Instead, this document provides overall conceptual
considerations concerning the evaluation and use of epidemiology studies on pesticides in

1 https://aghealth.nih.gov/
2 https://www.epa.gov/research-grants/niehsepa-childrens-environmental-health-and-disease-prevention-
research-centers
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the context of human health risk assessments to support OPP’s FIFRA and FFDCA activities.
An earlier version of this document was reviewed favorably by the FIFRA Scientific
Advisory Panel (SAP) in February, 2010 (USEPA, 2010; FIFRA SAP, 2010). This document
incorporates improvements recommended by the SAP, public comments, and the
experience gained since 2010 conducting assessments on several pesticides for which
epidemiological data were available, and should be considered a document that will be
updated from time-to-time as we progress and on as-needed basis

1. INTRODUCTION

Two reports by the National Research Council (NRC) of the National Academy of
Science (NAS), “Toxicity Testing in the 21st Century: A Vision and A Strategy (2007)” and
“Science and Decisions (2009),” together provide new directions in toxicology and risk
assessment. These two NRC reports advocate far reaching changes in how toxicity testing
is performed, how such data are interpreted, and ultimately how regulatory decisions are
made. Specifically, the 2007 report on 21st century toxicity testing advocates a shift away
from the current focus of using apical toxicity endpoints to using toxicity pathways3 to
inform toxicity testing, risk assessment, and ultimately decision making. This approach is
based on the rapidly evolving scientific understanding of how genes, proteins, and small
molecules interact to form molecular pathways that maintain cell function in human cells.
The goal for the new toxicity testing paradigm is to determine how exposure to
environmental agents can perturb these pathways, thereby causing a cascade of
subsequent key events leading to adverse health effects. Human information like that
found in epidemiology studies, human incident databases, and biomonitoring studies, along
with experimental toxicological information are expected to play a significant role in this
new approach. Specifically, these types of human information provide insight into the
effects caused by actual chemical exposures in humans and thus can contribute to problem
formulation and hazard/risk characterization. In addition, epidemiologic and human
incident data can guide additional analyses or data generations (e.g., dose and endpoint
selection for use in in vitro and targeted in vivo experimental studies), identify potentially
susceptible populations, identify new health effects, or confirm the existing toxicological
observations.

This new vision of toxicity testing and risk assessment will involve data from
multiple levels of biological organization ranging from the molecular level up to
population-based surveillance with a goal of considering chemical effects from their source
to the ultimate health outcome and effects on populations. Such data will come from in
vitro and in vivo experimental studies along with in silico and modeled data. OPP’s
framework for incorporating epidemiology and incident data is conceptually consistent
with the 2007 NRC report on 21st century toxicity testing in that both emphasize the use of
the best available information from multiple data sources are compiled in a weight of the
evidence (WOE) analysis.

3 Toxicity pathways are cellular response pathways that, when sufficiently perturbed, are expected to result
in adverse health effects.
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As a general principle, occupational and environmental epidemiology studies are
conducted only on widely used pesticides; these pesticides also tend to have to be well-
studied in the scientific literature. Thus, OPP expects in many cases where epidemiologic
data are available, a significant body of literature data on toxicology, exposure,
pharmacokinetics (PK), and mode of action/adverse outcome pathway information
(MOA/AOP) may also be available. Human incident data are available on a broader range
of chemicals, some of which have robust databases and others which do not. In those
situations, where there are significant human incident cases and little is known about the
MOA/AOP or PK of a particular pesticide, the WOE analysis can be used to identify areas of
new research.

OPP’s approach in this framework for incorporating epidemiology and human
incident data is not a new or novel approach. Instead, this approach is a reasonable, logical
extension of existing tools and methods. This document relies on existing guidance
documents and frameworks (Table 1) as the starting point for reviewing and evaluating
epidemiology and human incident data for use in pesticide risk assessment. This
framework on using epidemiology and incident data in human health risk assessment is
consistent with the recommendations of the NRC in its 2009 report on Science and
Decisions, and with the agency’s recent Human Health Risk Assessment Framework
(USEPA, 2014a) with respect to emphasizing the use of problem formulation as a tool for
scoping, planning, and reviewing available, particularly in the context of risk management
needs.

Similarly, OPP’s framework is consistent with updates to the World Health
Organization/International Programme on Chemical Safety MOA/human relevance
framework, which highlights the importance of problem formulation and the need to
integrate information at different levels of biological organization (Meek et al., 2014). The
MOA/HR framework begins with identifying the series of key events that are along the
causal path, that are established on weight of evidence, using principles like those
described by Bradford Hill, taking into account factors such as dose-response and temporal
concordance, biological plausibility, coherence and consistency (Hill, 1965). Using this
analytic approach, epidemiologic findings can be evaluated in the context of other human
information (including human incident findings) and experimental studies and for
identifying areas of uncertainty and future research. However, it is noteworthy that the
availability of a fully elucidated MOA/AOP is a not requirement for using epidemiology
studies in human health risk assessment. As the agency continues to move forward in
implementing the transformative approach in the 2007 and 2009 NRC reports and as OPP
gains experience in integration of epidemiology and human incident information, OPP will
re-evaluate and update this framework as appropriate.
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Figure 1. Schematic of the adverse outcome pathway. Adapted from Ankley et al.

(2010).
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Table 1. Key guidance documents and frameworks used by OPP

1983: Risk Assessment in the Federal Government: Managing the Process

1994: Science and Judgment

2007: Toxicity Testing in the 21st Century

NAS
2009: Science and Decisions: Advancing Risk Assessment
2011: NAS report on Formaldehyde
2014: Review of EPA's Integrated Risk Information System (IRIS) Process
2001-2007: Mode of Action/Human Relevance Framework
WHO/IPCS 2005: Chemical Specific Adjustment Factors (CSAF)

2014: New developments in the evolution and application of the WHO/IPCS
framework on mode of action/species concordance analysis.
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1991-2005: Risk Assessment Forum Guidances for Risk Assessment (e.g., guidelines for
carcinogen, reproductive, developmental, neurotoxicity, ecological, and exposure
assessment, guidance for benchmark dose modeling, review of reference dose and
reference concentration processes)#

EPA 2000: Science Policy Handbook on Risk Characterization

2006b. Approaches for the Application of Physiologically Based Pharmacokinetic
(PBPK) Models and Supporting Data in Risk Assessment

2014a. Framework for Human Health Risk Assessment to Inform Decision Making.

2014b. Guidance for Applying Quantitative Data to Develop Data-Derived
Extrapolation Factors for Interspecies and Intraspecies Extrapolation

1991~2005: Y AT TEAAL NDIZDDY AT TEAALY N T —T A
fagt (GBS AME, AFEFRME, BTN, MREE, AREELOELSE
RO 720 OFREE, N F v =7 RET D 7 Do OfFEE,
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2000: U 27 OHEICET HRFEBER AN KT v 7
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TIa—F ORI LB T —H

2014a. BURFHAIZERIEMT 27200 MEREY 27 §Hlio 7 L— AT
—

2014b. RAERH] - FREROHEE D 7= DF — Z RO ERERFET S
T DOERNT —4 OWATA X A

2001: Aggregate risk assessment

OPP
2001 and 2002: Cumulative risk assessment

2001: AR U A 2 G

BET0/ T A
2001 & 2002 4E: BAE Y 2 27 FT

2013: A ML BLRR B o0 BR & & B AT I B 9 2 R T 0 B g B R
R BRI (Organisation for Economic Co-operation and Development) 71 % >

2013: Organisation for Economic Co-operation and Development Guidance Document

OECD On Developing And Assessing Adverse Outcome Pathways

AHE

Although there are other sources of human information, the focus of this framework is
on interpreting and using epidemiology and human incident data in human risk
assessment; other sources of human information are not addressed in this document in any
depth. Specifically, this document does not extensively discuss research with pesticides
involving intentional exposure of human subjectss or on studies done to measure dermal or
inhalation exposures in agricultural workers as they perform their activitiest.7 .

4 https://www.epa.gov/osa/products-and-publications-relating-risk-assessment-produced-office-science-
advisor

5 Both the conduct of such research and OPP’s reliance on data from such research are governed by EPA’s
Rule for the Protection of Human Subjects of Research (40 CFR Part 26.) Among other things, these rules
forbid research involving intentional exposure of pregnant or nursing women or of children, require prior
review of proposals for new research by EPA-OPP and by the Human Studies Review Board (HSRB), and
require further review by EPA-OPP and the HSRB of reports of completed research.

6 In the last several years, OPP has extensively evaluated existing observational studies with agricultural
workers in efforts to improve the data and approaches used in worker exposure assessment; those
evaluations can be found elsewhere (http://www.epa.gov/scipoly/sap/meetings/2007/010907_mtg.htm)
7 For additional information on how such worker exposure studies are conducted and used by OPP, see PPP-
48 “Pesticides and human Health Risk Assessment: Policies, Processes, and Procedures “available at
https://www.extension.purdue.edu/extmedia/PPP/PPP-48.pdf.
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I11. SYSTEMATIC REVIEW IN PESTICIDE RISK ASSESSMENT: EPIDEMIOLOGY

In recent years, the NRC has encouraged the agency to move towards systematic
review processes to enhance the transparency of scientific literature reviews that support
chemical-specific risk assessments to inform regulatory decision making (NRC 2011,
2014). The NRC defines systematic review as "a scientific investigation that focuses on a
specific question and uses explicit, pre-specified scientific methods to identify, select,
assess, and summarize the findings of similar but separate studies" (NRC, 2014).
Consistent with NRC's recommendations, the Office of Chemical Safety and Pollution
Prevention (OCSPP) employs fit-for-purpose systematic reviews that rely on standard
methods for collecting, evaluating and integrating the scientific data supporting our
decisions.

According to the NRC, systematic reviews “have several common elements:
transparent and explicitly documented methods, consistent and critical evaluation of all
relevant literature, application of a standardized approach for grading the strength of
evidence, and clear and consistent summative language (NRC, 2014).” In recent years,
several groups (Rooney et al.,, 2014; Woodruff and Sutton, 2014; Hartung, 2010) have
published systematic review approaches for use in environmental health sciences. The
OCSPP approach to systematic review is consistent with the principles articulated in the
Cochrane Handbook for Systematic Reviews of Interventions for evidence-based medicine
and with the principles of the Grading of Recommendations Assessment, Development and
Evaluation (GRADE). GRADE guidelines used by systematic review approaches for
environmental health sciences developed by the National Institute of Environmental Health
Sciences (NIEHS) Office of Health Assessment and Translation (OHAT) (Rooney et al.,
2014) and University of California, San Diego (Woodruff and Sutton, 2014). According to
the Cochrane Handbook, the key characteristics of a systematic review are:

« aclearly stated set of objectives with pre-defined eligibility criteria for studies;

« an explicit, reproducible methodology;

« asystematic search that attempts to identify all studies that would meet the
eligibility criteria;

« anassessment of the validity of the findings from the identified studies;

e asystematic presentation and synthesis of the characteristics and findings of the
included studies.

Each approach mentioned above share common themes and workflow starting with a
statement of scientific context (e.g., problem formulation or protocol) followed by
literature review with explicit search strategy methods, analysis of study quality (often
called risk of bias), evaluation of the quality of the totality of the evidence (e.g., integration)
and ultimately leading to a conclusion(s). Each approach recommends transparent and
pre-determined criteria for inclusion/exclusion of scientific literature, evaluation of study
quality, and reporting of study quality (e.g., high, medium, low). Each approach
recommends a pre-stated tool for data integration that provides the foundation for the
conclusion(s).
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So far, no single nomenclature has been agreed upon by the risk assessment
community for systematic review and OCSPP expects terminology to evolve over time as
more broad experience is gained. OCSPP considers its systematic review process and
workflow as starting with problem formulation followed by data collection, data
evaluation, data integration, and summary findings with critical data gaps identified.
Scientific analysis is often iterative in nature as new knowledge is obtained.

A. Problem Formulation

In the NRC report Science and Decisions-Advancing Risk Assessment, the National
Academy of Sciences (NAS) recommended to EPA that risk assessments and associated
scientific analyses be developed to be useful to policy makers; in order to attain this goal,
the NRC recommended that the agency more broadly use problem formulation in
developing its risk assessments. In response to the NRC, the agency published the Human
Health Risk Assessment Framework (USEPA, 2014) which highlights the importance of
problem formulation. Problem formulation entails an initial dialogue between scientists
and risk managers and provides the regulatory context for the scientific analysis and helps
define the scope of an analysis. Problem formulation draws from regulatory, decision-
making and policy context of the assessment, informs the technical approach to the
assessment and systematically identifies the major factors to be considered. As such, the
complexity and scope of each systematic review will vary among the different risk
assessment contexts. In other words, an OCSPP systematic review is conducted as “fit-for-
purpose” (NRC, 2009) based on the pre-determined scope and purpose determined from
problem formulation.

The problem formulation involves consideration of the available information along
with key gaps in data or scientific information. OPP uses problem formulation as a tool to
identify exposure pathways and potential health outcomes along with the appropriate
methods, data sources, and approaches for the scientific analysis. If missing data are
critical to the assessment, options are discussed as to how best to obtain that information
(e.g., required testing, research). The peer review process is identified and the timeline for
completing the assessment is defined.

Systematic review provides a transparent tool for organizing available information
and identifying gaps in information for the regulatory purpose for the analysis. As such, in
problem formulation, the regulatory context of a scientific analysis is described which in
turn defines the scope of and purpose for collection and evaluation of scientific literature.
Some considerations in problem formulation may be related to population or life-stage,
exposure pathways (e.g., route, duration, frequency), and/or health outcomes of interest
identified from in vitro or in vivo laboratory studies along with epidemiology or human
incident studies along with resources available and regulatory timeframe. In the context of
considering epidemiology and human incident information, an initial evaluation of the
study quality, study design, and uncertainties are considered.
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Key scientific issues related to hazard assessment considered in problem
formulation include: What are the effects associated with exposure? What are the
MOA/AOPs associated with these effects? What are the temporal aspects of the effects?
Are there susceptible populations and if so, who are they and what factors contribute to
susceptibility? Are there differences in PK or pharmacodynamics (PD) between laboratory
animals and humans? Exposure information is also evaluated in problem formulation. Key
scientific issues related to exposure assessment considered in problem formulation
include: How is the pesticide used? What are all of the relevant use sites of exposure? To
what chemical substances will people be exposed? What are the routes, durations, and
frequencies of exposures? Who may be exposed? Does the exposure pose different risks to
different groups (e.g., due age or activity patterns?) In the specific case of epidemiology
data, this review considers a variety of factors including, but not limited to, research
hypothesis, study design (i.e., sample size, sufficient controls, quality of measurements,
etc.), exposure dose/concentration, statistical analysis, and conclusions.

B. Data Collection

The data collection phase of systematic review is the collection of available information
from various published and unpublished sources, such as the open scientific literature and
submitted studies for pesticide registration. OPP reviews data collected under the
Organisation for Economic Cooperation and Development (OECD) test guidelines, OCSPP
harmonized test guidelines, and other pesticide (OPP guidelines). These guideline studies
are collected primarily from in-house databases of submitted studies and are found
through searches of such internal databases.

In the case of epidemiology, most studies are expected to be found in the open
scientific literature. Although in some cases supplemental analyses or information may be
available, dialogue with the researchers may provide additional, important information not
published in the original paper in understanding and interpreting epidemiology studies.
The sources of human incident information are summarized in Section IV.

Open literature search strategies use specified criteria to retrieve health effects
information from the open scientific literature and unpublished sources. After identifying
and selecting the most appropriate sources/databases and determining the most resource
effective strategy utilizing classification codes, medical subject headings, and/or keywords,
a search is conducted of the literature. Depending on the complexity of the scientific
evaluation, support from a reference librarian may or may not be needed. The goal of a
human health literature search is to perform a reliable and reproducible literature search
by providing proper documentation of the literature search process. The following steps
are conducted to retrieve relevant studies:

e The purpose of the scientific analysis and inclusion criteria are established.

e Combinations of terms/key words and/or MeSH (Medical Subject Heading) terms
and their Boolean combinations (AND; OR; NOT) are used and documented.
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Advanced Search and Field Search by author, title, keywords or subject heading may
also be performed as needed. Knowledge of database structure, and using a
separate search strategy for a specific database is helpful in retrieving relevant
studies. In addition to an initial comprehensive search, periodic searches may be
conducted to update the literature list.

e The search strategy is documented, including the date(s) of the search(es)to ensure
that all the searches of all the databases are reproducible.

o Reference lists of retrieved articles are examined? for additional background and to
look for articles that were not discovered in the initial search.

e After combining the retrieved articles from different databases and removing
duplicates, the available titles and abstracts are screened. For some of the articles
where relevance could not be determined from the title and the abstract, the article
is retrieved for further review.

o Following the initial screening, articles that were not relevant (exclusion criteria) —
such as opinion articles, studies not in English, and those consisting only of abstracts
are excluded. Additional exclusion criteria can be identified on a case by case basis.
All exclusion criteria are documented. The rest of the articles, even those that found
no adverse health effects, are included for review and evaluation.

C. Data Evaluation

In the data evaluation phase, data quality is reviewed and conclusions are made about
the utility of such data. Study quality reflects the overall confidence that reports findings
are correct (Balshem et al., 2011). As such, study quality can include:

e reporting quality (how well or completely a study is reported);

e how credible the findings are based on the design and conduct of the study;

e and how well the study addresses the topic under review (Rooney et al.,
2014).

Study quality is first considered on an individual study basis, and the quality is judged.
For example, one may have stronger confidence in a well conducted case control study than
a poorly conducted cohort study. Credibility of the scientific findings, often called risk of
bias, is evaluated using pre-determined criteria for specific domains related to study design
and conduct (See Table 2).

OPP initially developed a guidance on using the open scientific literature
considerations called the “Guidance for Considering and Using Open Literature Toxicity
Studies to Support Human Health Risk Assessment” (USEPA, 2012) and generally continues
to follow this guidance. However, with the acceleration of systematic review in risk
assessment, some aspects of the literature guidance may need updating in the future.
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Conclusions about the quality of the data are made and can be described in conclusion
statements or categories (e.g., acceptable/not acceptable; low, medium, high).

Specific considerations used in evaluating epidemiology studies on pesticide chemicals
are provided in Section I11.C below. As part of the data review, a concise written review of
the study is developed. This written review describes the study design, results,
conclusions, and the strengths and weaknesses of the study. The quality of the
epidemiologic exposure assessment is an important factor in determining what role
epidemiologic data will play in the risk assessment. As such, it is important to fully
characterize the assumptions used in the epidemiologic exposure assessment and the
degree to which these assumptions affect the interpretation and generalizability of the
epidemiologic findings. The evaluation of the epidemiologic exposure assessment may
include a consideration of past and present exposure patterns (e.g., exposed populations,
pathways, routes, and levels of exposure) and may include significant changes in use
patterns (e.g., risk mitigation actions or new use patterns). With regard to evaluating meta-
analyses, reporting guidelines for Meta-analysis Of Observational Studies in Epidemiology
(MOOSE) have been developed by Stroup et al., (2000) that are useful in evaluating the
quality and interpreting meta-analysis.

D. Data Integration: Weight of Evidence (WOE)

OPP’s human health characterizations involve the consideration of all available and
relevant data, including but not limited to human studies/epidemiology, biomonitoring
data, in vitro and in vivo experimental laboratory toxicological studies, MOA/AOP
information, pharmacokinetic studies, and structure-activity relationships (SAR). Once the
different types of hazard data are collected and a full evaluation of each relevant study is
conducted and documented, the next step is to integrate multiple lines of evidence.

Data integration is based on the principle of reaching a judgment of the totality of
the available negative and positive data for relevant hazards. OPP uses a WOE analysis for
evaluating epidemiology and human incident data, such conclusions are made on the
preponderance of the information rather than relying on any one study. OPP uses the
modified Bradford Hill criteria like those in the MOA/human relevance framework as a tool
for organizing and integrating information from different sources (Hill, 1965; U.S. EPA,
1999, 2005; Sonich-Mullin et al., 2001; Meek et al., 2003; Seed et al., 2005; OECD AOP Wiki
Users Handbooks). It is important to note that the Hill Criteria are not intended as a check
box approach but instead are points to consider when evaluating the totality of evidence.
In addition, the availability of a fully elucidated MOA/AOP is a not requirement for using
epidemiology studies in human health risk assessment. However, even in the absence of a
fully developed MOA/AOP, collection and evaluation of mechanistic data may provide
support for biological plausibility and help explain differences in tissue sensitivity, species,
gender, life-stage, or other factor. The MOA/human relevance framework is a flexible tool
which provides a foundation for organizing information without rigidity. It s this

8 https://aopwiki.org/wiki/index.php/Main_Page#OECD_User_Handbook
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flexibility that makes it a useful tool for a variety of purposes such as evaluating causality,
integrating information across multiple lines of scientific evidence, and identifying data
gaps and areas of future research. In this analysis, epidemiologic findings and human
incident data can be evaluated in the context of other human information and experimental
studies to evaluate biological plausibility, to identify areas of uncertainty and areas of
further research. To describe how Bradford Hill aspects are considered in the WOE
evaluations, OPP has used some definitions of terms as outlined in EPA’s Preamble to the
Integrated Science Assessments (ISAs) which serve as a scientific foundation for the review
of EPA’s National Ambient Air Quality Standards (NAAQS). (USEPA, 2015).

o Key events. Incases where the MOA/AOP are established for a particular health
outcome, a clear description of each of the key events (i.e., measurable parameters)
that underlie the MOA/AOP are given. Data to inform the key events may come from
a combination of in vitro or in vivo data sources (human or animal). These key
events can be a combination of PK and PD events. However, it noteworthy that the
availability of a fully elucidated MOA/AOP is a not requirement for using
epidemiology studies in human health risk assessment.

e Biological Gradient/Exposure-Response/Dose-Response Concordance &
Relationships. The Preamble to the ISAs notes that “In the context of epidemiology,
a well-characterized exposure-response relationship (e.g., increasing effects
associated with greater exposure) strongly suggests cause and effect, especially
when such relationships are also observed for duration of exposure (e.g., increasing
effects observed following longer exposure times) (USEPA, 2015).” When the
MOA/AOP is known, dose-response relationships are identified for each key event.
Dose-response relationships are compared among key events. In some cases, the
earlier key events may be more sensitive than later key events. In other cases, key
events may share similar dose-response curves.

o Temporal association. Evidence of a temporal sequence between the introduction
of an agent and appearance of the effect constitutes another argument in favor of
causality (USEPA, 2015). The Preamble to the ISAs notes that “Strong evidence for
causality can be provided through ‘natural experiments’ when a change in exposure
is found to result in a change in occurrence or frequency of health.”

This analysis considers key events which occur rapidly (e.g., metabolism to an active
metabolite which could occur within minutes of exposure) and those which occur after
longer durations (e.g., development of a tumor) to ensure coherence of the effects. Specific
to considering epidemiology data, the temporal relationship between the exposure and
health outcome may be considered.
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e Strength, consistency, and specificity.

Consistency: An inference of causality is strengthened when a pattern of elevated risks is
observed across several independent studies. The reproducibility of findings constitutes
one of the strongest arguments for causality. Statistical significance is not the sole criterion
by which the presence or absence of an effect is determined. If there are discordant results
among investigations, possible reasons such as differences in exposure, confounding
factors, and the power of the study are considered (USEPA, 2015).

Consistency of findings across studies is informed by the repeated observation of effects or
associations across multiple independent studies. Further support is provided by
reproducibility of findings in different populations under different circumstances.
However, discordant results among independent investigations may be explained by
differences in study methods, random errors, exposure, confounding factors, or study
power, and thus may not be used to rule out a causal connection (USEPA, 2015).

Strength of the observed association: The finding of large, precise risks increases
confidence that the association is not likely due to chance, bias, or other factors. However,
itis noted that a small magnitude in an effect estimate may or may not represent a
substantial effect in a population (USEPA, 2015).

Specificity of the observed association: Evidence linking a specific outcome to an
exposure can provide a strong argument for causation. However, it must be recognized that
rarely, if ever, do environmental exposures invariably predict the occurrence of an
outcome, and that a given outcome may have multiple causes (USEPA, 2015).

e Biological plausibility and coherence.

Coherence: An inference of causality from one line of evidence (e.g.,
epidemiologiccontrolled human exposure, animal, or ecological studies) may be
strengthened by other lines of evidence that support a cause-and-effect interpretation of
the association. There may be coherence in demonstrating effects from evidence across
various fields and/or across multiple study designs or related health endpoints within one
scientific line of evidence (USEPA, 2015).

When animal and human data show a similar toxic profile, both quantitatively and
qualitatively, there is high confidence in the human health risk assessment. Whereas in
other cases, animal and human data may show a qualitatively similar toxic profile but
quantitative differences are observed. For example, a particular chemical exhibits the
same MOA/AOP in animals and humans but there may be species differences in dose-
response characteristics. These dose-response differences could be due to tissue
dosimetry (i.e., PK) or from different response characteristics (i.e., PD). In contrast, animal
and human data can, in some instances, show qualitatively dissimilar outcomes. This
situation highlights the need to fully and objectively evaluate all available information in a
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transparent and comprehensive manner to consider factors such as species, gender, and
life-stage differences and potential susceptibilities along with study design considers and
exposure potential.

Biological plausibility: An inference of causality is strengthened by results from
experimental studies or other sources demonstrating biologically plausible mechanisms. A
proposed mechanism, which is based on experimental evidence and which links exposure
to an agent to a given effect, is an important source of support for causality (USEPA, 2015).

Similarly, information on MOA/AOP for a chemical, as one of many structural analogs, can
inform decisions regarding likely causality. Structure activity relationships and
information on the agent’s structural analogs can provide insight into whether an
association is causal (USEPA, 2015).

EPA’s Cancer Guidelines (2005) indicate:

“evaluation of the biological plausibility of the associations observed in epidemiologic
studies reflects consideration of both exposure-related factors and toxicological
evidence relevant to identification of potential modes of action (MOAs). Similarly,
consideration of the coherence of health effects associations reported in the
epidemiologic literature reflects broad consideration of information pertaining to the
nature of the biological markers evaluated in toxicologic and epidemiologic studies. [p.
39]”

However, The Cancer Guidelines further state that “lack of mechanistic data, however, is not
a reason to reject causality [p. 41].” As such, lack of established MOA/AOP is not necessary
knowledge when using epidemiology data and epidemiology associations may still be valid
even in the absence of an established MOA/AOP and may also provide insight into potential
MOA/AOP.

e Uncertainties. Uncertainties are discussed in the WOE transparently and
objectively.

E. Overall conclusions, recommendations for risk assessment, statement
of areas of confidence and uncertainty

It is important to document a summary of the evidence, the procedures or methods
used to weigh the evidence, the basis for the WOE conclusion or recommendation, any
uncertainties and areas for further research. Recommendations are made on the role of the
epidemiologic or human incident data in the risk assessment. Generally, OPP does not use
human incident information for quantitative risk assessment but instead to inform risk
assessment/risk management activities such as indicating a potential need for a new risk
assessment or new risk management measures, evaluating the success of risk mitigation
actions after they are implemented, and targeting possible enforcement activities. In
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contrast to more limited role of human incident data, epidemiology studies have the
potential to help inform multiple components of the risk assessment in a variety of ways.
High quality studies with robust exposure assessment may be used to estimate a risk
metric quantitatively. Alternatively, outcomes reported in epidemiologic studies may be
compared qualitatively with those seen in in vitro and animal studies to evaluate the
human relevance of animal findings (Hertz-Picciotto, 1995) and may be useful in assessing
the biological plausibility of epidemiologic outcomes. In the final portion of the proposed
WOE analysis, the overall conclusions along with statement of areas of confidence and
uncertainty. This section also identifies areas of additional research. This section
recommends the source of data for regulatory values and the appropriate approach for
extrapolating between species (if necessary) and among humans.

IV. REVIEWING EPIDEMIOLOGY STUDIES FOR USE IN PESTICIDE RISK ASSESSMENT

A Introduction

Epidemiology is a science that seeks to identify and evaluate relationships between
exposure to chemical, physical or biological agents, and the health status of populations
(Boyes et al., 2007). It has been defined as the “study of how disease is distributed in
populations and the factors that influence or determine this distribution” (Gordis, 2009).
More broadly, it is considered as “the study of the occurrence and distribution of health-
related events, states, and processes in specified populations, including the study of the
determinants influencing such processes and the application of this knowledge to control
of relevant health problems” (Porta, 2014). The objective of much epidemiologic research
is to obtain a valid and precise estimate of the effect of a potential cause on the occurrence
of disease. A key objective of epidemiology, like other sciences, is determining cause and
effect or - said differently - of identifying the etiology of a disease or health outcome and
the risk factors with which it might be associated. Calderon (2000) described four major
uses of such studies: 1) describe the health status of a population and discover important
time trends in disease and exposure frequency; 2) explain the occurrence of diseases by
identifying factors that are associated with specific diseases or trends; 3) predict the
number of disease occurrences and the distribution of health states in specific populations;
and 4) improving the health status of the population by identifying factors that affect
environmental or human health. In the case of pesticides, epidemiology focuses on the
relation between exposure and adverse health effects in the general population and in
specific sub-populations, such as occupationally exposed workers or applicators.

Epidemiology studies have the potential to help inform multiple components of the risk
assessment in a variety of ways. High quality studies with robust exposure assessment
may be used to quantitatively estimate risk or an appropriate risk surrogate such as an
odds ratio or risk ratio. However, many epidemiology studies that deal with pesticides and
pesticide exposure suffer some limitations in size, scope, exposure assessment, or data
analysis which prevent or otherwise impede their full use in quantitative risk assessment
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(Ntzani et al., 2013). Pesticide use in the US has changed significantly over the last few
decades. As the use changes, so does the exposure to workers. Changes in pesticide use
have occurred due to risk mitigation actions by EPA, resistance management activities,
introduction of new chemistries, and increased use of genetically modified crops. These
significant changes in exposure have to be taken into account when interpreting
epidemiology studies and, ultimately, the decision to use such studies in quantitative risk
assessment. Even so, epidemiology studies may be used to compare with evidence from
experimental animal studies to characterize assumptions used in deriving such values. In
other cases, outcomes reported in epidemiologic studies may be compared qualitatively
with those seen in in vitro and laboratory animal studies to evaluate biological plausibility
or human relevance of animal findings (Hertz-Picciotto, 1995). Human information like
that found in epidemiology studies are expected to potentially play a significant role in the
new vision of toxicity testing recommended by the NRC (2007). Specifically, epidemiology
studies can provide insight on health outcomes that may arise from real-world chemical
exposures in humans and thus can contribute to problem formulation and hazard/risk
characterization. Human information may guide additional studies (e.g., dose and endpoint
selection for use in in vitro and targeted in vivo experimental studies); and identify novel
health effects or host susceptibilities which can be investigated with future research.

When laboratory data from animal studies provide the primary source of information
for hazard characterization, one potential source of uncertainty is the relevance of animal
models to humans. In the absence of data to support the contrary, animal findings are
assumed to be relevant to humans. Furthermore, EPA assumes that humans are more
sensitive than laboratory animals in the absence of data to support the contrary. In
actuality, humans may be more or less sensitive to pesticides than other animal species.
Epidemiology and human incident data can provide scientific information and support to
inform uncertainties associated with species extrapolation. With respect to population
variability, epidemiology studies better characterize potential variability than do animal
studies. Specifically, epidemiologic data include the genetic diversity, and variability
inherent in human populations and thus can better account for and represent actual
population response to environmental chemicals than laboratory animals (Calderon, 2000).

With respect to dose-response characterization, animal toxicology studies have the
benefit that studies can be designed to cover a broad range of exposure levels. However,
animal toxicology studies generally use exposures which are much larger (sometimes
orders of magnitude) than those that occur in the environment. These high exposure levels
in animal studies dictate the need for extrapolation from high to low doses. This
extrapolation introduces added uncertainty into the risk assessment. Epidemiology studies
and human incident data involve actual real-world exposures and thus high dose
extrapolation may in many cases not be needed. Epidemiology studies conducted over a
range of exposures (from low to high) are most useful.

Animal studies do not replicate the length, magnitude, duration, routes of exposure and
variability in exposure experienced by humans (Calderon, 2000). Human exposure often
occurs through multimedia exposure pathways, including food, water, air, and indoor and
outdoor environments. In contrast, controlled laboratory studies typically use a single
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route of exposure. In addition, humans may experience exposure to multiple chemicals
and/or non-chemical stressors simultaneously, whereas most animal studies involve a
single chemical stressor. On one hand, this multi-chemical exposure in epidemiology
studies can provide a challenge when attempting to attribute epidemiologic outcomes to a
single pesticide chemical. On the other hand, epidemiologic research considers real-world
exposures and may help, when considered along with experimental approaches, address
questions associated with multiple chemical exposures which can be difficult to evaluate in
an experimental setting.

B. Types of Epidemiology Studies

The major types of observational epidemiologic studies are described briefly below
with consideration of their strengths and weaknesses (Lilienfeld and Lilienfeld, 1979;
Mausner and Kramer, 1985; Kelsey et al., 1996; Rothman and Greenland, 2012; Paddle and
Harrington, 2000; USEPA, 2005; Purdue Pesticide Programs, PPP-43).

Cohort studies begin with a group of people that share common characteristics—the
cohort—and evaluate their health over an extended follow-up time period during which
the occurrence of disease is recorded (see figure box from van den Brandt et al. (2002)).
The common characteristic is often the presence vs. absence of “risk factors” (such as
exposures)®. In such studies,

differences in disease occurrence

between the “exposed” and “non- Design of prospective cohort study
exposed” individuals are identified S, L. S—
and studied over time to determine ... Diection of research

differences in the rate of disease0. o] with disease |

This difference in the rate of disease COMORT: | ... £ .

occurrence is then investigated to the i !
determine if the rate of disease doesse | o] Wotexposed | pf Wihdisesse|

differs between the exposed and ‘<| No disease
non-exposed groups. Cohort studies
have the ability to simultaneously 0= Exposure measurement FoLLOWR

evaluate multiple disease outcomes

under study (which is not true for case-control studies, which are generally limited to
evaluating only a single (pre-specified) disease outcome, discussed below). Cohort studies
can also be performed either prospectively, like the Agricultural Health Study (AHS,
http://aghealth.nci.nih.gov/), or retrospectively from historical records. A prospective
cohort design focuses on a group of people from a current point in time through a future
point in time. A retrospective cohort design focuses on a group exposed at some point in
the past, and compares disease rates after exposure occurred (generally through existing

9 While exposure is often dichotomized on an exposed vs. non-exposed basis in cohort studies, exposure can
also be measured on a quantitative scale (e.g., by a continuous measure or by quantiles)

10 Cohort studies commonly study differences in rates of disease, but these can also include other focal
outcomes of interest such as birth weight, mental abilities, blood pressure, etc.
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available exposure databases (or records) available on a person-by-person (individual)
basis). Prospective cohort studies can be relatively lengthy and expensive to conduct,
particularly for rare diseases, and require a large number of subjects to be under study.
Importantly, significant resources and professional staff are required for a long period of
time to collect high quality data.

Case-control studies are studies in which groups of individuals with (cases) and
generally without (controls) a given disease are identified and compared with respect to
(generally past!!) exposure to determine whether those with the disease of interest are

more likely or no more likely to have

been exposed to the agent(s) or Gass-cantrol desin
factor(s) of interest. That is, the T .
analysis of case-control studies il i sl iy
contrasts the frequency of exposure of
the agent or factor in the cases with = -
those in the controls to determine if | ————— - . Bl il
these differ and, thus, whether thereisa | "™ )

rman

differential association. In case-control | pomistcs
studies, determination of the disease e Frateds

status (i.e., cases with the disease; vt L e
controls without) generally precedes v
determination of the exposure status Rimi

(see figure box from van den Brandt et
al. (2002)) Because disease has already occurred at the time of selection into the case-
control study, this study design is particularly useful in studying uncommon diseases or
diseases with long latency and can be utilized to evaluate the relation between many
different exposures and a specific (pre-specified) disease outcome of interest . And because
case-control studies begin with individuals who have the disease, the studies can involve
fewer subjects than cohort studies and can be completed in a comparatively shorter time
frame. Challenges in case-control investigations include the selection of an appropriate
control group and the assessment of exposures which may have occurred long before the
disease was diagnosed (Rothman, 2012; Wacholder et al. 1992a; Wacholder et al. 1992b;
Wacholder et al. 1992c; Shultz and Grimes, 2002; Grimes and Schultz, 2005). Case-control
studies can be particularly susceptible to “recall bias” in which diseased individuals may
remember exposures or events differently (generally better) than those who serve as the
controls and are healthy.

Nested case-control studies are an example of a hybrid design and contain the
elements of a cohort and a case-control study. These designs can be useful when the
analytical costs for determining pesticide exposure are too high for the entire cohort to be
studies. For example, a cases that that have developed the disease or health outcome in an

11t is possible for case-control studies to be done prospectively in which the cases have not yet developed
the disease until after the study begins under which circumstance the cases are enrolled in the study over
time.
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ongoing cohort study can be matched with appropriate controls from the study that have
not yet developed the disease or outcome of interest at the time of the analysis. One
recognized advantage of the nested case-control study (as opposed to a more standard
case-control study) is that the issues of selection bias and recall bias are minimized.

Cross-sectional studies focus on the prevalence of disease (e.g., birth defects, small-
for-gestational age or SGA), symptoms, biological/physical and physiologic response
measurements (e.g., pulmonary function tests, blood pressure, chest X-ray, clinical
examinations, liver and kidney biomarkers). A key feature of such studies is that they are
observational studies which focuses on the prevalence as a frequency measure, with the
presence or absence of disease determined at the time of sampling or over a sampling
period. Prevalence is the proportion of individuals in a population that has the disease and
can either be determined as a “point prevalence” or as a “period prevalence”.12 A
prevalence is a proportion not a rate and thus the cross sectional studies do not involve a
follow up period. Typically, the exposure status (e.g., exposed or unexposed), disease
status/outcome, and demographic characteristics are determined at a point in (or over)
time. The major comparison in this study design is a comparison of the prevalence of the
outcome in the exposed population vs. the prevalence of that outcome in the non-exposed
population, with the risk measure being the prevalence risk ratio or odds ratio. Cross-
sectional studies are generally used to identify patterns or trends in disease occurrence
over time or in different geographical locations, and can be conducted quickly and
relatively inexpensively. However, they measure the prevalence of a disease outcome
which is affected by both incidence — the rate of occurrence of new cases — and duration of
the disease, and it can be difficult in any analysis to sufficiently separate these factors.
Thus, they involve “survivor populations” and do not measure, evaluate, or consider those
that have left the population of interest because they became ill. Another important
limitation of cross-sectional studies is they do not allow one to determine whether
exposure precedes the disease. As such, cross-sectional studies are unable to establish
temporal relationships between disease and exposure and typically require additional
studies to confirm a hypothesized causal association suggested by a cross-sectional study.

Ecologic studies examine exposure and disease patterns using information reflecting
group or population-level data. In an ecologic study, the unit of analysis is a group and not
an individual!3. Here, groups of subjects are sampled, with the exposure, disease, and
potential confounding factors measured at this group (or cluster) level. Groups are
generally defined on a geographic, administrative, or organizations unit basis (e.g., districts,
towns, counties, schools, workplaces, etc.) with all exposure, disease, or confounder
measurements made or summarized at the group level rather than at the level of the
individual. An ecological (group-based) study contrasts with an individual-level study in
that in the former there is no information on whether the cases are the actual individuals

12 The former involve measurements at a particular place and/or a particular time while the latter involves
determinations of the proportion of cases over a given time period.

13 Some studies can be “partially ecologic” in design in which either the exposure or the disease outcome is
measured on a group level but the other variable is measures at an individual level with the researcher
making inferences to the individual level.
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with the exposure whereas in the latter exposure information is tied to the individual. As
an example, a study of disease rates by contaminant levels in water can be ecologic with
respect to evaluation of the exposure, but the health outcome or disease status may have
determined on an individual basis. In these instances, the term “semi-ecological” can
sometimes be used when exposure is determined at the group level but outcome is
determined at the level of the individual.

Using this design, it is not possible to know whether all members of the exposed group
are individually exposed (or the individual exposure levels) nor is it possible to infer
individual-level effects from the group level effects that result. If the intent of the study is
to direct inferences to the group (rather than the individual), then this is not a concern and
these studies can be appropriate, particularly if measurements are constrained or difficult
to perform at the individual level and exposures within the group are generally
homogenous. If the intent of the study is instead to direct inferences to the individual, then
this study design suffers from what is termed the ecological fallacy: the assumption that an
observed relationship in an aggregated or grouped data set will reflect what would have
been observed had the sampling occurred at the individual level. In addition to this
ecological fallacy issue, an additional bias arises a result of the inability to appropriately
control for confounding variables at the level of the individual as opposed to the group
when information on confounding factors is only available at the group level.

In most cases, ecologic studies are considered as hypothesis-generating studies and
best used for suggesting research hypotheses for future studies and may contribute to
problem formulation. Nevertheless, it is important to assess ecological studies on the basis
of the quality of their design, and useful information can be gleaned from an ecologic study
if itis well-designed (FIFRA SAP, 2010). Ecologic studies alone generally do not have the
ability to establish a causal association. When taken with other these studies can be useful
under certain circumstances and should be noted in the hazard characterization. In
particular, stable populations, clear exposure contrasts, and large differences in risk can be
important factors that might increase the utility of these studies.

C. Evaluating epidemiology studies for use in pesticide risk assessment

OPP searches the peer reviewed literature for observational epidemiology studies of
potential adverse acute and chronic health effects linked to chemical use. Details regarding
literature search protocols and strategies are provided elsewhere. Epidemiologic research
utilizing cohort, case-control, or cross-sectional study designs may provide information to
OPP to strengthen OPP’s understanding of the potential hazards, exposure-response
characterization, exposure scenarios. or assessment methods, and — ultimately -- risk
characterization (van den Brandt, 2002). In addition, compelling case reports or case
series analysis may illumine a health effect or mechanism of action previously unidentified.

Generally speaking, the quality of epidemiologic research, sufficiency of

documentation of the study (study design and results), and relevance to risk assessment is
considered when evaluating epidemiology studies from the open literature for use in OPP’s
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risk assessments. It is important that these criteria are endpoint-specific as various
methodological details become more or less important given the endpoint of concern. For
example, it is important to understand relevant factors that influence outcome
ascertainment (e.g., is there a test or a biomarker available to indicate presence of an effect,
or are symptoms gradual and non-specific initially leading to physician diagnosis upon
advanced disease state). In addition, for environmental and occupational epidemiology
studies, the quality of the exposure assessment is vitally important. Prior consideration
must be given to aspects of exposure and confounder measurement to the question under
consideration.

When considering individual study quality, various aspects of the design, conduct,
analysis and interpretation of the epidemiology studies are important. These include:

1. Clear articulation of the hypothesis, even if the study is hypothesis-generating in
nature;

2. Adequate assessment of exposure for the relevant critical windows of the health
effects, the range of exposure of interest for the risk assessment target population,
and the availability of a dose/exposure-response trend from the study, among other
qualities of exposure assessment,

3. Reasonably valid and reliable outcome ascertainment (the correct identification of
those with and without the health effect in the study population),

4. Appropriate inclusion and exclusion criteria that result in a sample population
representative of the target population, and absent systematic bias,

5. Adequate measurement and analysis of potentially confounding variables, including
measurement or discussion of the role of multiple pesticide exposure, or mixtures
exposure in the risk estimates observed,

6. Overall characterization of potential systematic biases in the study including errors
in the selection of participation and in the collection of information; this can include
performing sensitivity analysis to determine the potential influence of systematic
error on the risk estimates presented (e.g., Greenland’s formula)

7. Evaluation of the statistical power of the study to observe health effects with
appropriate discussion and/or presentation of power estimates,

8. Use of appropriate statistical modeling techniques, given the study design and the
nature of the outcomes under study

Other Federal and non-Federal entities have offered such guides (e.g., OHAT,
Navigation Guide, National Toxicology Program [NTP] Report on Carcinogens [ROC4], IRIS,
Cochrane ACROBAT-Non-Randomized Studies of Interventions) (Sterne et al., 2015 as well
as the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology)
statement for observational epidemiological studies (see www.strobe-statement.org and
Vandenbroucke et al., 2007; Von EIm, 2014) As OPP gains experience with integrating
epidemiology studies into human health risk assessment, relevant adjustments to its
evaluation approach will be made.

14 http://ntp.niehs.nih.gov/pubhealth/roc/index.html
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Independent study evaluation is performed and documented prior to the
development of evidence- tables of detailed summary tables which are informative to
hazard identification and exposure response assessment. Table 2 provides a structure to
the major considerations evaluated and the associated weight (low, medium, high) for each
consideration. Table 2 provides a generic set of considerations and should not be
considered a checklist. The specific scientific considerations appropriate for particular
science analysis are adjusted on a case by case basis.

The culmination of the study evaluation process would be to provide
professional/expert opinion as to the nature of the potential bias that may result from
systematic errors in each specific study identified through study specific evaluations, and
an assessment of overall confidence in the epidemiological database. In this way, data
integration (animal, human, mechanistic, other) would be informed by level of confidence
in the human epidemiological studies that inform human health effects of environmental
and occupational exposures.
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Table 2. Study Quality Considerations 2 (Adapted from Munoz-Quezada et al., 2013;

LaKind etal., 2014)
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If questionnaire
utilized, questionnaire
and/or interview
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exposure
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precise quantitative . .
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chemical-specific; no
chemical-specific
exposure information
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use of pesticides in
general evaluated

Outcome Assessment

Standardized tool,
validated in study
population; medical
record
review/diagnosis
confirmation by
trained staff;
appropriate
consideration of
prevalence/incidence
of cases

Standardized tool, not
validated in population, or
screening tool; or, medical
record review, methods
unstated

Selected sections of
test, or maternal
report, other; or,
maternal/paternal
self-report;
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consideration for
whether prevalent or
incident cases are
appropriate

Confounder control

Good control for
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confounders relevant
to scientific question,
and standard
confounders

Moderately good control
confounders, standard
variables, not all variables
relevant for scientific question

Multi-variable analysis
not performed no
adjustments; no
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restriction, or
matching

Statistical Analysis

Appropriate to study
question and design,
supported by
adequate sample size,
maximizing use of
data, reported well
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Acceptable methods,
questionable study power
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analytic choices that lose
information, not reported
clearly

Minimal attention to
statistical analyses,
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described clearly
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1. Exposure Assessment

Exposure assessment can be defined as the “process of estimating or measuring the
magnitude, frequency and duration of exposure to an agent, along with the number and
characteristics of the population exposed. Ideally, it describes the sources, pathways,
routes, and the uncertainties in the assessment. (Zartarian et al., 2005).” In environmental
epidemiology, exposure assessment poses a unique challenge, particularly for toxicants
that are found in low concentrations in environmental media (NRC, 1991; NRC, 1997).
Given the complexity of exposure pathways, researchers have developed a number of
different approaches to assess exposure, which vary in accuracy, precision, and resource
requirements (Niewenhuijsen, 2003). Some of these approaches are not specific to
epidemiologic research but may be used to inform exposure assessment in a variety of
scientific analyses. These approaches include indirect methods, based on historical
records, questionnaires, and environmental monitoring, and direct methods, based on
personal monitoring and biomonitoring. A brief description of each method and its
strengths and limitations is summarized below.

Table 3. Summary of indirect and direct exposure assessment methods.

1 /7S BT

E< BRI, TH2MEA~DIX ORI, SHEROWIM Z, X< @& S RH OB L Rk
LLEBITHEEEITFMT 27 vt R LERTHI LN TE D, HAMICIE, FMICHW TR
K. #¥& TEROAREEZ LR T 5 Ll (Zartarian &, 2005 4F) ShTW\Wo, BREES
WZHEWTC, 1T T, FHCRBEEA P IR E CIAET 2 B EWEIC >V T, Mo RS
L72oT% (NRC, 1991 45 NRC, 1997 4F)  (E< B OBM S 2B 8 L <. sl
SBEFHT 5720 0%L ORI 7 7o —F 2% L TEn, TOEMRS, FELOWER
HIIIkE % Th D (Niewenhuijsen, 2003 ) , ZHHDT 7 r—F DN D)iE, EHE
WAL L T2 b O TIHARWA, Bex BB ARVEANTIC 61T 213 < BERHAL O AF H & S k3 2 72 0 (T A
SNBHAREMR DD, ZNHLOT 7T r—FI2i%, BEORER, 77— M REE=ZV 7
HEO BN R HIEL MAE=2 ) VIR A= ) U TS BENR FERD 5,
FNENOFIEOMHRFH & Z ORI L R Z U TICEHNT 5,

3 3. R < WA 15 L BRI < BAH S RO E L ©

Approach Method/Tools Example Exposure Estimation

Estimating proximity to
Historical Records agricultural crops using
address information

Dichotomous or ordinal
exposure

Determine potential for

. . Dichotomous or ordinal
Questionnaires exposure based on

Indirect L exposure
pesticide-use responses
. - Dichotomous or ordinal
Measuring pesticide levels
. - . > exposure, although
Environmental Monitoring | in community water -
S exposure can be estimated
drinking system - .
using modeling
Measuring pesticide
Personal Monitoring inhalation and dermal Quantified exposure
Direct contact

Measuring pesticide levels

in blood and urine Quantified internal dose

Biomonitoring

Historical records and questionnaires are used to characterize key
characteristics which may be associated with chemical exposure. When used in

epidemiologic studies, historical records and questionnaires are not typically used to
predict quantitative levels of exposure. Rather, historical record information or
questionnaire responses are used to assign categorical levels of exposure. Examples of

historical record information that can be used to assign exposure levels includes address in

proximity to an agricultural crop and employment history information on job title and
history. Similarly, questionnaires can be used to determine if individuals recall using
pesticides or identify individuals that perform specific job functions that increase their
potential for exposure. While historical records and questionnaires can be cost-effective
sources of data on potential exposure, they do have limitations. Data collected from
historical records and questionnaires is only a surrogate of exposure. As a result, these
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data sources may be an oversimplification of exposure and not accurately rank individual’s
exposure potential.

Environmental monitoring is used to characterize the levels of contaminants in
environmental media, including air, water, soil, food, and home and work environments.
Many state and Federal programs collect environmental monitoring data that may be
useful in epidemiologic studies. Environmental monitoring is particularly useful for
exposure that can be defined by geographic boundaries, such as air pollution and drinking
water. As such, many epidemiologic studies have utilized ambient air monitoring data and
community drinking water system data to characterize exposure to air pollution and
drinking water contamination, respectively. While environmental monitoring data is useful
for estimating exposures defined by geographic boundaries, it can be less reliable for the
purposes of assigning individual-levels exposures, particularly when individuals live, work,
and spend time in many different locations.

Personal monitoring is used to characterize exposure at the point of contact of a
body boundary. Examples of personal monitoring include the use of dosimeters to assess
dermal contact with pesticides, personal air sampling devices to assess inhalation
exposure, and collection of duplicate diet samples to determine pesticide levels in food.
The advantage of personal monitoring is that it is likely to provide more accurate estimates
of individual-level exposure than indirect methods. Personal monitoring also makes it
possible to quantify exposure levels that can be useful for prioritizing the relevance of
different routes of exposure. Additionally, personal monitoring can also be used to assess
longitudinal exposure when repeated measurements are taken over time. While personal
monitoring offers many advantages over indirect approaches, it also tends to be labor and
resource intensive (Niewenhuijsen, 2003). As a result, it is not typically feasible to conduct
large-scale epidemiologic studies that assess exposure using personal monitoring.
Furthermore, personal monitoring is highly dependent on the measurement techniques
and analytic tools used to obtain samples and it is less likely that information that
characterizes exposures during the relevant time period (usually in the past) will be
available. Inaddition, it is unlikely that the full range of exposures over the time period of
interest will be captured, and sampling may not be over a sufficient time period to capture
peaks and fluctuations As such, it is extremely important to consider the scientific rigor
and reliability of personal monitoring methodologies that are used in epidemiologic
studies, and such monitoring may need to be supplemented by other monitoring (e.g.,
environmental, biological, and/or interview/questionnaire data).

Biomonitoring is used to characterize exposure by measuring a chemical, its
metabolite(s), or reactive product(s) in biological samples, such as blood, urine, saliva,
milk, adipose, and other body tissues (Needham et al., 2007). Zartarian et al. (2005) state
that “a biomarker/biological marker has been defined as an "indicator of changes or events
in biological systems. Biological markers of exposure refer to cellular, biochemical,
analytical, or molecular measures that are obtained from biological media such as tissues,
cells, or fluids and are indicative of exposure to an agent". Thus, biomarkers can be used to
assess exposure or as indicators of health effects (LaKind et al., 2014). Table 4 provides
scientific considerations for evaluating the quality and relevance of biomonitoring data
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collected from epidemiology studies. Assessing exposure using biomonitoring has
expanded rapidly as analytical tools have become more cost-effective and more biomarkers
are identified. Compared with self-reported questionnaire or interview data,
biomonitoring may reduce exposure misclassification and enhance the precision of the risk
estimates. Similarly, biomonitoring integrates exposures from different routes and can be
used to determine the amount of exposure that is absorbed into the body (Checkoway et al.,
2004). Furthermore, knowledge as to the role of the biomarker in the natural history of
disease is known in certain instances, such that biomarkers may help resolve temporality
of exposure issues.

While biomonitoring has many advantages over others exposure assessment
methods, it also has its own limitations. In many studies, biological sample are only taken
from a single point in time and may not reflect accurately reflect longitudinal patterns,
particularly if exposures are highly variable. Furthermore, evaluation of biomarkers also
requires an understanding of degradation and metabolism of chemicals in both the
environment and human body. As such, biomarkers of exposure may differ between
individuals for reasons other than exposure level. Differences in metabolism, co-
morbidities such as kidney disease in relation to urinary measurements, uncertainty as to
whether the biomarker measures exposure to the active ingredient or the environmental
degradates may all account for apparent differences in biomarkers of exposure among
individuals, and possibly between comparison groups.
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Table 4. Considerations of biomonitoring data from environmental epidemiology research (Adapted from LaKind et

al. (2014).

Biomarker Consideration

Tier 1

Tier 2

Tier 3

Exposure biomarker

Biomarker has accurate and
precise quantitative relationship
with external exposure, internal
dose, or target dose.

Biomarker has an unknown
quantitative relationship with
external exposure, internal
dose, or target dose or is poor
surrogate (low accuracy and
precision) for exposure/dose.

NA

Effect biomarker

Bioindicator of a key eventina
MOA/AOP.

Biomarkers of effect for which
the relationship to health
outcome is understood

Biomarker has undetermined
consequences (e.g., biomarker is not
specific to a health outcome).

Specificity

Biomarker is derived from

exposure to one parent chemical.

Biomarker is derived from
multiple parent chemicals with
similar toxicities.

Biomarker is derived from multiple
parent chemicals with varying types
of adverse endpoints.

Method sensitivity

Limits of detection are low
enough to detect chemicals in a
sufficient percentage of the
samples to address the research
question.

Frequency of detection too low
to address the research
hypothesis.

NA

Biomarker stability

Samples with a known history
and documented stability data.

Samples have known losses
during storage but the
difference between low and
high exposures can be
qualitatively assessed.

Samples with either unknown
history and/or no stability data for
analytes of interest.

Sample contamination

Samples are contamination-free
from time of collection to time of
measurement (e.g., by use of

Study not using/documenting
these procedures.

There are known contamination
issues and no documentation that
the issues were addressed
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Biomarker Consideration

Tier 1

Tier 2

Tier 3

certified analyte-free collection
supplies and reference materials,
and appropriate use of blanks
both in the field and lab).
Research includes documentation
of the steps taken to provide the
necessary assurance that the
study data are reliable.

Method requirements

Instrumentation that provides
unambiguous identification and
quantitation of the biomarker at
the required sensitivity (e.g., GC-
HRMS, GC-MS/MS, LC-MS/MS)

Instrumentation that allows
for identification of the
biomarker with a high degree
of confidence and the required
sensitivity (e.g., GC-MS, GC-
ECD).

Instrumentation that only allows for
possible quantification of the
biomarker but the method has
known interferants (e.g., GC-FID,
spectroscopy)

Matrix adjustment

Study includes results for
adjusted and non-adjusted
concentrations

Study only provides results
using one method (matrix-
adjusted or not).

NA

FP = false positive; FN = false negative; GC-HRMS = gas chromatography/high-resolution mass spectrometry; GC-MS = gas chromatography/mass spectrometry; GC-ECD
= gas chromatography-electron capture detector; GC-FID = gas chromatography-flame ionization detector], ICC = intra-class correlation coefficient ; NA = not applicable;

PFP = probability of false positive
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Indirect exposure assessment methods are common in retrospective studies and
based on factors that are surrogates of chemical exposure. As described above, indirect
exposure data cannot generally be used to estimate quantitative exposure levels without
additional modeling. For example, a questionnaire can be used to determine if an
individual has ever used a pesticide, but can less reliably collect data on all the
environmental and behavioral factors that are needed to calculate that individual’s
exposure. As such, indirect exposure data are often used to classify exposure using a
dichotomous exposure variable (i.e. exposed/unexposed) or ordinal exposure scale. In
contrast, direct exposure assessment methods are based on data on actual individual-level
exposure through personal monitoring and biomonitoring. Thus, direct methods can be
used to estimate individual exposure or internal dose levels. Direct methods are more
common in prospective studies, but are also used in retrospective studies when existing
biological samples are available from well-defined population groups.

Quantified personal measurements, such as personal monitoring and
biomonitoring, are generally considered the best source of data for estimating actual
exposure levels (NRC, 1991; NRC, 1997). While this is the case, accurate qualitative
measures of exposure (e.g. dichotomous and ordinal exposure metrics) from indirect
methods can be just as accurate for the purpose of epidemiology. Moreover, indirect
methods are often easier to interpret and may require less additional research and
development to demonstrate their utility in exposure assessment.

Regardless of the approach, exposure assessment methods should be able to
provide exposure estimates that are reliable and valid. In the context of epidemiology,
reliability general refers to the ability to reproduce results and validity generally refers to
the extent that exposure estimates reflect true exposure levels (Checkoway et al., 2004).
When evaluating a particular exposure assessment’s reliability and validity, it is important
to consider the exposure assessment’s strengths and weaknesses in the context of the
study'’s research objectives. Less refined exposure assessment may be suitable for
exploratory studies. This is because exploratory studies help raise awareness about
potential hazards that can encourage investment in more focused research. Conversely,
studies with more focused hypotheses can be greatly strengthened through the use of more
refined exposure assessment methods. Therefore, indirect and direct exposure assessment
methods represent a spectrum of tools that are complimentary and can be used at different
stages of research when exploring exposure-disease relationships.

2. Confounding Factors

Confounding occurs when the relationship between the exposure and disease is to some
extent attributable to the effect of a second (confounding) risk factor. This can happen
when this second (i.e., confounding) risk factor is an independent, causally-associated risk
factor for the disease but is also associated -- causally or non-causally -- with the exposure
under analysis and does not also serve as an intermediate variable in the causal pathway
between the exposure and the outcome of interest. If not properly measured and accounted
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for, confounders have the ability to change the magnitude (and potentially the direction) of
the estimated association between an exposure and health outcome. This can result in an
over- or under-estimation of the relationship between exposure and disease because the
effects of the two risk factors have not been appropriately separated, or “disentangled”. As
an example: a given pesticide may be associated with lung cancer in a given study, but this
may be due to a confounding effect of farm tractor diesel fumes: here, this second factor —
farm tractor diesel fumes — would be a confounder if it was causally associated with the
disease outcome (here, lung cancer) but also associated with pesticide exposure.
Confounding factors may include less intuitive lifestyle exposures such as cigarette
smoking, dietary factors (e.g., high energy/calorie laden diet), and physical activity (e.g.,
lack of physical activity) genetics, comorbidity, medication use, alcohol consumption, etc.,
all of which may adversely affect health and may be statistically associated with pesticide
use. In epidemiological analyses, confounding factors are measured in the study sample
and typically “adjusted for” in the final risk estimate in either the design phase of the study
or the analysis phase. With respect to the former, the epidemiological researcher can
“restrict” the study population to individuals that share a characteristic which the
researcher wishes to control; this has the result of removing the potential effect of
confounding caused by that (now controlled) characteristic. A second available method —
also applicable to the design phase of the study -- is for the researcher to control
confounding by “matching” individuals based on the confounding variable. This ensures
that the confounding variable is evenly distributed between the two comparison groups
and effectively controls for this. Itisimportant to note that the relationship between the
confounder and the exposure or outcome does not need to be found to be statistically
significant in order for it to have an impact on the risk estimate for the main effect5.

At the analysis stage, one method by which confounding can be controlled is by
stratification. Under this means of control, the association is measured separately under
each of the (potentially) confounding variables; the separate estimates are “brought
together” statistically -- if determined to be appropriate -- to produce a common odds ratio
or other effect size measure by using Mantel-Haenszel approaches which weight the
estimates measured in each stratum. Stratification can be difficult if there are multiple
potential confounders that need to be controlled simultaneously. In such cases,
confounding is typically dealt with by means of statistical modelling. (e.g., logistic
regression).

It is important that careful consideration be given to confounders prior to any
epidemiological studies being initiated in the field and it is important that any study
adequately describe how this was done: epidemiological studies are frequently critiqued
for ignoring or paying insufficient attention to potential confounders. For this reason, a
sensitivity analysis can be helpful to demonstrate the potential effects that a missing or
unaccounted for confounder may have on the observed effect sizes (see Gustafson and

15 This is why it is generally considered inappropriate to “statistically test” for a confounder to determine
whether the confounder needs to be adjusted for. Instead, some consider a change in the effect size of 10% or
more after adjustment for (inclusion of) a potential confounder to be sufficient evidence for the confounder to
be incorporated into the analysis.
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McCandless, 2010). If unmeasured confounders are thought to affect the results,
researchers should conduct sensitivity analyses to estimate the range of impacts and the
resulting range of adjusted effect measures. Such sensitivity analyses -- generally not
uniformly conducted in most published epidemiological studies — can be used when
available to estimate the impact of biases and potential confounding by known but
unmeasured risk factors.

Depending upon the specific exposure-disease association under study, a factor may
or may not be a confounding factor that is necessary to control: in order for a substantial
distortion in the effect size estimate to occur due to confounding, the confounder must be
not only a relatively strong risk factor for the disease of interest6, but also be strongly
associated with the exposure of interest. Assessment of potential confounding is made on a
study specific basis and — if unmeasured confounders are thought to affect the results --
researchers should conduct a sensitivity analysis to estimate the range of impacts and
resulting range of adjusted effect measures. When evaluating the quality of observational
epidemiology studies, OPP will consider whether relevant confounding factors are properly
identified, described, measured and analyzed such that an unbiased estimate of the specific
association under study can be made, and, when possible, may consider sensitivity analysis
as a potential tool to assist in determining the degree to which such confounding might
potentially affect the estimate of the effect size. It should be emphasized that a confounder
must be a relatively strong risk factor for the disease to be strongly associated with the
exposure of interest to create a substantial distortion in the risk estimate. In such cases, it
is not sufficient to simply raise the possibility of confounding; one should make a
persuasive argument explaining why a risk factor is likely to be a confounder, what its
impact might be, and how important that impact might be to the interpretation of findings.
(p. 23-25, FIFRA SAP Report, 22 April 2010)

Finally, it is important to distinguish between confounding, effect modification,
synergy, and other mediating effects of covariates. Confounding is a bias that results from
not controlling for a variable that is associated causally with the disease and associated —
causally or non-causally -- with the exposure of interest. Epidemiologic researchers seek to
minimize this bias. Effect modifiers -- on the other hand -- are variables that differentially
affect the magnitude of the effect size, by strata (e.g., age, race/ethnicity, SES status, genetic
polymorphisms). Effect modifiers may or may not also be confounders. Typically, they are
modelled by either introducing interaction terms in multivariable models or by evaluating
effect sizes by strata after stratifying the data by levels of the effect modifier. A study
frequently needs to be specifically designed to evaluate effect modifiers in order to have a
sufficient sample size in each population strata of interest. Epidemiologic researchers seek
to understand effect modifiers (not minimize them, as they do with confounders) because
they can be important in evaluating risk differences across population strata, in evaluating
the association between exposure and the effect of interest, and in identifying susceptible

16 Consideration needs to be given not only to ensuring that the confounding factor is indeed a risk factor on
its own but also to ensuring not only related to the exposure of interest. Adjusting for a factor that has an
association with the disease of interest wholly or partly because of its association with the exposure of
interest will lead to attenuation of the exposure-disease relationship if it truly exists.
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subpopulations. Effect modifiers may or may not also be confounders. For example,
smoking may be a confounder in a study associating lung cancer with a pesticide often used
on tobacco, but it may also be an effect modifier if the risk of exposure to this pesticide is
higher among smokers than non-smokers. Synergy is often introduced as a biological or
pharmacological/toxicological concept rather than an epidemiological one and relates to
the ability of two chemicals, together and acting jointly, to magnify or exaggerate the effect
beyond that which would be seen considering the (mathematical) sum of each chemical’s
effects alone. In epidemiological and statistical terms, this is often expressed as effect
modification or interaction.

3. Statistical Analysis

Epidemiologic studies are designed to measure an association between a specific
exposure and a disease. When evaluating the quality of pesticide epidemiology studies, OPP
will also consider the statistical methods used. Specifically, OPP will consider the extent to
which the analytic methods described in the study are appropriate to the research
question; the completeness of the description of the statistical methods utilized; the
appropriateness of the methods for identification, assessment and adjustment of
potentially confounding variables in the exposure-disease relation; and, the description,
extent of, and presentation of any sub-group analyses which may have been performed
(including whether statistical corrections for multiple comparisons have been made).

Epidemiologic investigations typically utilize statistical modeling to estimate risk (e.g.
generalized linear models such as logistic (for odds ratios) or Poisson (for count data)
regression. To do so, researchers must consider not only the relevant main exposure and
outcome variables, but also consider relevant confounding factors, and whether the
association under investigation may differ by level of these factors, i.e., effect modification
or interaction (Szklo et al., 2004). Upon identification of a potentially confounding variable
-- one that substantively changes the magnitude and/or direction of the association under
study -- adjustment through regression modeling can help to isolate the risk estimate of
interest, i.e., the association under study. In addition, OPP will evaluate the stratification of
the association by the level of the potential effect modifier under study or evaluation of
statistical interaction. If the magnitude and direction of the association of interest differs
greatly by level of a third variable, then the stratified results should be considered primary.

When performing statistical modeling when the outcome is rare or the sample size is
relatively small, it is important to be cautious about including too many covariates in the
model. Any resulting effect size estimate may be too high or too low and is unlikely to
reflect the true estimate of effect. Such issues due to rare events or low sample sizes are
also possible when conditional methods are used (e.g., conditional logistic regression when
the design includes matching of the comparison group under study): if too few discordant
pairs (or discordant sets) are observed, the estimated effect size may also be unreliable.
Thus: while controlling for confounders and other covariates is important, the assessor
must take care not to over-control or end up with too few degrees of freedom to produce a
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