食品中に含まれるカビ毒(オクラトキシンA, アフラトキシン,ゼアラレノン)の

汚染実態調査報告書

1 調查項目

- 1) オクラトキシンA, アフラトキシン及びゼアラレノンについて, 含有の可能性があって我が国において汚染実態調査がほとんど実施されていない食品を中心に汚染実態調査を実施する。
- 2) 諸外国におけるオクラトキシンA, アフラトキシン及びゼアラレノン等に関する情報を収集・整理する。

2 調査実施場所

財団法人 日本食品分析センター 彩都研究所 大阪府茨木市彩都あさぎ7丁目4番41号 財団法人 日本食品分析センター 多摩研究所 東京都多摩市永山6丁目11番10号

3 調査内容

3.1 汚染実態調査

学識経験者による調査検討会で検討された表-1に示す食品群について調査を実施する。

食品	調査するカビ毒
オリーブ	オクラトキシンA
種子等	オクラトキシンA, アフラトキシン, ゼアラレノン
養殖魚	オクラトキシンA, アフラトキシン, ゼアラレノン
健康食品	オクラトキシンA, アフラトキシン, ゼアラレノン
食肉製品(生)	オクラトキシンA, アフラトキシン, ゼアラレノン
食肉製品 (加工品)	オクラトキシンA, アフラトキシン, ゼアラレノン
卵及び卵製品	オクラトキシンA, アフラトキシン, ゼアラレノン
血液及び臓器(生)	オクラトキシンA, アフラトキシン, ゼアラレノン
血液及び臓器 (加工品)	オクラトキシンA, アフラトキシン, ゼアラレノン
さとうきび,黒砂糖	アフラトキシン
料理用ハーブ類	オクラトキシンA, アフラトキシン, ゼアラレノン
飲料	オクラトキシンA, アフラトキシン, ゼアラレノン
ベビーフード	オクラトキシンA, アフラトキシン, ゼアラレノン
幼児向け食品	オクラトキシンA, アフラトキシン, ゼアラレノン
菓子類	オクラトキシンA, アフラトキシン, ゼアラレノン
豆類及び豆を用いた製品	オクラトキシンA, アフラトキシン, ゼアラレノン
キャッサバ	オクラトキシンA, アフラトキシン, ゼアラレノン
野菜及び野菜を用いた製品	オクラトキシンA
果物及び果物を用いた製品	オクラトキシンA, アフラトキシン, ゼアラレノン
(ドライフルーツ含む)	
その他加工品	オクラトキシンA, アフラトキシン, ゼアラレノン

表-1 汚染実態調査を実施する食品

3.2 文献調査

諸外国におけるオクラトキシンA,アフラトキシン及びゼアラレノンに関する報告書,規制情報及び汚染実態調査データを収集して整理する。

4 調査結果の概要

4.1 国内流通食品中のかび毒汚染実態調査

3.1 に示した 20 の食品群について計 497 検体を購入し、オクラトキシン A、アフラトキシン及びゼアラレノンについてそれぞれ 350 検体の分析を行った。また、あわせて分析法の妥当性確認を行った。

その結果,オクラトキシン A は,調査した 350 検体中定量限界以上で検出したものは 7 検体で,濃度範囲は $0.5\sim110~ng/g$ であった。アフラトキシンは,調査した 350 検体中定量限界以上で検出したものは 26 検体で,濃度範囲は $0.1\sim1.6~ng/g$ であった。ゼアラレノンは,調査した 350 検体中定量限界以上で検出したものは 13 検体で,濃度範囲は $0.1\sim210~ng/c$ あった。

4.2 文献調査

JECFA の評価モノグラフ 7 部, IARC 報告書 2 部, 世界のカビ毒規制に関する報告書 1 部を収集し、翻訳した。

5 検体

検体の一覧を表-2~21に示した。

表-2 オリーブの一覧

試料 番号	識別番号	品名	生産国	購入地域
1	0V-1	酢漬けオリーブ(赤ピーマン詰め)	スペイン	東京都多摩市
2	0V-2	塩漬けオリーブ 1	イタリア	東京都多摩市
3	0V-3	グリーンオリーブ 1	スペイン	東京都府中市
4	0V-4	ブラックオリーブ	アメリカ	東京都多摩市
5	0V-5	グリーンオリーブ 2	スペイン	神奈川県相模原市
6	0V-6	グリーンオリーブ3	スペイン	神奈川県相模原市
7	0V - 7	エキストラバージンオリーブオイル 1	イタリア	神奈川県相模原市
8	0V-8	エキストラバージンオリーブオイル 2	トルコ	神奈川県相模原市
9	0V-9	ひまわりオイル漬けオリーブ	フランス	東京都町田市
10	0V-10	塩漬けオリーブ2	アメリカ	東京都町田市

表-3 種子等の一覧

試料 番号	識別番号	品名	生産国	購入地域
11	SS-1	かぼちゃの種 1	中国	東京都府中市
12	SS-2	クコの実 1	中国	東京都府中市
13	SS-3	松の実 1	中国	東京都府中市
14	SS-4	ミックスナッツ	不明	東京都府中市
15	SS-5	ひまわりの種 1	アメリカ	東京都多摩市
16	SS-6	松の実 2	中国	東京都府中市
17	SS-7	クコの実 2	中国	東京都府中市
18	SS-8	スイカの種	台湾	神奈川県藤沢市
19	SS-9	ひまわりの種 2	アメリカ	東京都府中市
20	SS-10	かぼちゃの種 2	中国	東京都府中市
21	SS-11	クルミ1	アメリカ	大阪府大阪市
22	SS-12	クルミ 2	アメリカ	神奈川県相模原市
23	SS-13	クルミ3	アメリカ	東京都町田市
24	SS-14	松の実 3	中国	東京都町田市
25	SS-15	ひまわりの種 3	アメリカ	東京都町田市
26	SS-16	クルミ 4	アメリカ	東京都町田市
27	SS-17	かぼちゃの種 3	中国	東京都町田市
28	SS-18	松の実 4	中国	東京都町田市
29	SS-19	クコの実 3	中国	東京都町田市
30	SS-20	かぼちゃの種 4	中国	東京都町田市

表-4-1 養殖魚の一覧

試料 番号	識別番号	品名	生産国	購入地域
31	CF-1	トラウトサーモン1	チリ	神奈川県相模原市
32	CF-2	アトランティックサーモン1	ノルウェー	東京都多摩市
33	CF-3	うなぎ蒲焼1	中国	東京都多摩市
34	CF-4	本まぐろ(中とろ)1	トルコ	東京都多摩市
35	CF-5	うなぎ蒲焼 2	中国	東京都多摩市
36	CF-6	うなぎ蒲焼3	中国	東京都多摩市
37	CF-7	銀鮭辛塩	チリ	神奈川県川崎市
38	CF-8	うなぎ蒲焼 4	中国	神奈川県相模原市
39	CF-9	トラウトサーモン 2	タイ	東京都町田市
40	CF-10	キングサーモン	ニューシ゛ーラント゛	東京都町田市
41	CF-11	うなぎ蒲焼 5	中国	大阪府大阪市
42	CF-12	紅とろ(サーモン)	ノルウェー	大阪府大阪市
43	CF-13	本まぐろ(赤身)	キプロス	大阪府大阪市
44	CF-14	トラウトサーモン3	チリ	大阪府大阪市

表-4-2 養殖魚の一覧

試料 番号	識別番号	品名	生産国	購入地域
45	CF-15	アトランティックサーモン 2	ノルウェー	東京都町田市
46	CF-16	トラウトサーモン 4	チリ	東京都町田市
47	CF-17	紅鮭	カナダ	東京都町田市
48	CF-18	本まぐろ(中とろ)2	イタリア	東京都八王子市
49	CF-19	うなぎ蒲焼 6	中国	東京都八王子市
50	CF-20	トラウトサーモン 5	チリ	東京都八王子市

表-5-1 健康食品の一覧

試料 番号	識別番号	品名	生産国	購入地域
51	HF-1	雑穀 1 (もちきび)	中国	東京都町田市
52	HF-2	雑穀 2 (18 種混合)	日本	東京都多摩市
53	HF-3	雑穀 3 (16 種混合)	日本	東京都多摩市
54	HF-4	雑穀 4 (キヌア)	ペルー	東京都多摩市
55	HF-5	雑穀5(もちあわ)	中国	東京都町田市
56	HF-6	麦類若葉加工食品1	日本	東京都多摩市
57	HF-7	麦類若葉加工食品 2	日本	インターネット
58	HF-8	麦類若葉加工食品3	不明	インターネット
59	HF-9	麦類若葉加工食品 4	日本	インターネット
60	HF-10	小麦はいが油食品1	日本	インターネット
61	HF-11	小麦はいが油食品 2	不明	インターネット
62	HF-12	小麦はいが油食品3	不明	インターネット
63	HF-13	米はいが油	日本	インターネット
64	HF-14	スピルリナ含有食品1	不明	インターネット
65	HF-15	スピルリナ含有食品2	日本	インターネット
66	HF-16	オタネニンジン根加工食品1	不明	インターネット
67	HF-17	オタネニンジン根加工食品2	韓国	インターネット
68	HF-18	たん白食品1	不明	インターネット
69	HF-19	たん白食品2	不明	インターネット
70	HF-20	月見草油食品1	日本	インターネット
71	HF-21	月見草油食品 2	不明	インターネット
72	HF-22	プルーンエキス 1	不明	インターネット
73	HF-23	プルーンエキス 2	不明	インターネット
74	HF-24	プルーンエキス3	不明	インターネット
75	HF-25	はい芽食品1	不明	インターネット
76	HF-26	はい芽食品2	日本	インターネット
77	HF-27	はい芽食品3	不明	インターネット
78	HF-28	花粉食品 1	不明	インターネット

表-5-2 健康食品の一覧

→ Notest	表-5-2 健康食品の一覧			
試料 番号	識別番号	品名	生産国	購入地域
79	HF-29	花粉食品 2	日本	インターネット
80	HF-30	たん白質酵素分解物食品1	不明	インターネット
81	HF-31	たん白質酵素分解物食品2	日本	インターネット
82	HF-32	ギムネマシルベスタ加工食品 1	日本	インターネット
83	HF-33	ギムネマシルベスタ加工食品 2	日本	インターネット
84	HF-34	ギムネマシルベスタ加工食品3	不明	インターネット
85	HF-35	ガルシニアエキス食品1	不明	インターネット
86	HF-36	ガルシニアエキス食品 2	不明	インターネット
87	HF-37	ガルシニアエキス食品3	日本	インターネット
88	HF-38	イチョウ葉エキス食品 1	日本	インターネット
89	HF-39	イチョウ葉エキス食品 2	ドイツ	インターネット
90	HF-40	イチョウ葉エキス食品3	不明	インターネット
91	HF-41	ローヤルゼリー食品	不明	インターネット
92	HF-42	ブドウ種子エキス食品 1	アメリカ	インターネット
93	HF-43	ブドウ種子エキス食品 2	不明	インターネット
94	HF-44	ブドウ種子エキス食品3	不明	インターネット
95	HF-45	ウコン食品 1	日本	インターネット
96	HF-46	ウコン食品 2	不明	インターネット
97	HF-47	ウコン食品 3	不明	インターネット
98	HF-48	ウコン食品 4	日本,バング ラディシュ	インターネット
99	HF-49	ウコン食品 5	日本	インターネット
100	HF-50	ウコン食品 6	不明	インターネット
101	HF-51	ウコン食品 7	不明	インターネット
102	HF-52	ウコン食品 8	不明	インターネット
103	HF-53	ウコン食品 9	不明	インターネット
104	HF-54	ウコン食品10	不明	インターネット
105	HF-55	ビルベリーエキス食品 1	不明	インターネット
106	HF-56	ビルベリーエキス食品 2	不明	インターネット
107	HF-57	ビルベリーエキス食品3	不明	インターネット
108	HF-58	ハトムギ食品 1	不明	インターネット
109	HF-59	ハトムギ食品 2	不明	インターネット
110	HF-60	ハトムギ食品3	不明	インターネット
111	HF-61	ハトムギ食品 4	不明	インターネット
112	HF-62	ハトムギ食品 5	タイ	インターネット
113		ハトムギ食品 6	不明	インターネット
114	HF-64	ハトムギ食品 7	不明	インターネット
115	HF-65	ハトムギ食品 8	不明	インターネット
116	HF-66	ハトムギ食品 9	タイ	インターネット

表-5-3 健康食品の一覧

試料 番号	識別番号	品名	生産国	購入地域
117	HF-67	ハトムギ食品10	不明	インターネット
118	HF-68	胡麻食品 1	日本	インターネット
119	HF-69	胡麻食品 2	不明	インターネット
120	HF-70	胡麻食品3	不明	東京都町田市
121	HF-71	胡麻食品 4	不明	神奈川県相模原市
122	HF-72	胡麻食品 5	不明	神奈川県相模原市
123	HF-73	玄米食品 1	日本	インターネット
124	HF-74	玄米食品 2	不明	インターネット
125	HF-75	玄米食品3	不明	インターネット
126	HF-76	玄米食品 4	日本	インターネット
127	HF-77	玄米食品 5	不明	インターネット
128	HF-78	豆を用いた食品1	日本	東京都町田市
129	HF-79	豆を用いた食品 2	不明	神奈川県相模原市
130	HF-80	豆を用いた食品3	不明	東京都町田市
131	HF-81	豆を用いた食品4	日本	東京都町田市
132	HF-82	豆を用いた食品 5	日本	東京都町田市

表-6 食肉製品(生)の一覧

試料 番号	識別番号	品名	生産国	購入地域
133	RM-1	牛肩ロース肉 1	アメリカ	東京都多摩市
134	RM-2	牛肩肉	オーストラリア	東京都多摩市
135	RM-3	牛すね肉	オーストラリア	神奈川県川崎市
136	RM-4	牛肉	オーストラリア	東京都町田市
137	RM-5	牛肩ロース肉 2	オーストラリア	東京都町田市
138	RM-6	豚バラ肉 1	カナダ	東京都多摩市
139	RM-7	豚肉	アメリカ	東京都多摩市
140	RM-8	豚バラ肉 2	メキシコ	東京都多摩市
141	RM-9	豚バラ肉 3	アメリカ	東京都町田市
142	RM-10	豚肩ロース肉	カナダ	東京都八王子市
143	RM-11	鶏モモ肉1	ブラジル	東京都多摩市
144	RM-12	鶏肉 1	アメリカ	東京都多摩市
145	RM-13	鶏肉 2	台湾	神奈川県藤沢市
146	RM-14	鶏肉 3	アメリカ	神奈川県相模原市
147	RM-15	鶏モモ肉 2	ブラジル	東京都町田市

表-7 食肉製品(加工品)の一覧

試料 番号	識別番号	品名	生産国	購入地域
148	PM-1	ローストビーフ	日本	東京都多摩市
149	PM-2	ビーフジャーキー	中国	東京都多摩市
150	PM-3	牛肉大和煮1	不明	東京都多摩市
151	PM-4	コンビーフ1	ブラジル	東京都多摩市
152	PM-5	コンビーフ2	不明	東京都府中市
153	PM-6	牛肉大和煮 2	不明	東京都府中市
154	PM-7	ビーフペースト	不明	神奈川県川崎市
155	PM-8	ベーコン巻ロールキャベツ(豚肉, 牛肉使用)	タイ	神奈川県相模原市
156	PM-9	やきとり(モモ, タレ付)1	中国	東京都多摩市
157	PM-10	チキンフレーク	不明	東京都多摩市
158	PM-11	やきとり(モモ, タレ付)2	日本	神奈川県川崎市
159	PM-12	チキンバー	中国	東京都町田市
160	PM-13	チキンナゲット	不明	神奈川県相模原市
161	PM-14	鶏肉だんご	不明	神奈川県相模原市
162	PM-15	チキン南蛮	中国	東京都町田市
163	PM-16	グリルチキン	タイ	東京都町田市
164	PM-17	豚肉ソーセージ 1	台湾	神奈川県藤沢市
165	PM-18	豚肉ランチョンミート1	アメリカ	東京都多摩市
166	PM-19	豚肉ランチョンミート2	デンマーク	東京都府中市
167	PM-20	豚肉だんご	タイ	神奈川県藤沢市
168	PM-21	豚肉ソーセージ 2	ドイツ	神奈川県相模原市
169	PM-22	豚肉ソーセージ3	アメリカ	神奈川県川崎市
170	PM-23	豚肉ソーセージ 4	アメリカ	神奈川県川崎市
171	PM-24	鶏豚肉ソーセージ	アメリカ	神奈川県相模原市
172	PM-25	豚肉ランチョンミート3	中国	神奈川県藤沢市

表-8 卵及び卵製品の一覧

試料 番号	識別番号	品名	生産国	購入地域
173	PE-1	うずら卵水煮 1	中国	東京都多摩市
174	PE-2	うずら卵水煮 2	タイ	東京都多摩市
175	PE-3	うずら卵水煮3	タイ	東京都府中市
176	PE-4	あひるピータン 1	台湾	神奈川県藤沢市
177	PE-5	あひるピータン 2	中国	神奈川県川崎市
178	PE-6	あひるピータン3	台湾	大阪府大阪市
179	PE-7	あひるピータン 4	中国	大阪府大阪市
180	PE-8	うずら卵水煮 4	タイ	神奈川県藤沢市
181	PE-9	うずらピータン	台湾	東京都町田市
182	PE-10	あひるピータン 5	台湾	東京都町田市

表-9 血液及び臓器(生)の一覧

試料 番号	識別番号	品名	生産国	購入地域
183	RVM-1	牛ハツ	日本	東京都多摩市
184	RVM-2	牛大腸(シマ腸)	オーストラリア	東京都府中市
185	RVM-3	牛レバー	オーストラリア	東京都町田市
186	RVM-4	鶏砂肝	日本	東京都多摩市
187	RVM-5	鶏レバー、ハート	日本	東京都多摩市
188	RVM-6	鶏レバー1	日本	神奈川県川崎市
189	RVM-7	豚レバー1	日本	東京都多摩市
190	RVM-8	豚ハツ	日本	東京都多摩市
191	RVM-9	豚レバー2	日本	神奈川県川崎市
192	RVM-10	鶏レバー2	日本	神奈川県川崎市

表-10-1 血液及び臓器(加工品)の一覧

		表-10-1 皿仪及い順碕(加工前)	♥	
試料 番号	識別番号	品名	生産国	購入地域
193	PVM-1	牛レバー(加熱済・味付)1	不明	東京都町田市
194	PVM-2	牛レバー(加熱済・味付)2	日本	大阪府大阪市
195	PVM-3	牛モツ(加熱済)1	日本	神奈川県藤沢市
196	PVM-4	豚レバー(加熱済・味付)1	日本	大阪府大阪市
197	PVM-5	豚レバー(加熱済・味付)2	日本	神奈川県藤沢市
198	PVM-6	牛モツ(加熱済・味付)2	日本	東京都多摩市
199	PVM-7	牛ギアラ(味付)	オーストラリア	東京都多摩市
200	PVM-8	牛モツ(加熱済)3	日本	神奈川県相模原市
201	PVM-9	豚レバー(加熱済・味付)3	日本	神奈川県大和市
202	PVM-10	牛モツ(加熱済)4	ブラジル	神奈川県相模原市
203	PVM-11	鶏レバー(加熱済・味付)1	日本	神奈川県相模原市
204	PVM-12	鶏レバー(加熱済・味付)2	不明	東京都町田市
205	PVM-13	鶏砂肝(加熱済・味付)1	日本	東京都町田市
206	PVM-14	鶏砂肝(加熱済・味付)2	日本	東京都町田市
207	PVM-15	鶏砂肝(加熱済・味付)3	日本	大阪府大阪市
208	PVM-16	鶏レバー(加熱済・味付)3	中国	東京都町田市
209	PVM-17	鶏砂肝(加熱済・味付)4	日本	大阪府大阪市
210	PVM-18	鶏砂肝(加熱済・味付)5	日本	大阪府大阪市
211	PVM-19	鶏砂肝(加熱済・味付)6	日本	神奈川県大和市
212	PVM-20	鶏レバー(加熱済・味付)4	日本	インターネット
213	PVM-21	豚レバー(加熱済・味付)4	日本	東京都多摩市
214	PVM-22	豚レバー(加熱済・味付)5	日本	東京都多摩市
215	PVM-23	豚モツ(加熱済・味付)1	日本	神奈川県相模原市
216	PVM-24	豚レバー(加熱済・味付)6	フィリピン	神奈川県藤沢市
217	PVM-25	豚レバー(加熱済・味付)7	日本	東京都町田市

表-10-2 血液及び臓器(加工品)の一覧

試料 番号	識別番号	品名	生産国	購入地域
218	PVM-26	豚レバー(加熱済・味付)8	フランス	東京都町田市
219	PVM-27	豚レバー(加熱済・味付)9	スペイン	東京都町田市
220	PVM-28	豚ハツ(加熱済・味付)	日本	大阪府大阪市
221	PVM-29	豚モツ(加熱済・味付)2	日本	大阪府大阪市
222	PVM-30	豚レバー(加熱済・味付)10	ドイツ	神奈川県大和市

表-11 さとうきび、黒砂糖の一覧

試料	識別番号	品名	生産国	購入地域
番号				
223	SG-1	さとうきび 1	日本	インターネット
224	SG-2	さとうきび 2	日本	インターネット
225	SG-3	さとうきび3	日本	インターネット
226	SG-4	さとうきび 4	日本	インターネット
227	SG-5	さとうきび 5	日本	沖縄県那覇市
228	SG-6	黒砂糖 1	日本	神奈川県相模原市
229	SG-7	黒砂糖 2	ブラジル	神奈川県相模原市
230	SG-8	黒砂糖 3	日本	東京都町田市
231	SG-9	黒砂糖 4	日本	東京都多摩市
232	SG-10	黒砂糖 5	日本	東京都多摩市
233	SG-11	黒砂糖 6	日本	東京都多摩市
234	SG-12	黒砂糖 7	日本	東京都多摩市
235	SG-13	黒砂糖 8	日本	東京都多摩市
236	SG-14	黒砂糖 9	日本	東京都府中市
237	SG-15	黒砂糖10	日本	東京都府中市
238	SG-16	黒砂糖11	日本	東京都府中市
239	SG-17	黒砂糖 1 2	日本	東京都町田市
240	SG-18	黒砂糖 1 3	日本	東京都多摩市
241	SG-19	黒砂糖14	日本	神奈川県相模原市
242	SG-20	黒砂糖 1 5	日本	神奈川県相模原市
243	SG-21	黒砂糖 1 6	日本	神奈川県相模原市
244	SG-22	黒砂糖17	日本	神奈川県相模原市
245	SG-23	黒砂糖18	日本	東京都町田市
246	SG-24	黒砂糖 1 9	日本	東京都町田市
247	SG-25	黒砂糖20	日本	東京都町田市
248	SG-26	黒砂糖21	日本	東京都町田市
249	SG-27	黒砂糖22	日本	東京都町田市
250	SG-28	黒砂糖23	日本	沖縄県国頭村
251	SG-29	黒砂糖24	日本	東京都町田市
252	SG-30	黒砂糖 2 5	日本	東京都町田市

表-12 料理用ハーブ類の一覧

試料 番号	識別番号	品名	生産国	購入地域
253	HB-1	ローレル 1	トルコ	東京都多摩市
254	HB-2	セージ1	トルコ	東京都多摩市
255	HB-3	パセリ1	アメリカ	東京都多摩市
256	HB-4	タイム 1	モロッコ	東京都多摩市
257	HB-5	パセリ 2	ドイツ	東京都町田市
258	HB-6	セージ 2	ギリシャ	東京都府中市
259	HB-7	ローレル 2	トルコ	東京都府中市
260	HB-8	セボリー 1	アルバニア	東京都府中市
261	HB-9	タイム 2	モロッコ	東京都府中市
262	HB-10	オレガノ1	トルコ	東京都府中市
263	HB-11	ローズマリー1	アルバニア	東京都府中市
264	HB-12	バジル 1	エジプト	東京都府中市
265	HB-13	イタリアンパセリ	不明	東京都府中市
266	HB-14	ローレル 3	トルコ	神奈川県川崎市
267	HB-15	ローレル4	トルコ	神奈川県藤沢市
268	HB-16	バジル 2	エジプト	神奈川県藤沢市
269	HB-17	ローレル 5	トルコ	東京都町田市
270	HB-18	パセリ3	ドイツ	東京都町田市
271	HB-19	ローズマリー 2	アルバニア	東京都町田市
272	HB-20	タイム 3	フランス	東京都町田市
273	HB-21	オレガノ 2	トルコ	東京都町田市
274	HB-22	バジル 3	エジプト	東京都町田市
275	HB-23	セージ3	トルコ	東京都町田市
276	HB-24	セージ4	トルコ	東京都町田市
277	HB-25	セボリー 2	フランス	東京都町田市
278	HB-26	パセリ 4	アメリカ	東京都町田市
279	HB-27	バジル 4	アメリカ	東京都町田市
280	HB-28	オレガノ3	トルコ	東京都町田市
281	HB-29	ローズマリー 3	アルバニア	東京都町田市
282	HB-30	タンポポ	ポーランド	インターネット

表-13-1 飲料の一覧

試料 番号	識別番号	品名	生産国	購入地域
283	DK-1	ブレンド茶 1	中国,日本	神奈川県相模原市
284	DK-2	杜仲茶	台湾	神奈川県相模原市
285	DK-3	緑茶 1	日本	東京都多摩市
286	DK-4	ウーロン茶 1	中国	東京都多摩市
287	DK-5	甜茶 1	中国	東京都多摩市

表-13-2 飲料の一覧

⇒ Notat				1
試料 番号	識別番号	品名	生産国	購入地域
288	DK-6	ルイボス茶 1	南アフリカ	東京都多摩市
289	DK-7	ジャスミン茶	中国	東京都多摩市
290	DK-8	紅茶(セイロン, ウバ)	スリランカ	東京都多摩市
291	DK-9	紅茶	ケニア	東京都多摩市
292	DK-10	ブレンド茶 2	不明	東京都多摩市
293	DK-11	紅茶(アッサム)	インド	東京都多摩市
294	DK-12	緑茶 2	不明	東京都府中市
295	DK-13	プーアル茶 1	中国	東京都府中市
296	DK-14	紅茶(ダージリン)	インド	東京都多摩市
297	DK-15	減肥茶	日本	神奈川県川崎市
298	DK-16	麦茶 1	中国	神奈川県川崎市
299	DK-17	はとむぎ茶	中国	神奈川県川崎市
300	DK-18	紅茶(アールグレイ)1	中国	神奈川県川崎市
301	DK-19	紅茶(アールグレイ)2	スリランカ,フランス	神奈川県川崎市
302	DK-20	ウーロン茶 2	中国	神奈川県川崎市
303	DK-21	麦茶 2	日本	神奈川県川崎市
304	DK-22	ウーロン茶 3	中国	神奈川県川崎市
305	DK-23	麦茶 3	中国	神奈川県相模原市
306	DK-24	甜茶 2	中国	東京都町田市
307	DK-25	バナバ茶	中国	東京都町田市
308	DK-26	グァバ茶	中国	東京都町田市
309	DK-27	ウーロン茶 4	中国	東京都町田市
310	DK-28	緑茶 3	中国	東京都町田市
311	DK-29	プーアル茶 2	中国	東京都町田市
312	DK-30	ルイボス茶 2	南アフリカ	東京都町田市

表-14-1 ベビーフードの一覧

試料 番号	識別番号	品名	生産国	購入地域
313	FB-1	ベビーフード 1	日本	神奈川県相模原市
314	FB-2	ベビーフード 2	日本	神奈川県相模原市
315	FB-3	ベビーフード3	日本	神奈川県相模原市
316	FB-4	ベビーフード 4	日本	神奈川県相模原市
317	FB-5	ベビーフード 5	日本	神奈川県相模原市
318	FB-6	ベビーフード 6	日本	神奈川県相模原市
319	FB-7	ベビーフード 7	日本	神奈川県相模原市
320	FB-8	ベビーフード8	日本	東京都多摩市
321	FB-9	ベビーフード 9	日本	東京都多摩市

表-14-2 ベビーフードの一覧

試料 番号	識別番号	品名	生産国	購入地域
322	FB-10	ベビーフード10	日本	東京都多摩市
323	FB-11	ベビーフード11	日本	東京都多摩市
324	FB-12	ベビーフード12	日本	東京都多摩市
325	FB-13	ベビーフード13	不明	東京都多摩市
326	FB-14	ベビーフード14	日本	東京都多摩市
327	FB-15	ベビーフード15	日本	東京都多摩市
328	FB-16	ベビーフード16	日本	東京都多摩市
329	FB-17	ベビーフード17	日本	東京都多摩市
330	FB-18	ベビーフード18	日本	東京都多摩市
331	FB-19	ベビーフード19	日本	東京都多摩市
332	FB-20	ベビーフード20	日本	東京都多摩市
333	FB-21	ベビーフード21	日本	東京都多摩市
334	FB-22	ベビーフード22	日本	東京都多摩市
335	FB-23	ベビーフード23	日本	東京都多摩市
336	FB-24	ベビーフード24	日本	東京都多摩市
337	FB-25	ベビーフード25	日本	東京都多摩市
338	FB-26	ベビーフード26	日本	東京都多摩市
339	FB-27	ベビーフード27	不明	東京都多摩市
340	FB-28	ベビーフード28	不明	東京都多摩市
341	FB-29	ベビーフード29	不明	東京都多摩市
342	FB-30	ベビーフード30	不明	東京都多摩市
343	FB-31	ベビーフード 3 1	不明	東京都多摩市
344	FB-32	ベビーフード32	不明	東京都多摩市
345	FB-33	ベビーフード33	不明	東京都多摩市
346	FB-34	ベビー飲料 1	不明	神奈川県相模原市
347	FB-35	ベビー飲料 2	不明	神奈川県相模原市

表-15-1 幼児向け食品の一覧

試料 番号	識別番号	品名	生産国	購入地域
348	FC-1	幼児向け食品 1	不明	神奈川県相模原市
349	FC-2	幼児向け食品 2	不明	神奈川県相模原市
350	FC-3	幼児向け食品3	不明	神奈川県相模原市
351	FC-4	幼児向け食品 4	不明	神奈川県相模原市
352	FC-5	幼児向け食品 5	不明	東京都多摩市
353	FC-6	幼児向け食品 6	不明	東京都多摩市
354	FC-7	幼児向け食品 7	不明	東京都多摩市
355	FC-8	幼児向け食品8	不明	東京都多摩市
356	FC-9	幼児向け食品 9	不明	東京都多摩市

表-15-2 幼児向け食品の一覧

試料 番号	識別番号	品名	生産国	購入地域
357	FC-10	幼児向け食品10	不明	東京都多摩市
358	FC-11	幼児向け食品11	不明	東京都多摩市
359	FC-12	幼児向け食品12	不明	東京都多摩市
360	FC-13	幼児向け食品13	不明	東京都多摩市
361	FC-14	幼児向け食品14	不明	東京都多摩市
362	FC-15	幼児向け食品15	不明	東京都多摩市
363	FC-16	幼児向け食品16	不明	東京都多摩市
364	FC-17	幼児向け食品17	不明	東京都多摩市
365	FC-18	幼児向け食品18	日本	東京都多摩市
366	FC-19	幼児向け食品19	不明	東京都多摩市
367	FC-20	幼児向け食品20	不明	東京都多摩市
368	FC-21	幼児向け食品21	不明	東京都多摩市
369	FC-22	幼児向け食品22	不明	東京都多摩市
370	FC-23	幼児向け食品23	不明	東京都多摩市
371	FC-24	幼児向け食品24	不明	東京都多摩市
372	FC-25	幼児向け食品25	不明	東京都多摩市
373	FC-26	幼児向け食品26	不明	東京都多摩市
374	FC-27	幼児向け食品27	不明	東京都多摩市
375	FC-28	幼児向け食品28	不明	東京都多摩市
376	FC-29	幼児向け食品29	日本	東京都多摩市
377	FC-30	幼児向け食品30	日本	東京都多摩市

表-16-1 菓子類の一覧

試料 番号	識別番号	品名	生産国	購入地域
378	SN-1	ナッツ及びカカオ菓子1	ドイツ	神奈川県相模原市
379	SN-2	ナッツ及びカカオ菓子 2	ニューシ゛ーラント゛	神奈川県相模原市
380	SN-3	ナッツ及びカカオ菓子3	中国	神奈川県相模原市
381	SN-4	カカオ菓子 1	アメリカ	神奈川県相模原市
382	SN-5	カカオ菓子 2	オーストラリア	神奈川県相模原市
383	SN-6	カカオ菓子3	ポーランド	神奈川県相模原市
384	SN-7	ナッツ及びカカオ菓子4	ドイツ	神奈川県相模原市
385	SN-8	カカオ菓子 4	ドイツ	神奈川県相模原市
386	SN-9	カカオ菓子 5	イタリア	神奈川県相模原市
387	SN-10	甘栗	中国	東京都多摩市
388	SN-11	豆菓子	不明	東京都多摩市
389	SN-12	ナッツ菓子1	フィリピン	神奈川県相模原市
390	SN-13	カカオ菓子 6	ベトナム	神奈川県相模原市
391	SN-14	ナッツ菓子 2	イタリア	神奈川県川崎市

表-16-2 菓子類の一覧

試料 番号	識別番号	品名	生産国	購入地域
392	SN-15	ナッツ菓子3	オランダ	神奈川県川崎市
393	SN-16	ナッツ菓子4	不明	神奈川県相模原市
394	SN-17	穀物菓子	スペイン	神奈川県川崎市
395	SN-18	ナッツ菓子 5	タイ	東京都町田市
396	SN-19	カカオ菓子 7	マレーシア	東京都町田市
397	SN-20	ナッツ菓子 6	中国	東京都町田市

表-17 豆類及び豆を用いた製品の一覧

	ı	☆ 11 立類及○立と用いた表面	マン 兄	1
試料 番号	識別番号	品名	生産国	購入地域
398	BN-1	テンペ1	日本	東京都多摩市
399	BN-2	テンペ2	日本	東京都多摩市
400	BN-3	あずき水煮1	中国	東京都多摩市
401	BN-4	こしあん 1	中国	東京都多摩市
402	BN-5	おしるこ	不明	東京都多摩市
403	BN-6	あずき水煮 2	日本	東京都多摩市
404	BN-7	あずき水煮3	日本	東京都多摩市
405	BN-8	あずき 1	日本	東京都多摩市
406	BN-9	あずき 2	日本	東京都多摩市
407	BN-10	あずき 3	日本	東京都多摩市
408	BN-11	こしあん2	日本	東京都多摩市
409	BN-12	ささげ 1	日本	東京都府中市
410	BN-13	ささげ 2	日本	東京都府中市
411	BN-14	ささげ 3	中国	東京都府中市
412	BN-15	こしあん 3	中国	東京都町田市
413	BN-16	あずき 4	日本	神奈川県川崎市
414	BN-17	こしあん4	不明	神奈川県川崎市
415	BN-18	あずき 5	日本	神奈川県相模原市
416	BN-19	あずき水煮4	日本	神奈川県相模原市
417	BN-20	あずき水煮 5	不明	神奈川県相模原市
418	BN-21	あずき水煮6	不明	神奈川県相模原市
419	BN-22	こしあん 5	日本	神奈川県相模原市
420	BN-23	こしあん 6	中国	神奈川県相模原市
421	BN-24	あずき水煮7	中国	神奈川県相模原市
422	BN-25	あずき 6	日本	東京都町田市

表-18 キャッサバの一覧

試料 番号	識別番号	品名	生産国	購入地域
423	CSV-1	タピオカ1	タイ	東京都多摩市
424	CSV-2	タピオカ 2	マレーシア	神奈川県川崎市
425	CSV-3	タピオカ澱粉	タイ	東京都町田市
426	CSV-4	キャッサバ芋加工品 1	インドネシア	インターネット
427	CSV-5	キャッサバ芋加工品 2	ブラジル	インターネット

表-19 野菜及び野菜を用いた製品の一覧

試料 番号	識別番号	品名	生産国	購入地域
428	VG-1	アスパラガス水煮	中国	神奈川県川崎市
429	VG-2	たけのこ水煮	中国	東京都八王子市
430	VG-3	筑前煮用水煮	中国	東京都八王子市
431	VG-4	チンジャオロース用水煮	中国	東京都八王子市
432	VG-5	スイートコーン	タイ	東京都八王子市
433	VG-6	塩ゆでえだまめ(冷凍)	ベトナム	東京都八王子市
434	VG-7	塩ゆで茶豆(冷凍)	台湾	東京都八王子市
435	VG-8	ブロッコリー(冷凍)	中国	東京都八王子市
436	VG-9	ほうれん草(冷凍)	台湾	東京都八王子市
437	VG-10	いんげん(冷凍)	ベトナム	東京都八王子市
438	VG-11	さといも(冷凍)	中国	東京都八王子市
439	VG-12	カーネルコーン(冷凍)	アメリカ	東京都八王子市
440	VG-13	青ねぎ(冷凍)	中国	東京都町田市
441	VG-14	和風野菜ミックス(冷凍)	中国	東京都町田市
442	VG-15	中華野菜ミックス(冷凍)	中国	東京都町田市
443	VG-16	さつまいもスティック(冷凍)	中国	東京都町田市
444	VG-17	フライドポテト(冷凍)	アメリカ	東京都町田市
445	VG-18	パプリカ(冷凍)	中国	東京都町田市
446	VG-19	しいたけ(冷凍)	中国	東京都町田市
447	VG-20	れんこん(冷凍)	中国	東京都町田市
448	VG-21	そらまめ(冷凍)	中国	東京都町田市
449	VG-22	ごぼう(冷凍)	中国	東京都町田市
450	VG-23	ヤングコーン水煮	タイ	東京都町田市
451	VG-24	ホールトマト	イタリア	東京都町田市
452	VG-25	トマトケチャップ	アメリカ	東京都町田市

表-20 果物及び果物を用いた製品(ドライフルーツ含む)の一覧

試料 番号	識別番号	品名	生産国	購入地域
453	DF-1	マンゴー(ドライフルーツ) 1	フィリピン	東京都多摩市
454	DF-2	パイナップル(ドライフルーツ)	タイ	東京都多摩市
455	DF-3	グリーンレーズン(ドライフルーツ)	中国	東京都多摩市
456	DF-4	梨(ドライフルーツ)	中国	東京都多摩市
457	DF-5	イチゴ(ドライフルーツ)	中国	東京都多摩市
458	DF-6	サンザシ(ドライフルーツ)	中国	東京都多摩市
459	DF-7	ワイルドブルーベリー (ドライフルーツ)	アメリカ	東京都多摩市
460	DF-8	バナナチップス 1	フィリピン	東京都多摩市
461	DF-9	プルーン(ドライフルーツ) 1	チリ	東京都府中市
462	DF-10	赤肉メロン(ドライフルーツ)	タイ	東京都府中市
463	DF-11	デーツ(ドライフルーツ)	ドイツ	神奈川県川崎市
464	DF-12	アプリコット(ドライフルーツ) 1	スイス	神奈川県川崎市
465	DF-13	キウイ(ドライフルーツ)	中国	大阪府大阪市
466	DF-14	パパイヤ(ドライフルーツ)	タイ	大阪府大阪市
467	DF-15	バナナ(ドライフルーツ) 1	フィリピン	大阪府大阪市
468	DF-16	マンゴー(ドライフルーツ) 2	フィリピン	大阪府大阪市
469	DF-17	アップル(ドライフルーツ)	中国	大阪府大阪市
470	DF-18	バナナチップス 2	フィリピン	大阪府大阪市
471	DF-19	クランベリー(ドライフルーツ)	スイス	神奈川県川崎市
472	DF-20	いちじく(ドライフルーツ)	スイス	神奈川県川崎市
473	DF-21	プルーン(ドライフルーツ) 2	ドイツ	神奈川県川崎市
474	DF-22	アプリコット(ドライフルーツ) 2	アメリカ	神奈川県相模原市
475	DF-23	バナナ(ドライフルーツ) 2	フィリピン	神奈川県相模原市
476	DF-24	バナナチップス 3	フィリピン	神奈川県相模原市
477	DF-25	アプリコット(ドライフルーツ) 3	トルコ	東京都八王子市

表-21-1 その他加工品の一覧

試料 番号	識別番号	品名	生産国	購入地域
478	0P-1	生タイプカップ麺(スパゲティー)	不明	東京都多摩市
479	0P-2	生タイプカップ麺(うどん)	日本	東京都多摩市
480	0P-3	生タイプカップ麺(中華麺)	日本	東京都多摩市
481	0P-4	サムゲタン(レトルト)	韓国	東京都多摩市
482	0P-5	ミネストローネ(缶詰)	アメリカ	東京都多摩市
483	0P-6	グリーンカレー(缶詰)	タイ	東京都多摩市
484	0P-7	タイチキンカレー(レトルト)	タイ	東京都多摩市
485	0P-8	シチュー(レトルト) 1	不明	神奈川県川崎市
486	0P-9	ビーフカレー(レトルト)1	不明	神奈川県川崎市

表-21-2 その他加工品の一覧

試料 番号	識別番号	品名	生産国	購入地域
487	0P-10	ビーフカレー(レトルト)2	日本	神奈川県川崎市
488	0P-11	ビーフカレー(レトルト)3	ニューシ゛ーラント゛	神奈川県川崎市
489	0P-12	ビーフン1	台湾	神奈川県川崎市
490	0P-13	ビーフン 2	タイ	神奈川県川崎市
491	0P-14	フォー	ベトナム	神奈川県川崎市
492	0P-15	ビーフン3	タイ	神奈川県川崎市
493	0P-16	ライスペーパー	タイ	神奈川県川崎市
494	0P-17	ビーフン 4	中国	神奈川県相模原市
495	0P-18	シチュー(レトルト) 2	日本	神奈川県相模原市
496	0P-19	ミートソース(レトルト)	日本	神奈川県相模原市
497	0P-20	ビーフカレー(レトルト)4	日本	神奈川県相模原市

6 試験方法

以下の分析法により調査を行った。

I オクラトキシンA(OTA)

1) 器具及び装置

遠心管(50 ml容, 100 ml容, 200 ml容)

メスフラスコ(50 ml容, 100 ml容, 200 ml容)

ナスフラスコ(200 m1容)

分液ロート(500 m1容)

ガラスロート

ピペット類

メスシリンダー

リザーバー及びジョイント

ガラス繊維ろ紙(GFP)[桐山製作所]

ヒスコトロン型ホモジナイザー

振とう機

遠心分離機

吸引マニュホールド

汎用天秤

ロータリーエバポレーター

分光光度計

高速液体クロマトグラフ(蛍光検出器付)

液体クロマトグラフ-タンデム型質量分析計

2) 試薬及び試液

OTA 標準品 [Sigma-Aldrich 社]

水

メタノール(残留農薬・PCB 試験用、高速液体クロマトグラフ用(以下「HPLC 用」)

[和光純薬工業株式会社]

アセトニトリル (残留農薬・PCB 試験用) [和光純薬工業株式会社]

アセトニトリル (HPLC用) [関東化学株式会社]

ヘキサン(残留農薬·PCB 試験用)[和光純薬工業株式会社]

アセトン(残留農薬·PCB 試験用)[和光純薬工業株式会社]

ギ酸(試薬特級)[関東化学株式会社]

トルエン(試薬特級)[小宗化学薬品株式会社]

炭酸水素ナトリウム(試薬特級)[関東化学株式会社]

塩化ナトリウム(試薬特級)[関東化学株式会社]

りん酸水素ニナトリウム(試薬特級)[小宗化学薬品株式会社]

りん酸二水素カリウム(試薬特級)[小宗化学薬品株式会社]

塩化カリウム(試薬特級)[小宗化学薬品株式会社]

硫酸アンモニウム(試薬特級)[和光純薬工業株式会社]

酢酸アンモニウム(試薬特級)[関東化学株式会社]

塩酸(試薬特級)[小宗化学薬品株式会社]

トリフルオロ酢酸(試薬特級)[和光純薬工業株式会社]

酢酸(試薬特級)[小宗化学薬品株式会社]

Bond Elut DEA カートリッジカラム (500 mg, 3 ml) [VARIAN 社]

イムノアフィニティーカラム(OchraTestWB)[VICAM 社]

イムノアフィニティーカラム (Ochraprep) [R-BIOPHARM 社]

- メタノール及び 1 %炭酸水素ナトリウム溶液の混液(7:3):メタノール 700 m1 と 1 %炭酸水素ナトリウム溶液(炭酸水素ナトリウム 3 g を水に溶解し,300 m1 にしたもの)300 m1 を混合する。
- アセトニトリル,水及び塩酸の混液(8:1:1):アセトニトリル 800 ml,水 100 ml 及び塩酸 100 ml を混合する。
- PBS(phosphate buffer saline):塩化ナトリウム 8 g, りん酸水素二ナトリウム 1.2 g, りん酸二水素カリウム 0.2 g及び塩化カリウム 0.2 gを水 1 L に溶解する。
- 0.01 mol/L 酢酸アンモニウム溶液:酢酸アンモニウム 0.38 g を水 500 ml に溶解 する。

メタノール及び酢酸の混液(99:1):メタノール 99 mlと酢酸 1 mlを混合する。

- アセトン及びアセトニトリルの混液(1:1): アセトン 100 ml とアセトニトリル 100 ml を混合する。
- 80 % メタノール: メタノール 400 ml と水 100 ml を混合する。
- 80 %メタノール及び酢酸の混液(99:1):80 %メタノール 99 ml と酢酸 1 ml を混合する。
- 80 %メタノール及びトリフルオロ酢酸の混液(99:1):80 %メタノール 99 m1 とトリフルオロ酢酸 1 ml を混合する。
- 水,メタノール及び酢酸の混液(70:30:1):水 700 ml,メタノール(HPLC用) 300 ml 及び酢酸 10 ml を混合する。
- 水, アセトニトリル及び酢酸の混液(510:480:10): 水 510 ml, アセトニトリル (HPLC用)480 ml 及び酢酸 10 ml を混合する。
- 1 % ギ酸:水 990 ml とギ酸 10 ml を混合する。

トルエン及び酢酸の混液(99:1):トルエン 99 ml 及び酢酸 1 ml を混合する。

3) 試験溶液の調製

①茶葉,オリーブオイル,ベビーフード及び幼児向け食品以外の試料

試料約 $2.5 \text{ g} \sim 10 \text{ g}$ ϵ 200 ml 容遠心管に採取し、試料が粉末か透明液体の場合はメタノール及び 1 %炭酸水素ナトリウム溶液の混液 (7:3)100 ml を正確に加えて、30 分間振とう抽出する。試料が粗い磨砕物や生体試料、混濁した液体の場合はメタノール及び 1 %炭酸水素ナトリウム溶液の混液 (7:3)70 ml を加え、ホモジナイザーを用いて約 1 分間撹はん抽出を行う。抽出液を 2,500 r/min で 5 分間遠心分離し、上澄み液を綿栓ろ過する。撹はん抽出をした試料は、ろ液に抽出液を加え正確に100 ml とする。ろ液 $2.5 \text{ ml} \sim 10 \text{ ml}$ (試料当たり 0.25 g 相当)を正確に分取する。

分取したろ液は,40 ℃で減圧濃縮乾固し残渣をメタノール約2 m1 に溶解する^{注1)}。

これを PBS で希釈し正確に 50 ml とした後, ガラス繊維ろ紙でろ過する。

イムノアフィニティーカラムの内液をからさないように注意して吸引マニュホールドに連結し、リザーバーを取り付ける。先のろ液を 40 ml 分取し、イムノアフィニティーカラムに負荷する。流速は毎秒 1,2 滴になるように調整し、カラムは乾燥させないようにする。続いて 0.01 mol/L 酢酸アンモニウム溶液 5 ml でカラムを洗浄し、メタノール及び酢酸の混液 (99:1)5 ml で溶出する。この溶出液を 40 $\mathbb C$ で減圧濃縮乾固し、残渣を水、メタノール及び酢酸の混液 (70:30:1)1 ml に溶解して試験溶液とする。

注1) ろ液の分取量が 5 ml 以下は、濃縮操作を行わずそのまま PBS で 50 ml に希 釈する。

②ベビーフード及び幼児向け食品

試料約 10 g を 200 ml 容遠心管に採取し、メタノール及び 1 %炭酸水素ナトリウム溶液の混液 (7:3) 70 ml を加えた後、ホモジナイザーを用いて約 1 分間撹はん抽出を行う。抽出液を 2,500 r/min で 5 分間遠心分離し、上澄み液を綿栓ろ過した後、抽出液を加え正確に 100 ml とする。ろ液 10 ml を正確に分取し、40 $\mathbb C$ で減圧濃縮乾固し、残渣をメタノール約 2 ml に溶解する。これを PBS で希釈し正確に 50 ml とした後、ガラス繊維ろ紙でろ過する。

イムノアフィニティーカラムの内液をからさないように注意して吸引マニュホールドに連結し、リザーバーを取り付ける。先のろ液を 25 ml 分取し、分取液及び PBS 15 ml でイムノアフィニティーカラムに負荷する。流速は毎秒 1,2 滴になるように調整し、カラムは乾燥させないようにする。続いて 0.01 mol/L 酢酸アンモニウム溶液 5 ml でカラムを洗浄し、メタノール及び酢酸の混液 (99:1)5 ml で溶出する。この溶出液を 40 ° で減圧濃縮乾固し、残渣を水、メタノール及び酢酸の混液 (70:30:1)0.5 ml に溶解して試験溶液とする。

③オリーブオイル

試料約 2.5 g を 200 ml 容遠心管に採取し、メタノール及び 1 %炭酸水素ナトリウム溶液の混液 (7:3) 60 ml を加えた後、ホモジナイザーを用いて約 1 分間撹はん抽出を行う。抽出液を 2,500 r/min で 5 分間遠心分離し、上澄み液を綿栓ろ過後、メタノール及び 1 %炭酸水素ナトリウム溶液の混液 (7:3) を加えて正確に 100 ml とする。ろ液 10 ml を 500 ml 容分液ロートに正確に分取する。これに PBS 150 ml,塩化ナトリウム 10 g 及びヘキサン 80 ml を加えて、5 分間振とうする。しばらく静置した後下層を分取し、PBS を加え正確に 200 ml とし、これをガラス繊維ろ紙でろ過する。

 圧濃縮乾固し、残渣を水、メタノール及び酢酸の混液(70:30:1) 1 ml に溶解して試験溶液とする。

④茶葉

試料約 2.5 g を 200 ml 容遠心管に採取し,アセトニトリル,水及び塩酸の混液 (8:1:1)100 ml を正確に加えて 30 分間振とう抽出後, 2,500 r/min で 5 分間遠心分離する。上澄み液 2.5 ml を正確に分取し,アセトニトリル,水及び塩酸の混液 (8:1:1)7.5 ml,硫酸アンモニウム 2 g を加えて 5 分間振とうする。2,500 r/min で 5 分間遠心分離した後,上層(アセトニトリル層)を分取する。

予め水 10 ml, メタノール 10 ml 及びアセトニトリル 10 ml で予備洗浄した Bond Elut DEA カートリッジカラムに先の分取液を負荷する。アセトン及びアセトニトリルの混液 (1:1)10 ml, 80 %メタノール及び酢酸の混液 (99:1)10 ml でカラムを洗浄し、80 %メタノール及びトリフルオロ酢酸の混液 (99:1)10 ml で溶出する。この溶出液を 40 $\mathbb C$ で減圧濃縮乾固し、残渣をメタノール約 2 ml に溶解する。これを PBS で希釈し正確に 50 ml とした後、ガラス繊維ろ紙でろ過する。

イムノアフィニティーカラムの内液をからさないように注意して吸引マニュホールドに連結し、リザーバーを取り付ける。先のろ液を 40 ml 分取し、イムノアフィニティーカラムに負荷する。流速は毎秒 1,2 滴になるように調整し、カラムは乾燥させないようにする。続いて 0.01 mol/L 酢酸アンモニウム溶液 5 ml でカラムを洗浄し、メタノール及び酢酸の混液 (99:1)5 ml で溶出する。この溶出液を 40 $\mathbb C$ で減圧濃縮乾固し、残渣を水、メタノール及び酢酸の混液 (70:30:1) 0.5 ml に溶解して試験溶液とする。

4) 高速液体クロマトグラフ操作条件

機 種:LC-20AD [株式会社 島津製作所]

検 出 器:分光蛍光検出器 RF-10AXL [株式会社 島津製作所]

カ ラ ム: Mightysil RP-18 GP (内径4.6 mm, 長さ150 mm, 粒径5 μm)

[関東化学株式会社]

カラム温度: 40 ℃

移動相:水、アセトニトリル及び酢酸の混液(510:480:10)

流 量: 0.8 ml/min

測定波長: Ex 333 nm Em 460 nm

注 入 量: 50 μ1

5) 標準溶液の調製

0TA標準品5 mgにメタノールを加えて溶解し、50 mlに定容して100 μ g/mlの標準原液を調製する。この原液1 mlを正確に分取し、濃縮乾固したものに、トルエン及び酢酸の混液 (99:1)を10 ml加え超音波処理を行ってよく溶解し、10 μ g/mlの溶液を調製する。この溶液について、分光光度計 [U-2000形 株式会社 日立製作所]及び1 cm石英セルを用い、トルエン及び酢酸の混液 (99:1)を対照として333 nmにおける吸光度を測定し、得られた値を用い、次式からファクターを算出する。更に標準原液を適宜水、メタノール及び酢酸の混液 (70:30:1)で希釈し、検量線用標準溶液 (0.025~1 ng/ml)を調製する。

OTA 標準原液のファクター
$$=\frac{A \times MW \times 1000}{\epsilon \times 10}$$

A:吸光度

MW: 分子量=403

ε:トルエン及び酢酸の混液 (99:1) におけるモル吸光係数 = 5440

6) 検量線の作成

標準溶液 50 μ 1 を高速液体クロマトグラフに注入し、得られた 0TA のピーク高さと標準溶液の 0TA の濃度から検量線を作成する。

7) 高速液体クロマトグラフ法による測定

試験溶液 50 μ 1 を高速液体クロマトグラフに注入し、得られた 0TA のピーク高さと 6)の検量線から試験溶液中の 0TA 濃度を求め、試料中の濃度を算出する。

8) 検出限界及び定量限界の設定

養殖魚(鮭)及び茶には試料中の 0TA 濃度が 0.5 ng/g になるように、ベビーフードには 0.05 ng/g になるように添加し、7回の測定を実施した(表-22 参照)。検出限界は標準偏差の 3 倍、定量限界は 10 倍とすると、 養殖魚(鮭)及び茶は設定予定の定量限界 0.5 ng/g の定量が、ベビーフードは設定予定の定量限界 0.05 ng/g の定量が可能であると判断された。

表-22 検出限界及び定量限界の確認(OTA)

(ng/g)

	鮭	茶	ベビーフード
1	0.497	0.305	0.0503
2	0.463	0.278	0.0499
3	0.481	0.330	0.0421
4	0.473	0.386	0.0420
5	0.473	0.297	0.0541
6	0.473	0.348	0.0539
7	0.447	0.381	0.0495
平均	0.472	0.332	0.0480
標準偏差(σ)	0.015	0.041	0.004
3 σ	0.045	0. 123	0.012
10 σ	0.15	0.41	0.04

9) 添加回収試験(1)

養殖魚(鮭)及び茶には試料中の 0TA 濃度が 5 ng/g 及び 0.5 ng/g になるように、ベビーフードには 0.5 ng/g 及び 0.05 ng/g になるように添加し、本分析法の操作にしたがって、添加回収試験(繰り返し 7 回)を実施して標準偏差(ばらつき)を求めた(表-23 参照)。

表-23 添加回収試験の結果(OTA)

(%)

	鮭		茶		ベビーフード	
添加濃度(ng/g)	5	0.5	5	0.5	0.5	0.05
1	84.5	102.8	70.7	61.6	84.3	102.7
2	86.4	98.7	65.9	56. 1	80.5	101.4
3	86.9	98.0	70.5	66.4	79.9	87.3
4	88.8	100.8	67.5	78.0	77.8	84.1
5	85.3	95.7	72.8	60.7	99. 1	113.9
6	83.9	96.3	69.0	70.5	87.7	109.4
7	85.2	91.3	70.6	76. 5	83.0	100.1
平均	85.8	97.7	69.5	67.1	84.6	99.8
標準偏差(σ)	1. 7	3.7	2.3	8.3	7.2	10.8

10) 添加回収試験(2)

ベビーフード及び幼児向け食品には試料中のOTA濃度が0.5~ng/gになるように、その他の各試料には5~ng/gになるように添加し、回収試験を実施した(表-24参照)。

表-24 添加回収試験の結果(OTA)

(%)

		4, ,
食品群	食品	回収率
オリーブ	オリーブオイル	64. 9
オリーブ	塩漬けオリーブ	97.6
種子等	かぼちゃの種	84.6
養殖魚	鮭	76. 9
健康食品	雑穀	84.8
食肉製品(生)	鶏肉	80. 1
食肉製品(加工品)	コンビーフ	63. 2
卵及び卵製品	うずら卵水煮	92. 3
血液及び内臓(生)	牛ハツ	77.3
血液及び内臓(加工品)	牛レバー加工品	97. 4
料理用ハーブ類	ローズマリー	67. 2
飲料	ルイボス茶	80. 2
ベビーフード	ベビーフード	90.0
幼児向け食品	幼児向け食品	89. 6
菓子類	カカオ菓子	97.3
豆類及び豆を用いた製品	テンペ	79. 0
キャッサバ	タピオカ	79. 0
野菜及び野菜を用いた製品	アスパラガス水煮	93. 2
果物及び果物を用いた製品	バナナチップス	79. 3
その他加工品	生タイプスパゲティー	92. 7

11) 妨害物質の有無(特異性)

添加回収試験で用いた試料からは、OTAの測定を妨げるピークは認められなかった。

12) 確認方法

0TAが検出された場合又は妨害ピークが認められた場合には、以下の条件で液体クロマトグラフ-タンデム型質量分析計による測定を行い、確認試験とした。

<液体クロマトグラフ-タンデム型質量分析計操作条件>

機 種:1100 Series[Agilent Technologies]

検 出 器:質量分析計 API-4000[Applied Biosystems]

カラム: Mightysil RP-18 GP(内径2.0 mm, 長さ150 mm, 粒径5 μm)

[関東化学株式会社]

カラム温度: 40 ℃

移 動 相: A液;1%ギ酸 B液;メタノール

グラジェント溶出条件: (B液の割合) 10 %→15分→60 %

流 量: 0.2 m1/min

注入量: 10 μ1

イオン化法: ESI 負イオンモード

イオン化電圧: -4,500 V

コーン電圧:-80 V

ネブライザガス: 窒素 50 psi

コリジョンエネルギー:-28 V

コリジョンガス:窒素

設定質量数: m/z 402.1/358.1

13) 添付資料

① 検量線の一例

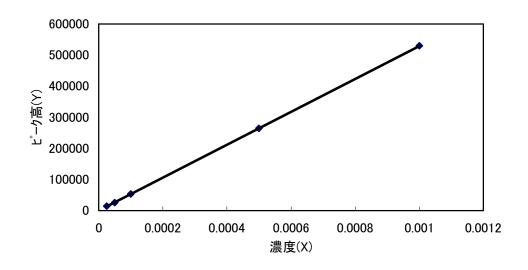


図-1 OTAの検量線の一例

② 標準溶液のクロマトグラムの一例

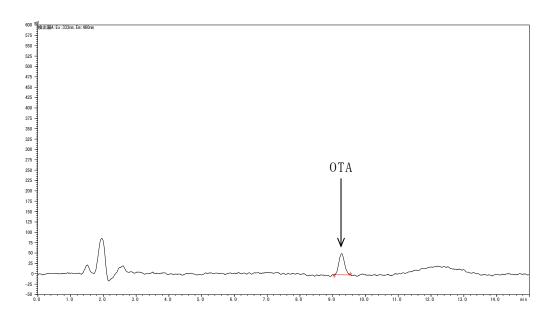


図-2 OTA 標準溶液 0.1 ng/ml

③ 添加回収試験のクロマトグラム(鮭)の一例

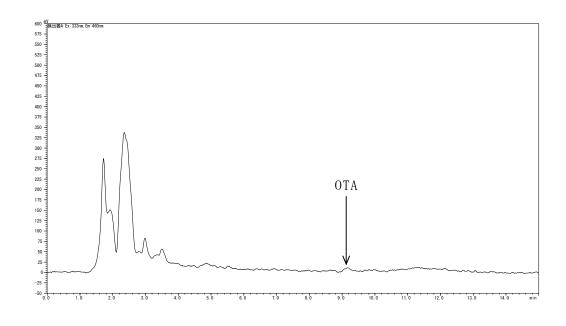


図-3 試料:鮭(無添加)

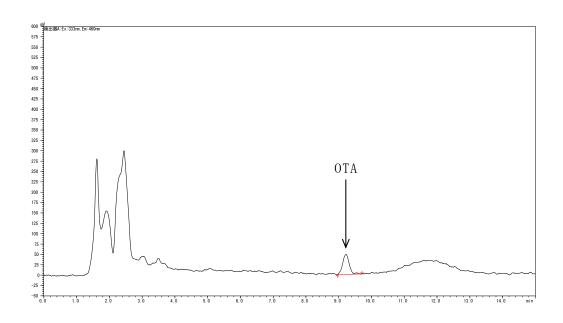


図-4 試料:鮭(0.5 ng/g 相当添加)

④ 標準溶液のクロマトグラムの一例

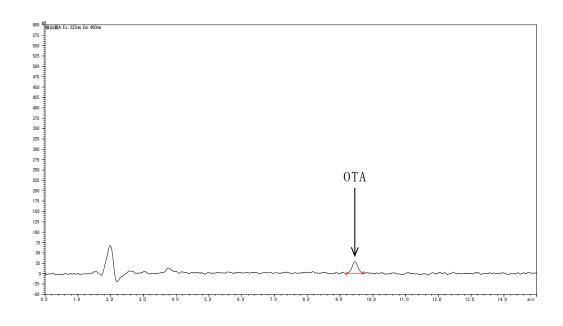


図-5 OTA 標準溶液 0.05 ng/ml

⑤ 添加回収試験のクロマトグラム(ベビーフード)の一例

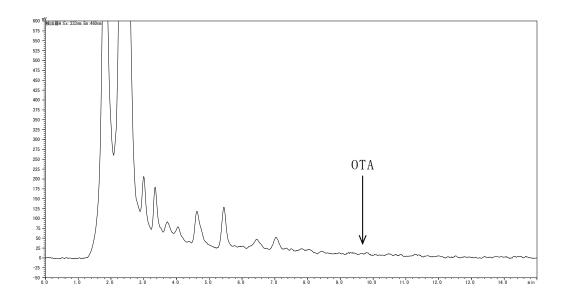


図-6 試料:ベビーフード(無添加)

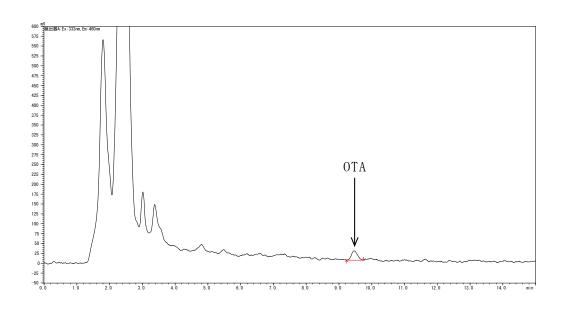


図-7 試料:ベビーフード(0.05 ng/g 相当添加)

⑥ 添加回収試験のクロマトグラム(茶)の一例

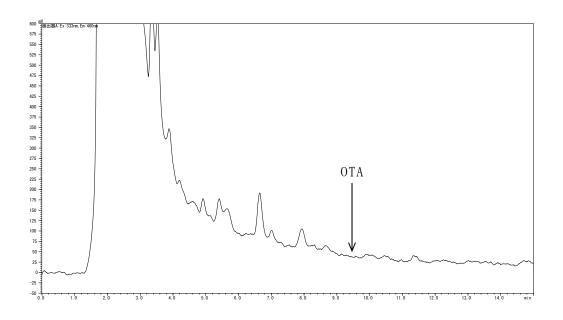


図-8 試料:茶(無添加)

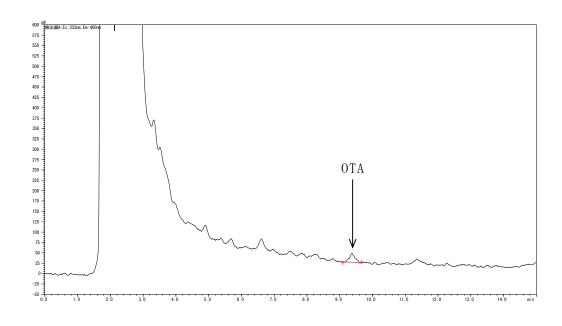


図-9 試料:茶(0.5 ng/g 相当添加)

Ⅱ アフラトキシン B₁, B₂, G₁及び G₂ (AF B₁, B₂, G₁及び G₂)

1) 器具及び装置

遠心管(250 m1容)

桐山ロート

ろ紙(No. 704)[日本理化学機器株式会社]

ヒスコトロン型ホモジナイザー

吸引鐘

アスピレーター

ガラスロート

ピペット類

メスシリンダー

メスフラスコ

振とう機

分液ロート(300 m1容)

ナス形フラスコ(100 ml容, 200 ml容)

汎用天秤

ロータリーエバポレーター

高速液体クロマトグラフ(蛍光検出器付)

液体クロマトグラフ-タンデム型質量分析計

2) 試薬及び試液

AF 標準品:B₁, B₂, G₁及び G₂[Sigma-Aldrich 社]

水

ジクロロメタン(試薬特級)[キシダ化学株式会社]

アセトン(試薬特級)[関東化学株式会社]

無水硫酸ナトリウム(試薬特級)[関東化学株式会社]

塩化ナトリウム(試薬特級)[関東化学株式会社]

水酸化カリウム(試薬特級)[関東化学株式会社]

ヘキサン(フタル酸エステル試験用)[関東化学株式会社]

メタノール (残留農薬・PCB 試験用) [関東化学株式会社]

メタノール (HPLC 用) [和光純薬工業株式会社]

アセトニトリル(残留農薬·PCB 試験用)[関東化学株式会社]

アセトニトリル (HPLC用) [和光純薬工業株式会社]

酢酸アンモニウム[Merck 社]

ハイフロスーパーセル[Sigma-Aldrich 社]

Sep-Pak Plus Florisil [Waters Corporation]

多機能カラム(クリーンアップ用カートリッジカラム):

Autoprep MF-A 1000[昭和電工株式会社]

1%塩化ナトリウム溶液及びメタノールの混液(45:55):

- 塩化ナトリウム 36 g を溶解した水 3,600 m1 及びメタノール(残留農薬・PCB 試験用)4,400 m1 を混合する。
- 0.02 mol/L 水酸化カリウム溶液:水酸化カリウム 1.1 g に水 1 L を加え溶解する。 ジクロロメタン及びメタノールの混液 (9:1):ジクロロメタン 900 ml 及びメタ ノール 100 ml を混合する。

アセトン及び水の混液 (97:3):アセトン 970 ml 及び水 30 ml を混合する。

- アセトニトリル及び水の混液(9:1):アセトニトリル 900 ml 及び水 100 ml を混合する。
- 水及びメタノールの混液(6:4):水 1,800 ml 及びメタノール(HPLC 用)1,200 ml を 混合する。
- 0.01 mol/L 酢酸アンモニウム: 酢酸アンモニウム 0.77 g を水に溶かし1 L とする。

3) 試験溶液の調製

① ベビーフード及び幼児向け食品以外の試料

試料約 10 gを 250 ml 容遠心管に採取し、1 %塩化ナトリウム溶液及びメタノールの混液 (45:55)100 ml を正確に加える。試料が粉末または液体の場合は 30分間振とうし、試料が粗い磨砕物や生体試料の場合はホモジナイザーを用いて約 2分間撹はん抽出を行う。抽出液を吸引ろ過し、ろ液にヘキサン 100 ml を加えて 10分間振とうする。下層にジクロロメタン 100 ml を加え 5分間振とう後、下層を別の分液ロートに分取し、上層に再びジクロロメタン 50 ml を加え 5分間振とうし、下層を合わせる。これに 0.02 mol/L 水酸化カリウム溶液 25 ml 及び精製水 100 ml を加えて洗浄後、無水硫酸ナトリウムで脱水ろ過し、40 ℃で減圧濃縮乾固する。残渣をジクロロメタン 20 ml に溶解した後、Sep-Pak Plus Florisil に負荷し、ジクロロメタン及びメタノールの混液 (9:1) 20 ml で洗浄後、アセトン及び水の混液 (97:3) 30 ml で溶出する。溶出液に少量のアセトニトリルを加え、40 ℃で減圧濃縮乾固後、残渣をアセトニトリル及び水の混液 (9:1) 2 ml に溶解したものを試験溶液とする。必要に応じて試験溶液を多機能カラム Autoprep MF-A 1000 に負荷し、流出液約 1 ml を試験溶液とする。

② ベビーフード及び幼児向け食品

試料約 10 gを 250 ml 容遠心管に採取し、1 %塩化ナトリウム溶液及びメタノールの混液 (45:55) 100 ml を正確に加え、30 分間振とう抽出を行う。抽出液を吸引ろ過し、ろ液にヘキサン 100 ml を加えて 10 分間振とうする。下層にジクロロメタン 100 ml を加え 5 分間振とう後、下層を別の分液ロートに分取し、上層に再びジクロロメタン 50 ml を加え 5 分間振とうし、下層を合わせる。これに 0.02 mol/L 水酸化カリウム溶液 25 ml 及び精製水 100 ml を加えて洗浄後、無水硫酸ナトリウムで脱水ろ過し、40 Cで減圧濃縮乾固する。残渣をジクロロメタン 20 ml に溶解した後、Sep-Pak Plus Florisil に負荷し、ジクロロメタン及びメタノールの混液 (9:1) 20 ml で洗浄後、アセトン及び水の混液 (97:3) 30 ml

で溶出する。溶出液に少量のアセトニトリルを加え、40 \mathbb{C} で減圧濃縮乾固後、 残渣をアセトニトリル及び水の混液(9:1)1 ml に溶解して試験溶液とする。

4) 機器操作条件

① 高速液体クロマトグラフ操作条件

機 種:LC-10ADvp[株式会社 島津製作所] (PHRED フォトケミカルリアクター装着)

検 出 器: 蛍光検出器 RF-10AXL[株式会社 島津製作所]

カラム: Mightysil RP-18 GP(内径 4.6 mm, 長さ 250 mm, 粒径 5 μm)

[関東化学株式会社]

カラム温度: 40℃

移 動 相: 水及びメタノールの混液(6:4)

測定波長: Ex 365 nm Em 450 nm

流 量: 0.7 ml/min注 入 量: 10 μ l

② 液体クロマトグラフ-タンデム型質量分析計操作条件

機 種: Waters 2695 [日本ウォーターズ株式会社]

検 出 器: Quattro Premier XE[日本ウォーターズ株式会社]

カ ラ ム: ZORBAX Eclipse XDB-C18

(内径 2.1 mm, 長さ 150 mm, 粒径 5 μm) [Agilent Technologies]

カラム温度: 40 ℃

移動相:A液;0.01 mol/L 酢酸アンモニウム

B液;メタノール

グラジェント溶出条件:

(B液の割合)25 %(1分保持)→5分→65 %

流 量: 0.2 ml/min

注入量: 10 μ1

イオン化法:ESI 正イオンモード

イオン化電圧:3000 V

コリジョンエネルギー:25 V

コーン電圧: AF $B_1;50$ V, AF $B_2;50$ V, AF $G_1;40$ V, AF $G_2;40$ V 設定質量数: AF B_1 ; m/z 285. 1/313. 1, AF B_2 ; m/z 287. 1/315. 1 AF G_1 ; m/z 243. 1/329. 1, AF G_2 ; m/z 313. 1/331. 1

5) 標準溶液の調製

AF B_1 , B_2 , G_1 及び G_2 の各標準品1 mgにそれぞれアセトニトリルを加えて溶解し、100 ml に定容して10 μ g/mlの標準原液を調製する。この原液を混合し、アセトニトリル及び水の混液(9:1)で適宜希釈し、検量線用AF混合標準溶液(0.05~10 ng/ml)を調製する。

6) 検量線の作成

AF 混合標準溶液を高速液体クロマトグラフに注入し、得られた目的対象物質のピーク高さと標準溶液の目的対象物質の濃度から検量線を作成する。また、AF 混合標準溶液 10 μ1 を液体クロマトグラフ-タンデム型質量分析計に注入し、得られた目的対象物質のピークの高さと標準溶液の目的対象物質の濃度から検量線を作成する。

7) 高速液体クロマトグラフ法及び液体クロマトグラフ-タンデム型質量分析法による 測定

ベビーフード及び幼児向け食品以外の試験溶液 $10~\mu 1$ を高速液体クロマトグラフに注入し、得られた目的対象物質のピーク高さと 6)の検量線から、試験溶液中の目的対象物質の濃度を求め、試料中の濃度を算出する。また、ベビーフード及び幼児向け食品の試験溶液 $10~\mu 1$ を液体クロマトグラフ-タンデム型質量分析計に注入し、得られた目的対象物質のピーク高さと 6)の検量線から、試験溶液中の目的対象物質の濃度を求め、試料中の濃度を算出する。なお、高速液体クロマトグラフによる測定でクロマトグラム上に妨害物質が認められる場合は、液体クロマトグラフ-タンデム型質量分析計での測定も行った。

8) 検出限界及び定量限界の設定

食肉製品 (チキンナゲット) に試料中の AF B_1 , B_2 , G_1 及び G_2 の濃度が 0.1 ng/g になるように添加し、7回の測定を実施した結果を表-25 に示した。また、ベビーフードに試料中の AF B_1 , B_2 , G_1 及び G_2 の濃度が 0.01 ng/g になるように添加し、7回の測定を実施した結果を表-26 に示した。検出限界は標準偏差の 3 倍、定量限界は 10 倍とすると、ベビーフード及び幼児向け食品で定量限界 0.01 ng/g, その他食品で定量限界 0.1 ng/g の定量が可能であると判断された。

表-25 検出限界及び定量限界の確認(AF)

(ng/g)

	チキンナゲット					
	AFB_1	AFB_2	AFG_1	AFG_2		
1	0.063	0.055	0.053	0.067		
2	0.060	0.048	0.050	0.065		
3	0.050	0.048	0.045	0.054		
4	0.058	0.055	0.053	0.071		
5	0.065	0.051	0.058	0.063		
6	0.068	0.054	0.058	0.070		
7	0.050	0.052	0.057	0.063		
平均	0.059	0.051	0.053	0.064		
標準偏差(σ)	0.0070	0.0030	0.0047	0.0056		
3 σ	0.021	0.0090	0.014	0.016		
10 σ	0.070	0.030	0.047	0.056		

表-26 検出限界及び定量限界の確認(AF)

(ng/g)

	ベビーフード					
		76-	ノート			
	AFB_1	AFB_2	AFG_1	AFG_2		
1	0.0051	0.0074	0.0071	0.0074		
2	0.0062	0.0073	0.0073	0.0069		
3	0.0054	0.0065	0.0059	0.0063		
4	0.0057	0.0068	0.0075	0.0055		
5	0.0057	0.0072	0.0073	0.0059		
6	0.0055	0.0071	0.0071	0.0066		
7	0.0043	0.0057	0.0061	0.0063		
平均	0.0054	0.0068	0.0069	0.0064		
標準偏差(σ)	0.00059	0.00059	0.00063	0.00062		
3 σ	0.002	0.002	0.002	0.002		
10 σ	0.006	0.006	0.006	0.006		

9) 添加回収試験(1)

食肉製品 (チキンナゲット)に AF B_1 , B_2 , G_1 及び G_2 濃度が 0.1 ng/g 及び 1 ng/g になるように標準溶液を添加し、本分析法の操作にしたがって、添加回収試験 (繰り返し 7 回)を実施して標準偏差 (ばらつき)を求めた (表-27 参照)。同様にして、ベビーフードに濃度が 0.01 ng/g 及び 0.1 ng/g になるように添加し、添加回収試験を実施して標準偏差 (ばらつき)を求めた (表-28 参照)。

表-27 添加回収試験の結果(AF)

(%)

		チキンナゲット						
添加濃度(ng/g)		0.	1]	1	
	AFB_1	AFB_2	AFG_1	AFG_2	AFB_1	AFB_2	AFG_1	AFG_2
1	63.7	55.7	53.1	67.9	63.9	62.3	64.5	73.1
2	60.9	48.1	50.0	65.9	66.0	64.7	68.6	75.2
3	50.6	48.2	45.1	54.9	66.6	66.6	70.4	75.8
4	58.5	55.3	53.1	71.1	66.3	65.8	69.6	75.6
5	65.1	51.4	58.3	63.4	67.3	65.3	70.2	74.4
6	68.8	54.7	58.8	70.2	68.4	64.3	73.3	75.2
7	50.6	52.4	57.7	63.4	65.7	64.8	68.6	73.4
平均	59.7	52.2	53.6	65.2	66.3	64.8	69.3	74.6
標準偏差(σ)	7.0	3.2	4.9	5.4	1.3	1.3	2.6	1.0

表-28 添加回収試験の結果(AF)

(%)

	ベビーフード								
添加濃度(ng/g)	0.01				0.1				
	AFB_1	AFB_2	AFG_1	AFG_2	AFB_1	AFB_2	AFG_1	AFG_2	
1	51.6	74.0	71.8	74.7	53.7	70.3	47.7	76.4	
2	62.7	73.1	73.9	69.4	45.2	65.5	36. 1	64.8	
3	54.9	65.1	59.4	63.2	53.8	76.8	45.8	75.3	
4	57.4	68.7	75.9	55.9	47.0	66.1	33.6	68.2	
5	57.7	72.5	73.4	59.1	62.9	78.3	45.7	79.4	
6	55.6	71.6	71.5	66.9	51.3	73.6	37.6	73.8	
7	43.6	57.4	61.9	63.6	72.1	84.3	52.2	68.5	
平均	54.7	68.9	69.6	64.6	55.1	73.5	42.6	72.3	
標準偏差(σ)	6.0	5.9	6.4	6.3	9.4	6.8	6.9	5.3	

10) 添加回収試験(2)

試料にAF B_1 , B_2 , G_1 及び G_2 の試料中の濃度が検出限界の10倍になるように添加し、回収試験を実施した(表-29参照)。

表-29 添加回収試験の結果(AF)

(%)

					(/0/		
▲□₩	A 1	回収率					
食品群	食品	AFB ₁	AFB_2	AFG_1	AFG_2		
種子等	かぼちゃの種	63. 1	62.4	62.8	70. 9		
養殖魚	トラウトサーモン	54.8	59.3	54. 2	66.8		
健康食品	小麦胚芽油食品	58.8	58.3	59. 4	66. 7		
食肉製品(生)	鶏肉	68. 0	69. 5	62. 7	74. 5		
食肉製品(加工品)	豚肉ランチョンミート	61. 5	60.5	60.7	65. 2		
卵及び卵製品	うずら卵水煮	51. 1	54. 1	46. 3	59. 1		
血液及び内臓(生)	牛大腸(シマ腸)	63. 4	63. 1	57. 3	69. 3		
血液及び内臓(加工品)	鶏レバー(加熱済・味付)	47. 5	49.7	55. 5	59.8		
さとうきび, 黒砂糖	さとうきび	56. 7	55. 3	58. 3	66. 1		
料理用ハーブ類	タンポポ	50.0	53. 1	57. 5	60.7		
飲料	ブレンド茶	41. 1	43.3	46. 4	50. 5		
ベビーフード	ベビーフード	68.8	65. 1	63.6	75. 9		
幼児向け食品	幼児向け食品	66. 3	69. 1	61.2	80. 5		
菓子類	ナッツ及びカカオ菓子	58. 4	60.0	65. 1	70. 2		
豆類及び豆を用いた製 品	あずき	50. 5	49. 5	52. 6	61. 3		
キャッサバ	キャッサバ芋加工品	79. 9	85. 1	59.0	77.8		
果物及び果物を用いた 製品	赤肉メロン(ドライフルーツ)	73. 9	71. 7	70. 0	75.8		
その他加工品	ヒ゛ーフカレー(レトルト)	68.8	65. 7	74.6	75. 9		

11) 妨害物質の有無(特異性)

添加回収試験で用いた試料からは、AF B_1 、 B_2 、 G_1 及び G_2 の測定を妨げるピークは認められなかった。

12) 添付資料

① 検量線の一例

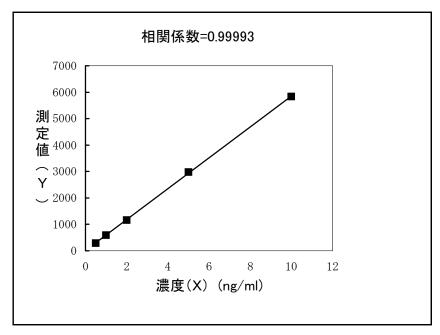


図-10 AF B_1 の検量線の一例(ベビーフード及び幼児向け食品以外)

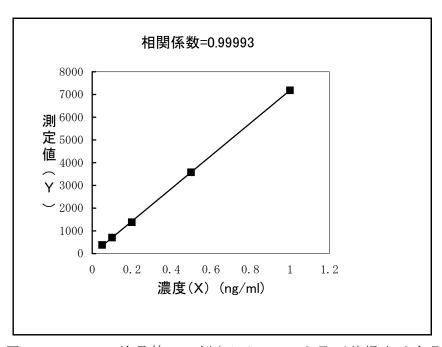


図-11 AF B_1 の検量線の一例(ベビーフード及び幼児向け食品)

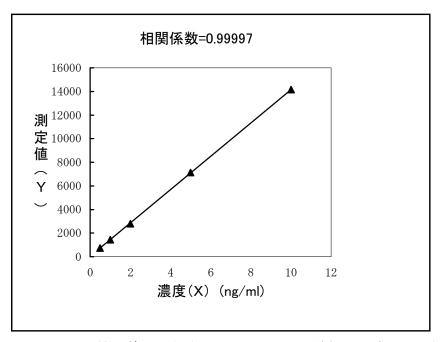


図-12 AF B_2 の検量線の一例(ベビーフード及び幼児向け食品以外)

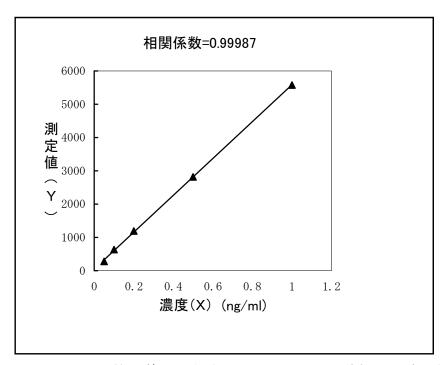


図-13 AF B_2 の検量線の一例(ベビーフード及び幼児向け食品)

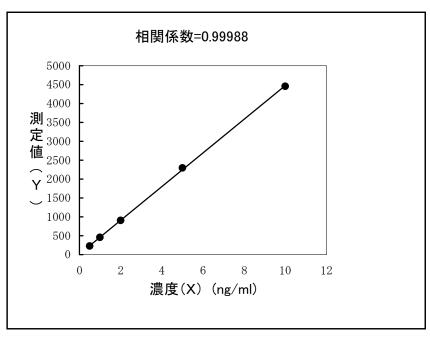


図-14 AF G_1 の検量線の一例(ベビーフード及び幼児向け食品以外)

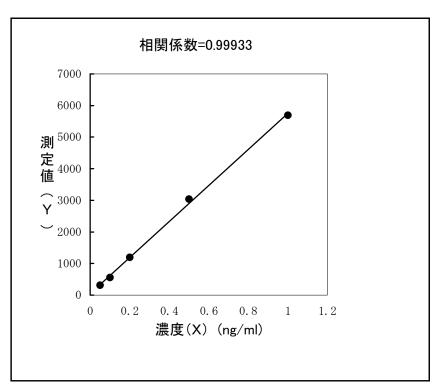


図-15 AF G_1 の検量線の一例(ベビーフード及び幼児向け食品)

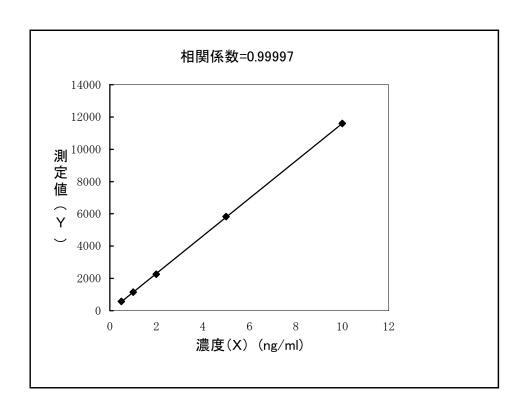


図-16 AF G_2 の検量線の一例(ベビーフード及び幼児向け食品以外)

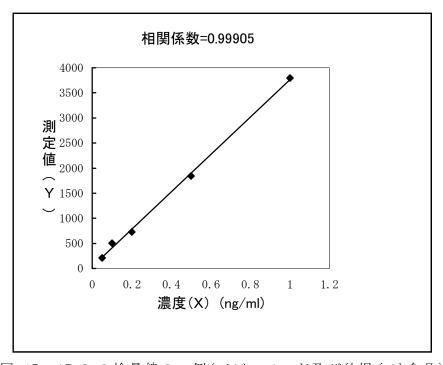


図-17 AF G_2 の検量線の一例(ベビーフード及び幼児向け食品)

② 高速液体クロマトグラムの一例

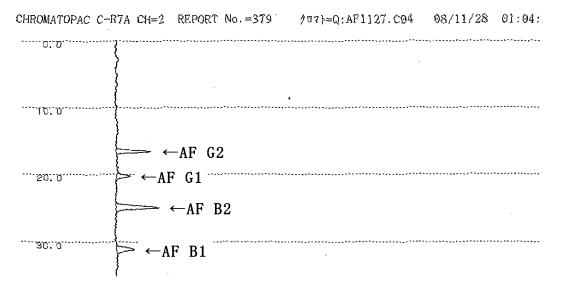


図-18 AF 混合標準溶液 0.5 ng/ml

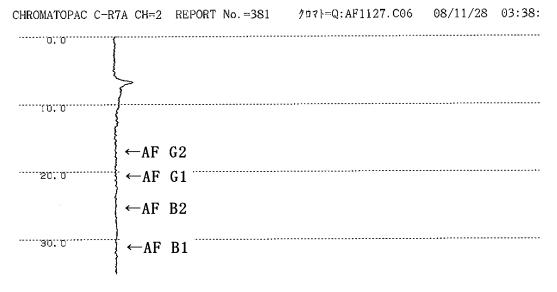


図-19 試料:チキンナゲット(無添加)

CHROMATOPAC C-R7A CH=2 REPORT No.=396 /pr}=Q:AF1127.C21 08/11/28 22:51:

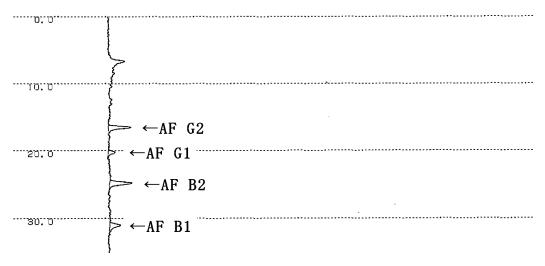


図-20 試料:チキンナゲット(0.1 ng/g 相当添加)

③ MRM クロマトグラムの一例

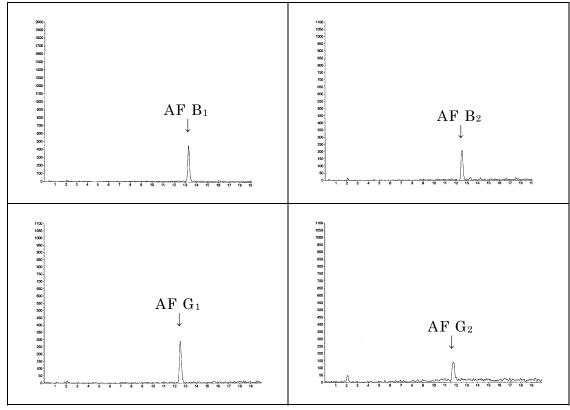


図-21 AF 混合標準溶液 0.1 ng/ml

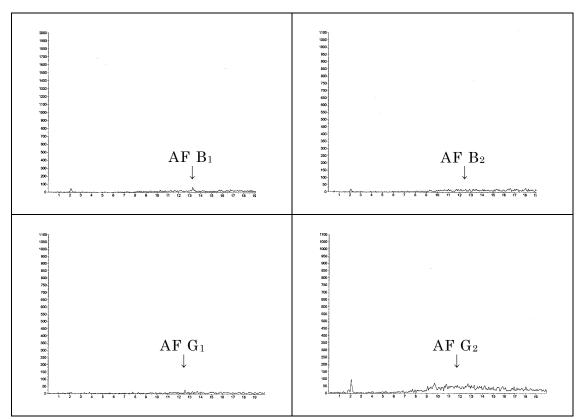


図-22 試料:ベビーフード(無添加)

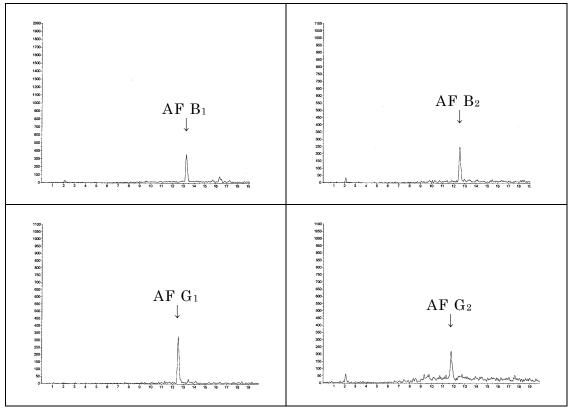


図-23 試料:ベビーフード(0.01 ng/g相当添加)

Ⅲ ゼアラレノン(ZEN)及びゼアラレノール(Ze1)

1) 器具及び装置

遠心管(50, 100及び250 m1容)

分液ロート(300 m1容)

ナス形フラスコ(200, 300 ml容)

ガラス管カラム(内径15 mm, 長さ350 mm)

ガラスロート

ピペット類

メスシリンダー

リザーバー及びジョイント

ろ紙 (No. 5A) [ADVANTEC社]

ガラス繊維ろ紙(GF/C)[Whatman社]

ヒスコトロン型ホモジナイザー

化学天秤

汎用天秤

振とう機

遠心分離機

ロータリーエバポレーター

pHメーター

液体クロマトグラフ-質量分析計

液体クロマトグラフ-タンデム型質量分析計

2) 試薬及び試液

ZEN標準品「Sigma-Aldrich社]

α-Zel 標準品[Sigma-Aldrich 社]

β-Zel 標準品[Sigma-Aldrich 社]

水

アセトニトリル(残留農薬・PCB 試験用及び HPLC 用)[和光純薬工業株式会社]

メタノール(残留農薬・PCB 試験用及び HPLC 用)[和光純薬工業株式会社]

ヘキサン(残留農薬・PCB 試験用)[和光純薬工業株式会社]

りん酸水素二ナトリウム(試薬特級)[小宗化学薬品株式会社]

りん酸二水素ナトリウム(試薬特級)[小宗化学薬品株式会社]

りん酸二水素カリウム(試薬特級)[和光純薬工業株式会社]

酢酸アンモニウム(試薬特級)[関東化学株式会社]

りん酸(試薬特級)[関東化学株式会社]

フロリジール PR[和光純薬工業株式会社]

Sep-Pak Plus C18[Waters Corporation]

イムノアフィニティーカラム(ZearalaTest WB)[VICAM 社]

- 0.02 mo1/L りん酸緩衝液 (pH5.0):0.02 mo1/L りん酸二水素ナトリウム溶液 (水 1 L にりん酸二水素ナトリウム 2.40 g を溶解したもの)に 0.02 mo1/L りん酸水素二ナトリウム溶液 (水 1 L にりん酸水素二ナトリウム 2.84 g を溶解したもの)を加えて pH を 5.0 に調整する。
- 0.02 mo1/L りん酸緩衝液 (pH5.0)及び水の混液 (4:6):0.02 mo1/L りん酸緩衝液 (pH5.0)200 m1 と水 300 m1 を混合する。
- 0.01 mol/L 酢酸アンモニウム溶液:酢酸アンモニウム 0.77 g を水 1 L に溶解する。

水及びメタノールの混液(6:4):水 60 ml 及びメタノール 40 ml を混合する。

水及びメタノールの混液(3:7):水 30 ml 及びメタノール 70 ml を混合する。

水及びメタノールの混液(1:9):水 100 ml 及びメタノール 900 ml を混合する。

水及びアセトニトリルの混液(1:1):水 500 ml 及びアセトニトリル(HPLC 用) 500 ml を混合する。

3) 試験溶液の調製

① 動物原料食品(植物原料の食品,ベビーフード及び幼児向け食品以外)

試料約 5 g を 250 ml 容遠心管に採取し, アセトニトリル 30 ml を加えてホモ ジナイザーを用いて約 3 分間撹はんした後, 2,500 r/min で 5 分間遠心分離する。 上澄み液を綿栓ろ過し、残留物に再度アセトニトリル 30 ml を加えて 1 分間振と うした後, 2,500 r/min で 5 分間遠心分離する。上澄み液を綿栓ろ過して先のろ 液と合わせ, ヘキサン 60 ml を加えて 5 分間振とうする。下層を分取し, 再度へ キサン 30 m1(脂肪分が多い場合は 60 m1)を加えて 5 分間振とうする。下層を分 取し、あらかじめアセトニトリルによりガラス管カラムに充てんしアセトニトリ ル 100 ml で洗浄したフロリジール PR(8 g)に負荷する。アセトニトリル 30 ml を 続けて流し、先の通過液と合わせて 40 ℃で減圧濃縮乾固する。残留物に 0.02 mol/L りん酸緩衝液(pH5.0)及び水の混液(4:6)10 ml を加えて溶解し、あ らかじめメタノール 10 ml, 水 10 ml 及び 0.02 mol/L リン酸緩衝液(pH5.0)2 ml で洗浄した Sep-Pak Plus C18 に負荷する。0.02 mol/L リン酸緩衝液(pH5.0)5 ml, 水及びメタノールの混液(6:4)10 ml で洗浄後, 水及びメタノールの混液(3: 7)10 ml を通し, ゼアラレノンを溶出する。溶出液に水 15 ml を加え, イムノア フィニティーカラムに負荷する。水 5 ml で洗浄後, メタノール 5 ml を通し, ゼ アラレノンを溶出する。溶出液を 40 ℃で減圧濃縮乾固後,水及びアセトニトリ ルの混液(1:1)1 ml に溶解して試験溶液とする。

② 植物原料食品(種子類,健康食品,ハーブ類,飲料,菓子類,豆類,ドライフルーツ及びキャッサバ)

試料約 $0.5\sim10$ g を 250 ml 容遠心管に採取し、水及びメタノールの混液 (1:9) 50 ml を加えて試料が粉末または液体の場合は 30 分間振とう、粗い磨砕物の場合はホモジナイザーを用いて約 3 分間撹はんする。2,500 r/min で 5 分間遠心分離した後、ろ紙でろ過する。ろ液 $5\sim20$ ml (試料 0.5 g または 1 g 相当)を分取し、

③ ベビーフード及び幼児向け食品

試料約 10 g を 250 ml 容遠心管に採取し,アセトニトリル 60 ml を加えてホモ ジナイザーを用いて約 3 分間撹はんした後, 2,500 r/min で 5 分間遠心分離する。 上澄み液を綿栓ろ過し、残留物に再度アセトニトリル 30 ml を加えて 1 分間振と うした後, 2,500 r/min で 5 分間遠心分離する。上澄み液を綿栓ろ過して先のろ 液と合わせ, ヘキサン 60 ml を加えて 5 分間振とうする。下層を分取し, 再度へ キサン 30 ml を加えて 5 分間振とうする。下層を分取し、あらかじめアセトニト リルによりガラス管カラムに充てんしアセトニトリル 100 ml で洗浄したフロリ ジール PR(8 g)に負荷する。アセトニトリル 30 ml を続けて流し, 先の通過液と 合わせて 40 ℃で減圧濃縮乾固する。残留物に 0.02 mo1/L りん酸緩衝液(pH5.0) 及び水の混液(4:6)10 ml を加えて溶解し、あらかじめメタノール 10 ml、水 10 ml 及び 0.02 mol/L リン酸緩衝液(pH5.0)2 ml で洗浄した Sep-Pak Plus C18 に負荷する。0.02 mo1/L リン酸緩衝液(pH5.0)5 m1,水及びメタノールの混液 (6:4)10 ml で洗浄後, 水及びメタノールの混液(3:7)10 ml を通し, ゼアラレ ノンを溶出する。溶出液に水 15 ml を加え, イムノアフィニティーカラムに負荷 する。水 5 ml で洗浄後, メタノール 5 ml を通し, ゼアラレノンを溶出する。溶 出液を 40 ℃で減圧濃縮乾固後,水及びアセトニトリルの混液(1:1)1 ml に溶解 して試験溶液とする。

4) 液体クロマトグラフ-質量分析計操作条件

機 種:1100 Series[Agilent Technologies]

検 出 器:質量分析計 G1956B[Agilent Technologies]

カラム: Mightysil RP-18 GP (内径2.0 mm, 長さ150 mm, 粒径5 μm)

[関東化学株式会社]

カラム温度:40 ℃

移 動 相:A液;0.01 mol/L酢酸アンモニウム溶液

B液;アセトニトリル(HPLC用)

グラジェント条件: (B液の割合) 40 % →15分→ 90 %(5分保持)

流 量: 0.2 m1/min

注 入 量: 20 μ1

イオン化法:ESI 負イオンモード

フラグメンタ電圧: ZEN; 180 V, α -Ze1及び β -Ze1; 200 V

ネブライザーガス:窒素 40 psi

乾燥ガス: 窒素 10 L/min, 300 ℃

キャピラリー電圧:3,500 V

設定質量数: ZEN; m/z 317, α-Zel及びβ-Zel; m/z 319

5) 標準溶液の調製

① ZEN

ZEN標準品25 mgにメタノール (HPLC用) を加えて溶解し、100 mlに定容して250 μ g/ml の標準原液を調製する。この原液1 mlを正確に分取し、メタノール (HPLC用) で10 mlに定容して25 μ g/mlの溶液を調製する。この溶液について、分光光度計 [UV-1600 株式会社島津製作所] 及び1 cm石英セルを用い、メタノール (HPLC用) を対照として314 nmにおける吸光度を測定して得られた値を用い、次式からファクターを算出する。更に、標準原液を適宜水及びアセトニトリルの混液 (1:1) で希釈し、検量線用標準溶液 (0.0005~1 μ g/ml) を調製する。

ZEN 標準原液のファクター = $\frac{A \times MW \times 1000}{\epsilon \times 25}$

A:吸光度

MW: 分子量=318

ε:ゼアラレノンのモル吸光係数=6000

\bigcirc α -Ze1

 α -Zel標準品5 mgにアセトニトリル (HPLC用) を加えて溶解し、50 m1に定容して 100 μ g/m1の標準原液を調製する。この原液を適宜水及びアセトニトリルの混液 (1:1) で 希釈し、検量線用標準溶液 (0.0005~1 μ g/m1) を調製する。

β –Ze1

 β -Zel標準品5 mgにアセトニトリル (HPLC用) を加えて溶解し、50 m1に定容して 100 μ g/m1の標準原液を調製する。この原液を適宜水及びアセトニトリルの混液 (1:1) で 希釈し、検量線用標準溶液 (0.0025~5 μ g/m1) を調製する。

6) 検量線の作成

標準溶液を液体クロマトグラフ-質量分析計に注入し、得られた目的対象物質のピーク高さと標準溶液の目的対象物質の濃度から検量線を作成する。

7) 液体クロマトグラフ-質量分析法による測定

試験溶液を液体クロマトグラフ-質量分析計に注入し、得られた目的対象物質のピーク高さと 6)の検量線から試験溶液中の目的対象物質の濃度を求め、試料中の濃度を算出する。

8) 検出限界及び定量限界の設定

① ZEN

養殖魚(鮭), 雑穀及びベビーフードに試料中の ZEN 濃度がそれぞれ 1 ng/g, 5 ng/g 及び 0.1 ng/g になるように添加し, 7回の測定を実施した結果を表-30 に示した。検出限界は標準偏差の 3 倍, 定量限界は 10 倍とすると, 鮭(動物原料食品)で定量限界 1 ng/g, 雑穀(植物原料食品)で定量限界 5 ng/g, ベビーフードで定量限界 0.1 ng/g の定量が可能であると判断された。

表-30 検出限界及び定量限界の確認(ZEN)

(ng/g)

	鮭	雑穀	ベビーフード
1	0.7772	4.8291	0.0818
2	0.8375	4. 2400	0.0724
3	0.8611	3.8720	0.0897
4	0.8377	4. 6637	0.0734
5	0.9190	4.8610	0.0946
6	0.7540	4. 9599	0.0863
7	0.7159	5. 3281	0.0861
平均	0.814	4.679	0.083
標準偏差(σ)	0.069	0.483	0.008
3 σ	0. 207	1. 449	0.024
10 σ	0.69	4.83	0.08

② Ze1

養殖魚(鮭)に試料中の α -Zel 濃度が 1 ng/g, β -Zel 濃度が 5 ng/g になるように標準溶液を添加し、7 回の測定を実施した結果を表-31 に示した。検出限界は標準偏差の 3 倍、定量限界は 10 倍とすると、 α -Zel は 1 ng/g, β -Zel は 5 ng/g までの定量が可能であると判断された。

同様にベビーフードに試料中の α -Zel 濃度が 0.1 ng/g, β -Zel 濃度が 0.5 ng/g になるように標準溶液を添加し、7 回の測定を実施した結果を表-31 に示した。検出限界は標準偏差の 3 倍、定量限界は 10 倍とすると、 α -Zel は 0.1 ng/g, β -Zel は 0.5 ng/g までの定量が可能であると判断された。

表-31 検出限界及び定量限界の確認(Ze1)

(ng/g)

	魚	± ±	ベビー	フード
	α-Zel	β-Ze1	α-Zel	β-Ze1
1	0.7190	4. 4357	0.0834	0.3764
2	0.7092	3.5787	0.0768	0.3562
3	0.7961	3. 7951	0.0849	0.4291
4	0.6415	3.4688	0.0751	0.3522
5	0.8332	3.9959	0.0782	0.3818
6	0.7371	3.6564	0.0708	0.3224
7	0.6843	3.6879	0.0751	0.4052
平均	0.731	3.802	0.077	0.374
標準偏差(σ)	0.065	0.325	0.004	0.035
3 σ	0. 195	0.975	0.014	0.106
10 σ	0.65	3. 25	0.04	0.35

9) 添加回収試験(1)

① ZEN

養殖魚(鮭)に試料中の ZEN 濃度がそれぞれ 1 ng/g 及び 10 ng/g になるように、また雑穀に試料中の ZEN 濃度がそれぞれ 5 ng/g 及び 50 ng/g になるように標準溶液を添加し、本分析法の操作にしたがって、添加回収試験(繰り返し 7 回)を実施して標準偏差(ばらつき)を求めた(表-32 参照)。

同様にベビーフードに試料中の ZEN 濃度がそれぞれ 0.1 ng/g 及び 1 ng/g になるように標準溶液を添加し、本分析法の操作にしたがって、添加回収試験(繰り返し 7回)を実施して標準偏差(ばらつき)を求めた(表-32 参照)。

表-32 添加回収試験の結果(ZEN)

(%)

添加濃度	魚	鮭	雑	雜穀		ベビーフード	
(ng/g)	1	10	5	50	0.1	1	
1	77.7	71.6	96.5	96.2	81.8	77.3	
2	83.7	94.6	84.8	93.6	72.4	84. 7	
3	86. 1	75. 5	77.4	100.0	89.7	88. 9	
4	83.7	79.3	93.2	97.1	73.4	93.0	
5	91.9	88. 2	97.2	91.1	94.6	83.6	
6	75.4	90.8	99. 2	96.9	86.3	86. 9	
7	71.5	85.8	106.5	93.1	86. 1	83.6	
平均	81.4	83.6	93.5	95.4	83.4	85.4	
標準偏差(σ)	0.6	8.4	9.6	2.9	8.2	4.9	

② Ze1

養殖魚(鮭)に試料中の α -Zel 濃度がそれぞれ 1 ng/g 及び 10 ng/g になるように, β -Zel 濃度がそれぞれ 5 ng/g 及び 50 ng/g になるように標準溶液を添加し, 本分析法の操作にしたがって,添加回収試験(繰り返し 7 回)を実施して標準偏差(ばらつき)を求めた(表-33 参照)。

また、ベビーフードに試料中の α -Zel 濃度がそれぞれ 0.1 ng/g 及び 1 ng/g になるように、また β -Zel 濃度がそれぞれ 0.5 ng/g 及び 5 ng/g になるように標準溶液を添加し、本分析法の操作にしたがって、添加回収試験(繰り返し 7 回)を実施して標準偏差(ばらつき)を求めた(表-34 参照)。

表-33 添加回収試験の結果(Zel)

(%)

	鮭					
添加濃度(ng/g)	α -	-Zel	β -2	Zel		
你加低度(118/8)	1	10	5	50		
1	71.9	78.8	88. 7	91.3		
2	70.9	84.5	71.5	96.8		
3	79.6	79.3	75.9	86.1		
4	64.1	77.3	69.3	73.7		
5	83.3	81.4	79.9	79.5		
6	73.7	84.0	73. 1	79.6		
7	68.4	81.5	73. 7	82.7		
平均	73.1	80.9	76.0	84. 2		
標準偏差(σ)	6. 5	2.6	6. 5	7.8		

表-34 添加回収試験の結果(Ze1)

(%)

	ベビーフード					
添加濃度(ng/g)	α -	-Zel	β-Ze1			
你加低及(118/8)	0.1	1	0.5	5		
1	83.4	75.9	75. 2	79.0		
2	76.8	78.9	71.2	81.2		
3	84.9	85.3	85.8	80.9		
4	75.1	89.2	70.4	88.0		
5	78.2	77.9	76.3	72.0		
6	70.8	83.8	64.4	80.6		
7	75.1	78.9	81.0	73.7		
平均	77.7	81.4	74.9	79.3		
標準偏差(σ)	4. 9	4. 7	7.0	5. 2		

10) 添加回収試験(2)

試料に ZEN もしくは α -Zel の場合は、試料中の濃度が 10 ng/g (植物原料食品の ZEN は 50 ng/g) になるように、 β -Zel の場合は、試料中の濃度が 50 ng/g になるように添加し、回収試験を実施した(表-35 参照)。

またベビーフード及び幼児向け食品については、試料に ZEN もしくは α -Ze1 の場合は、試料中の濃度が 1 ng/g になるように、 β -Ze1 の場合は、試料中の濃度が 5 ng/g になるように添加し、回収試験を実施した(表-35 参照)。

表-35 添加回収試験の結果(ZEN及びZe1)

(%)

会 日	会 日	回収率			
食品群	食品	ZEN	α-Zel	β-Zel	
種子等	ひまわりの種	67.5	_	1	
養殖魚	鰻蒲焼	74.0	78. 1	75. 3	
健康食品	黒豆茶	79. 1	_	_	
食肉製品(生)	鶏もも肉	63.6	85. 7	84.6	
食肉製品(加工品)	コンビーフ	74.6	81. 2	75. 3	
卵及び卵製品	うずら卵水煮	59. 9	73. 4	73. 4	
血液及び内臓(生)	鶏レバー	84. 5	82. 1	85.8	
血液及び内臓(加工 品)	炭火焼 鶏砂肝	88. 1	104. 1	93. 9	
料理用ハーブ類	パセリ	70. 1	_	-	
飲料	杜仲茶	76. 5	_	1	
ベビーフード	ベビーフード	93. 7	91.1	85.8	
幼児向け食品	幼児向け食品	85. 1	82.6	88.5	
菓子類	アーモンドチョコ	91.6	_	1	
豆類及び豆を用いた 製品	あずき	76. 0	-	I	
果物及び果物を用いた製品	バナナチップス	87. 4	_	-	
キャッサバ	キャッサバ粉	80.3	_	_	
その他加工品	サムゲタン	72.8	87.7	88. 2	

11) 妨害物質の有無(特異性)

添加回収試験で用いた試料からは、ZEN、 α -Zel及び β -Zelの測定を妨げるピークは認められなかった。

12) 確認方法

ZEN, α -Ze1及び β -Ze1が検出された場合又は妨害ピークが認められた場合には以下の条件で液体クロマトグラフ-質量分析計による測定を行い、確認試験とした。

液体クロマトグラフ-質量分析計操作条件

機 種:1100 Series[Agilent Technologies]

検 出 器:質量分析計 G1956B[Agilent Technologies]

カ ラ ム: Mightysil RP-18 GP (内径2.0 mm, 長さ150 mm, 粒径5 μm)

[関東化学株式会社]

カラム温度:40 ℃

移 動 相:A液;0.01 mol/L酢酸アンモニウム溶液

B液;メタノール(HPLC用)

グラジェント条件: (B液の割合)50 % →15分→ 90 %(5分保持)

流 量: 0.2 m1/min

注入量: 20 μ1

イオン化法:ESI 負イオンモード

フラグメンタ電圧: ZEN; 180 V, α -Zel, β -Zel; 200 V

ネブライザーガス:窒素 40 psi

乾燥ガス: 窒素 10 L/min, 300 ℃

キャピラリー電圧:3,500 V

設定質量数: ZEN; m/z 317, α-Zel及びβ-Zel; m/z 319

液体クロマトグラフ-タンデム型質量分析計操作条件

機 種:1100 Series[Agilent Technologies]

検 出 器:質量分析計 API-4000[Applied Biosystems]

カ ラ ム: Mightysil RP-18 GP (内径2.0 mm, 長さ150 mm, 粒径5 μ m)

[関東化学株式会社]

カラム温度:40 ℃

移 動 相:A液;0.01 mol/L 酢酸アンモニウム溶液

B液;アセトニトリル(HPLC用)

グラジェント条件:(B液の割合)10 %→15分→50 %→5分→95 %(10分保持)

流 量: 0.2 ml/min

注 入 量:5 μ1

イオン化法:ESI 負イオンモード

イオン化電圧:120 V

コーン電圧:4,200 V

ネブライザーガス:窒素 80 psi コリジョンエネルギー:32 V

コリジョンガス: 窒素

設定質量数: ZEN; m/z 317/175

13) 添付資料

① 検量線の一例

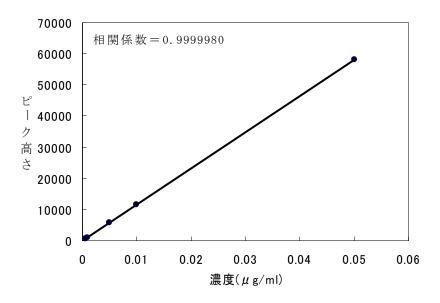


図-24 ZENの検量線の一例

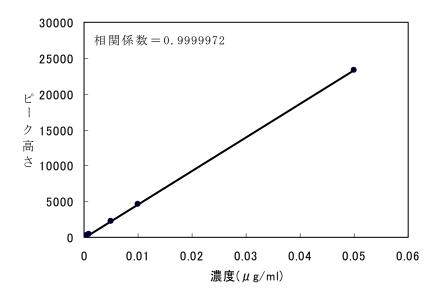


図-25 α-Zelの検量線の一例

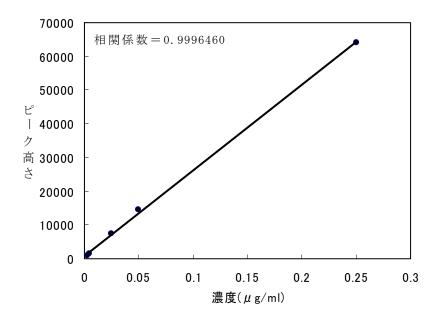


図-26 β-Zelの検量線の一例

② マスフラグメントグラムの一例

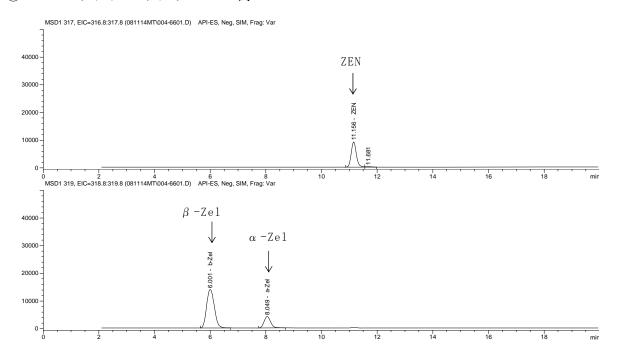


図-27 ZEN 及び α -Zel 標準溶液 0.005 μ g/ml, β -Zel 標準溶液 0.025 μ g/ml

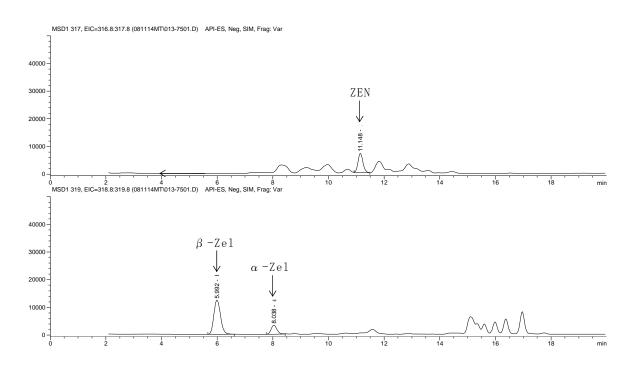


図-29 試料:鮭(ZEN及び α -Zel 1 ng/g, β -Zel 5 ng/g 相当添加)

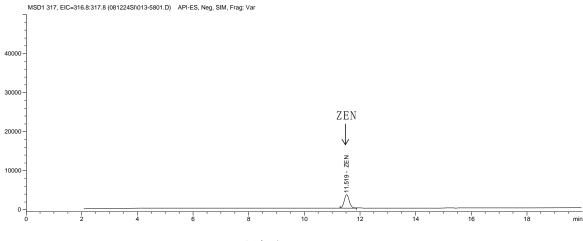


図-30 ZEN標準溶液 0.005 μg/ml

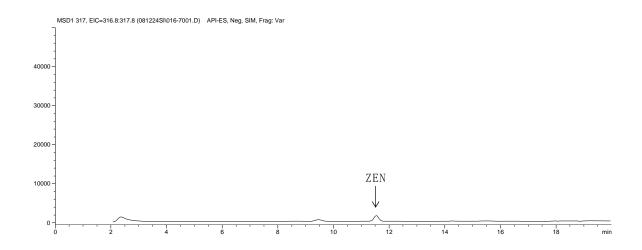


図-31 試料:雜穀(無添加)

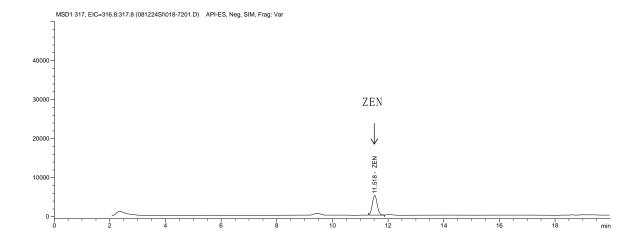


図-32 試料: 雑穀(ZEN 5 ng/g 相当添加)

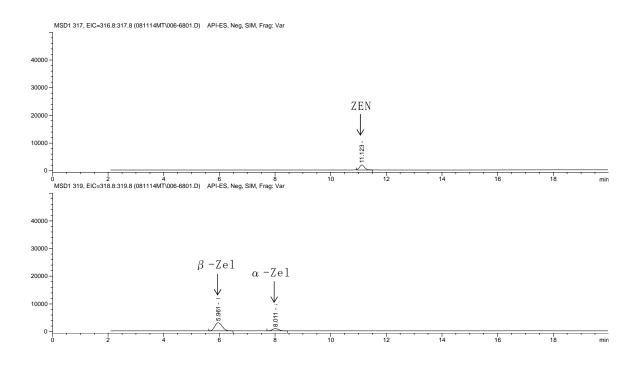


図-33 ZEN 及び α -Zel 標準溶液 0.001 μ g/ml, β -Zel 標準溶液 0.005 μ g/ml

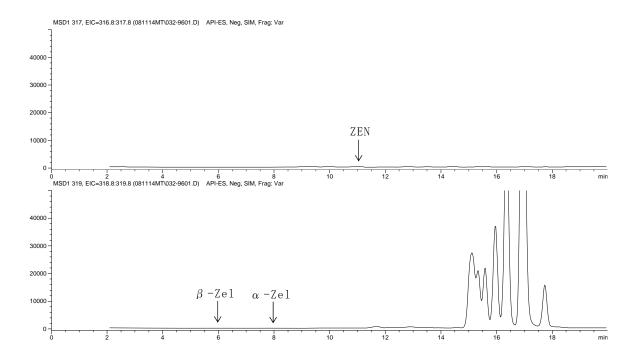


図-34 試料:ベビーフード(無添加)

図-35 試料:ベビーフード(ZEN 及び α -Zel 0.1 ng/g, β -Zel 0.5 ng/g 相当添加)

7 実態調査の結果

実態調査の結果を表-36~55に示した。測定を実施していないものについては表中「-」で示した。

表-36 オリーブの結果

(ng/g)

試料	識別	ОТА		A	F		7EM
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN
1	OV-1	< 0.5				_	_
2	0V-2	< 0.5				_	_
3	0V-3	< 0.5				_	_
4	0V-4	< 0.5				_	_
5	0V-5	< 0.5				_	_
6	0V-6	< 0.5				_	_
7	0V-7	< 0.5				_	_
8	0V-8	< 0.5				_	_
9	0V-9	< 0.5				_	_
10	0V-10	< 0.5	_	_	_	_	_

表-37 種子等の結果

我 51 准 1 守 0 加 木							(11g/g)
試料	識別	ОТА		A	F		7EN
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN
11	SS-1	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
12	SS-2	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	
13	SS-3	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	
14	SS-4	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	
15	SS-5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	
16	SS-6	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
17	SS-7	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
18	SS-8	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
19	SS-9	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
20	SS-10	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
21	SS-11	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
22	SS-12	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
23	SS-13	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	
24	SS-14	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	
25	SS-15	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
26	SS-16	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	
27	SS-17	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	
28	SS-18	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
29	SS-19	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	
30	SS-20	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	_

表-38 養殖魚の結果

試料	識別	OTA		A	F		ZEN		
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN	α-Zel	β-Zel
31	CF-1	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
32	CF-2	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
33	CF-3	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
34	CF-4	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
35	CF-5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
36	CF-6	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
37	CF-7	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
38	CF-8	_	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
39	CF-9	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
40	CF-10	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
41	CF-11	_	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
42	CF-12	_	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
43	CF-13	_	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
44	CF-14	_	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
45	CF-15	_	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
46	CF-16	_	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
47	CF-17	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
48	CF-18	_	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
49	CF-19	_	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
50	CF-20	_	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5

表-39-1 健康食品の結果 (ng/g)

試料	識別	OTA		A	F		ZEN
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN
51	HF-1	< 0.5	_	_	_	_	9
52	HF-2	< 0.5		_	_	_	< 5
53	HF-3	< 0.5		_	_	_	10
54	HF-4	< 0.5		_	_	_	< 5
55	HF-5	< 0.5		_	_	_	< 5
56	HF-6	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
57	HF-7	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
58	HF-8	< 0.5		_	_	_	< 5
59	HF-9	< 0.5		_	_	_	
60	HF-10	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
61	HF-11	< 0.5		_	_	_	< 5
62	HF-12	< 0.5		_	_	_	_
63	HF-13	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
64	HF-14	_	< 0.1	< 0.1	< 0.1	< 0.1	< 5
65	HF-15	_	< 0.1	< 0.1	< 0.1	< 0.1	< 5
66	HF-16		< 0.1	< 0.1	< 0.1	< 0.1	< 5
67	HF-17	_	< 0.1	< 0.1	< 0.1	< 0.1	< 5
68	HF-18	_	< 0.1	< 0.1	< 0.1	< 0.1	< 5
69	HF-19	_	_	_	_	_	< 5
70	HF-20	_	< 0.1	< 0.1	< 0.1	< 0.1	< 5

表-39-2 健康食品の結果 (ng/g)

番号 71	識別 番号	OTA	_				
			B_1	B_2	G_1	G_2	ZEN
	HF-21		< 0.1	< 0.1	< 0.1	< 0.1	< 5
72	HF-22	< 0.5	_	_	_	_	_
73	HF-23	< 0.5	_	_	_	_	_
74	HF-24	< 0.5	_	_	_	_	_
75	HF-25	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
76	HF-26	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
77	HF-27	< 0.5	_	_	_	_	_
78	HF-28	_	< 0.1	< 0.1	< 0.1	< 0.1	_
79	HF-29	_	< 0.1	< 0.1	< 0.1	< 0.1	_
80	HF-30	_	< 0.1	< 0.1	< 0.1	< 0.1	< 5
81	HF-31	_	_	_	_	_	< 5
82	HF-32	6.4	< 0.2	< 0.2	< 0.2	< 0.2	< 5
83	HF-33	3.2	< 0.2	< 0.2	< 0.2	< 0.2	< 5
84	HF-34	5.4	_	_	_	_	_
85	HF-35	0.7	< 0.2	< 0.2	< 0.2	< 0.2	< 5
86	HF-36	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
87	HF-37	< 0.5	_	_	_	_	_
88	HF-38	< 0.5	< 0.2	< 0.2	< 0.2	< 0.2	< 5
89	HF-39	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5
90	HF-40	< 0.5	_	_	_	_	_
91	HF-41	_	< 0.1	< 0.1	< 0.1	< 0.1	_
92	HF-42	< 0.5	_	_	_	_	_
93	HF-43	0.5	_	_	_	_	_
94	HF-44	< 0.5			_		_
95	HF-45		< 0.1	< 0.1	< 0.1	< 0.1	< 5
96	HF-46		< 0.1	< 0.1	< 0.1	< 0.1	< 5
97	HF-47		< 0.1	< 0.1	< 0.1	< 0.1	< 5
98	HF-48		0.6	< 0.1	0.3	< 0.1	< 5
99	HF-49		< 0.1	< 0.1	< 0.1	< 0.1	< 5
100	HF-50		< 0.1	< 0.1	< 0.1	< 0.1	< 5
101	HF-51	_	0.8	< 0.1	0.5	< 0.1	_
102	HF-52	_	0.1	< 0.1	< 0.1	< 0.1	_
103	HF-53	_	0.3	< 0.1	< 0.1	< 0.1	_
104	HF-54	_	0.1	< 0.1	< 0.1	< 0.1	_
105	HF-55	< 0.5	_	_	_	_	_
106	HF-56	< 0.5	_	_	_	_	_
107	HF-57	< 0.5	_	_	_	_	_
108	HF-58	< 0.5	1.3	0.2	0.2	< 0.1	190
109	HF-59	< 0.5	1.4	0.1	0.1	< 0.1	85
110	HF-60	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
111	HF-61	_	0.1	< 0.1	< 0.1	< 0.1	5
112	HF-62	_	1.6	0.1	0.4	< 0.1	210
113	HF-63	_	1.1	< 0.1	0.5	< 0.1	_

表-39-3 健康食品の結果 (ng/g)

試料	識別	ОТА		A	F		7EM
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN
114	HF-64		< 0.1	< 0.1	< 0.1	< 0.1	_
115	HF-65		0.2	< 0.1	< 0.1	< 0.1	_
116	HF-66		0.8	< 0.1	< 0.1	< 0.1	_
117	HF-67		< 0.1	< 0.1	< 0.1	< 0.1	_
118	HF-68	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
119	HF-69	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
120	HF-70	< 0.5	_		_		< 5
121	HF-71		_		_		40
122	HF-72		_		_		< 5
123	HF-73	< 0.5	_		_		< 5
124	HF-74	< 0.5	_		_		< 5
125	HF-75	< 0.5	_		_		< 5
126	HF-76	< 0.5	_		_		< 5
127	HF-77	< 0.5	_		_		< 5
128	HF-78		_		_		< 5
129	HF-79	_	_	_	_	_	6
130	HF-80						< 5
131	HF-81		_		_		< 5
132	HF-82	_	_	_	_	_	< 5

表-40 食肉製品(生)の結果

			-	X 10 X	1 122 111	/ · / //H .	/ ~		(110/0/
試料	識別	ОТА		A	F			ZEN	
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN	α-Zel	β-Zel
133	RM-1	_	_	_	_	_	< 1	< 1	< 5
134	RM-2	_	_	_	_	_	< 1	< 1	< 5
135	RM-3	_	_	_	_	_	< 1	< 1	< 5
136	RM-4	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
137	RM-5	_	_	-		_	< 1	< 1	< 5
138	RM-6	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
139	RM-7	_	_			_	< 1	< 1	< 5
140	RM-8	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
141	RM-9	_	_			_	< 1	< 1	< 5
142	RM-10	_	_			_	< 1	< 1	< 5
143	RM-11	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
144	RM-12	_	_			_	< 1	< 1	< 5
145	RM-13	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
146	RM-14	_	_	_	_	_	< 1	< 1	< 5
147	RM-15	_	_	_	_	_	< 1	< 1	< 5

	ı	ı	<u> </u>	11 X 17 7	(118/8/				
試料	識別	OTA		A	F			ZEN	
番号	番号	OIN	B_1	B_2	G_1	G_2	ZEN	α-Zel	β-Zel
148	PM-1				_		< 1	< 1	< 5
149	PM-2	_		l	_		< 1	< 1	< 5
150	PM-3	_	_	_	_	_	< 1	< 1	< 5
151	PM-4	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
152	PM-5	_	_	_	_	_	< 1	< 1	< 5
153	PM-6	_	_	_	_	_	< 1	< 1	< 5
154	PM-7	_	_	_	_	_	< 1	< 1	< 5
155	PM-8	_	_	_	_	_	< 1	< 1	< 5
156	PM-9	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
157	PM-10	_	_	_	_	_	< 1	< 1	< 5
158	PM-11	_	_	_	_	_	< 1	< 1	< 5
159	PM-12	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
160	PM-13	_	_	_	_	_	< 1	< 1	< 5
161	PM-14	_	_	_	_	_	< 1	< 1	< 5
162	PM-15	_	_	_	_	_	< 1	< 1	< 5
163	PM-16	_	_	_	_	_	< 1	< 1	< 5
164	PM-17	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
165	PM-18	_	_	_	_	_	< 1	< 1	< 5
166	PM-19	_	_	_	_	_	< 1	< 1	< 5
167	PM-20	_	_	_	_	_	< 1	< 1	< 5
168	PM-21	_	_	_	_	_	< 1	< 1	< 5
169	PM-22	_	_	_	_	_	< 1	< 1	< 5
170	PM-23	_	_	_	_	_	< 1	< 1	< 5
171	PM-24	_	_	_	_	_	< 1	< 1	< 5
172	PM-25	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	1	< 1	< 5

表-42 卵及び卵製品の結果 (ng/g)

試料	試料	OTA		A	F			ZEN	
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN	α-Zel	β-Zel
173	PE-1	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
174	PE-2	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
175	PE-3	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
176	PE-4	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
177	PE-5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
178	PE-6	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
179	PE-7	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
180	PE-8	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
181	PE-9	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
182	PE-10	< 0.5	< 0 1	< 0 1	< 0 1	< 0.1	< 1	< 1	< 5

表-43 血液及び臓器(生)の結果

(ng/g)

試料	試料	OTA		A		F		ZEN	
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN	α-Zel	β-Zel
183	RVM-1	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
184	RVM-2	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
185	RVM-3	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
186	RVM-4	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
187	RVM-5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
188	RVM-6	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
189	RVM-7	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
190	RVM-8	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
191	RVM-9	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
192	RVM-10	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5

表-44 血液及び臓器(加工品)の結果

試料	識別	0.77.4		A	F			ZEN	
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN	α-Zel	β-Zel
193	PVM-1	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
194	PVM-2	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	2	< 5
195	PVM-3	_	_	_	_	_	< 1	< 1	< 5
196	PVM-4	_	_	_	_	_	< 1	< 1	< 5
197	PVM-5		-	-	_	-	< 1	< 1	< 5
198	PVM-6	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
199	PVM-7		1	l	_	1	< 1	< 1	< 5
200	PVM-8	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
201	PVM-9				_		< 1	< 1	< 5
202	PVM-10	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
203	PVM-11			-	_		< 1	< 1	< 5
204	PVM-12	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
205	PVM-13	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
206	PVM-14	_	_	_	_	_	< 1	< 1	< 5
207	PVM-15	_	_	_	_	_	< 1	< 1	< 5
208	PVM-16	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
209	PVM-17	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
210	PVM-18	_	_	_	_	_	< 1	< 1	< 5
211	PVM-19	_	_	_	_	_	< 1	< 1	< 5
212	PVM-20	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
213	PVM-21	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
214	PVM-22	_	_	_	_	_	< 1	< 1	< 5
215	PVM-23	_	_	_	_	_	< 1	< 1	< 5
216	PVM-24	_	_	_	_	_	< 1	< 1	< 5
217	PVM-25	_	_	_	_	_	< 1	< 1	< 5
218	PVM-26	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
219	PVM-27	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
220	PVM-28	_			_		< 1	< 1	< 5
221	PVM-29	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
222	PVM-30	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5

表-45 さとうきび、黒砂糖の結果 (ng/g)

試料	識別	ОТА		A	F		ZEM
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN
223	SG-1	_	0.1	< 0.1	< 0.1	< 0.1	_
224	SG-2	_	< 0.1	< 0.1	< 0.1	< 0.1	_
225	SG-3	_	< 0.1	< 0.1	< 0.1	< 0.1	_
226	SG-4	_	0.1	< 0.1	< 0.1	< 0.1	_
227	SG-5	_	< 0.1	< 0.1	< 0.1	< 0.1	_
228	SG-6	_	< 0.1	< 0.1	< 0.1	< 0.1	_
229	SG-7	_	0.2	< 0.1	< 0.1	< 0.1	_
230	SG-8		< 0.1	< 0.1	< 0.1	< 0.1	
231	SG-9		< 0.1	< 0.1	< 0.1	< 0.1	_
232	SG-10	_	0.1	< 0.1	< 0.1	< 0.1	_
233	SG-11	_	0.4	0.1	< 0.1	< 0.1	_
234	SG-12	_	< 0.1	< 0.1	< 0.1	< 0.1	_
235	SG-13	_	< 0.1	< 0.1	< 0.1	< 0.1	_
236	SG-14		0.2	< 0.1	< 0.1	< 0.1	
237	SG-15		< 0.1	< 0.1	< 0.1	< 0.1	
238	SG-16		< 0.1	< 0.1	< 0.1	< 0.1	
239	SG-17		< 0.1	< 0.1	< 0.1	< 0.1	
240	SG-18		< 0.1	< 0.1	< 0.1	< 0.1	
241	SG-19		< 0.1	< 0.1	< 0.1	< 0.1	
242	SG-20		< 0.1	< 0.1	< 0.1	< 0.1	
243	SG-21		0.1	< 0.1	< 0.1	< 0.1	
244	SG-22		< 0.1	< 0.1	< 0.1	< 0.1	
245	SG-23	_	< 0.1	< 0.1	< 0.1	< 0.1	_
246	SG-24	_	< 0.1	< 0.1	< 0.1	< 0.1	_
247	SG-25	_	0.1	< 0.1	< 0.1	< 0.1	_
248	SG-26	_	< 0.1	< 0.1	< 0.1	< 0.1	_
249	SG-27	_	0.3	< 0.1	< 0.1	< 0.1	_
250	SG-28	_	< 0.1	< 0.1	< 0.1	< 0.1	_
251	SG-29	_	< 0.1	< 0.1	< 0.1	< 0.1	_
252	SG-30	_	0.2	< 0.1	< 0.1	< 0.1	_

表-46 料理用ハーブ類の結果 (ng/g)

試料	識別	0.77.4		A	F		ZDN
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN
253	HB-1	< 0.5	_	_	_	_	_
254	HB-2	< 0.5	_	_	_	_	_
255	HB-3	< 0.5	_	_	_	_	_
256	HB-4	< 0.5	_	_	_	_	_
257	HB-5	< 0.5	_	_	_	_	< 5
258	НВ-6	< 0.5	_	_	_	_	_
259	HB-7	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
260	HB-8	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
261	HB-9	< 0.5	_	_	_	_	
262	HB-10	< 0.5	_	_	_	_	
263	HB-11	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
264	HB-12	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
265	HB-13	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
266	HB-14	< 0.5	_	_	_	_	_
267	HB-15	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
268	HB-16	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
269	HB-17	< 0.5	_	_	_	_	_
270	HB-18	< 0.5	_	_	_	_	_
271	HB-19	< 0.5	_	_	_	_	_
272	HB-20	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
273	HB-21	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
274	HB-22	< 0.5	_	_	_	_	_
275	HB-23	< 0.5	_	_	_	_	_
276	HB-24	< 0.5	_	_	_	_	_
277	HB-25	< 0.5	_	_	_	_	_
278	HB-26	< 0.5	_	_	_	_	_
279	HB-27	< 0.5	_	_	_	_	_
280	HB-28	< 0.5	_	_	_	_	_
281	HB-29	< 0.5	_	_	_	_	_
282	HB-30	110	< 0.1	< 0.1	< 0.1	< 0.1	_

10k 4=	→는 □ II		27.11	Λη I • > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\ > /\			(118/8/
試料	識別	OTA		A			ZEN
番号	番号		B_1	B_2	G_1	G_2	
283	DK-1	_	< 0.2	< 0.2	< 0.2	< 0.2	_
284	DK-2	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
285	DK-3		< 0.1	< 0.1	< 0.1	< 0.1	_
286	DK-4	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
287	DK-5	_	< 0.5	< 0.5	< 0.5	< 0.5	_
288	DK-6	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
289	DK-7	_	< 0.2	< 0.2	< 0.2	< 0.2	_
290	DK-8	_	< 0.1	< 0.1	< 0.1	< 0.1	_
291	DK-9	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
292	DK-10	_	< 0.1	< 0.1	< 0.1	< 0.1	_
293	DK-11	_	< 0.1	< 0.1	< 0.1	< 0.1	_
294	DK-12	_	< 0.1	< 0.1	< 0.1	< 0.1	_
295	DK-13		< 0.1	< 0.1	< 0.1	< 0.1	_
296	DK-14		< 0.1	< 0.1	< 0.1	< 0.1	_
297	DK-15	_	< 0.2	< 0.2	< 0.2	< 0.2	_
298	DK-16	_	< 0.5	< 0.5	< 0.5	< 0.5	_
299	DK-17	_	< 0.5	< 0.5	< 0.5	< 0.5	_
300	DK-18	_	< 0.1	< 0.1	< 0.1	< 0.1	_
301	DK-19	_	< 0.1	< 0.1	< 0.1	< 0.1	_
302	DK-20	_	< 0.1	< 0.1	< 0.1	< 0.1	_
303	DK-21	_	< 0.5	< 0.5	< 0.5	< 0.5	_
304	DK-22	_	< 0.1	< 0.1	< 0.1	< 0.1	_
305	DK-23	_	< 0.5	< 0.5	< 0.5	< 0.5	_
306	DK-24	_	< 0.1	< 0.1	< 0.1	< 0.1	_
307	DK-25	_	< 1	< 1	< 1	< 1	_
308	DK-26		< 0.1	< 0.1	< 0.1	< 0.1	_
309	DK-27	_	< 1	< 1	< 1	< 1	_
310	DK-28	_	< 0.1	< 0.1	< 0.1	< 0.1	_
311	DK-29	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
312	DK-30	_	< 0.2	< 0.2	< 0.2	< 0.2	_

番号 番号 $01A$ B_1 B_2 G_1 G_2 ZEN α $ 313$ $FB-1$ < 0.05 $ < 0.1$ < 314 $FB-2$ < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 < 315 $FB-3$ < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 < 316 $FB-4$ < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 < 317 $FB-5$ < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 < 318 $FB-6$ < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 < 319 $FB-7$ < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 $< 0.$		β -Ze1
313 FB-1 < 0.05		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1	
315 FB-3 < 0.05	0 1	< 0.5 < 0.5
316 FB-4 < 0.05		
317 FB-5 < 0.05		< 0.5
318 FB-6 < 0.05		< 0.5
319 FB-7 < 0.05		< 0.5
320 FB-8 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 <		< 0.5
		< 0.5
		< 0.5
		< 0.5
		< 0.5
		< 0.5
		< 0.5
		< 0.5
	0.1	< 0.5
	0.1	< 0.5
		< 0.5
		< 0.5
330 FB-18 < 0.05 < 0.02 < 0.02 < 0.02 < 0.02 < 0.1 <	0.1	< 0.5
331 FB-19 < 0.05 < 0.1 <	0.1	< 0.5
332 FB-20 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 <	0.1	< 0.5
333 FB-21 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 <	0.1	< 0.5
334 FB-22 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 <	0.1	< 0.5
335 FB-23 < 0.05 < 0.1 <	0.1	< 0.5
336 FB-24 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 <	0.1	< 0.5
337 FB-25 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 <	0.1	< 0.5
338 FB-26 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 <	0.1	< 0.5
339 FB-27 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 <	0.1	< 0.5
340 FB-28 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <	0.1	< 0.5
341 FB-29 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 <	0.1	< 0.5
342 FB-30 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 <	0.1	< 0.5
		< 0.5
344 FB-32 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 <	0.1	< 0.5
		< 0.5
346 FB-34 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.1 <	0.1	< 0.5
		< 0.5

試料	識別					Z 11 * 2 //11 //		7EM	(118/8/
1		OTA	D	A		0	ZEM	ZEN	0 7 1
番号	番号		B ₁	B ₂	G ₁	G ₂	ZEN	α -Ze1	β -Ze1
348	FC-1	< 0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.1	< 0.5
349	FC-2	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
350	FC-3	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
351	FC-4	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
352	FC-5	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
353	FC-6	< 0.05	_	_	_	_	< 0.1	< 0.1	< 0.5
354	FC-7	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
355	FC-8	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
356	FC-9	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
357	FC-10	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
358	FC-11	< 0.05	_	_			< 0.1	< 0.1	< 0.5
359	FC-12	< 0.05	_	_		_	< 0.1	< 0.1	< 0.5
360	FC-13	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
361	FC-14	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
362	FC-15	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
363	FC-16	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
364	FC-17	< 0.05	_	_	_	_	< 0.1	< 0.1	< 0.5
365	FC-18	< 0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.1	< 0.5
366	FC-19	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
367	FC-20	< 0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.1	< 0.5
368	FC-21	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
369	FC-22	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
370	FC-23	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
371	FC-24	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
372	FC-25	< 0.05	_	_	_	_	< 0.1	< 0.1	< 0.5
373	FC-26	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
374	FC-27	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
375	FC-28	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 0.1	< 0.5
376	FC-29	< 0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.1	< 0.5
377	FC-30	< 0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.1	< 0.5

				10 3 795 - 71			(***0/ 0/
試料	識別	OTA		A	F		ZEN
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN
378	SN-1	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
379	SN-2	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
380	SN-3	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
381	SN-4	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
382	SN-5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
383	SN-6	< 0.5	0.2	< 0.1	< 0.1	< 0.1	< 5
384	SN-7	< 0.5	0.1	< 0.1	< 0.1	< 0.1	< 5
385	SN-8	< 0.5	0.3	< 0.1	< 0.1	< 0.1	< 5
386	SN-9	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
387	SN-10	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
388	SN-11	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
389	SN-12	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
390	SN-13	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
391	SN-14	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
392	SN-15	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
393	SN-16	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
394	SN-17	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
395	SN-18	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
396	SN-19	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
397	SN-20	< 0.5	0.2	< 0.1	0.2	< 0.1	< 5

表-51-1 豆類及び豆を用いた製品の結果 (ng/g	表-51-1	豆類及び豆を用いた製品の結果	(ng/g)
-----------------------------	--------	----------------	--------

試料	識別	OTA		A	F		ZEN
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN
398	BN-1	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
399	BN-2	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
400	BN-3	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
401	BN-4	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
402	BN-5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
403	BN-6	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
404	BN-7	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
405	BN-8	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
406	BN-9	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
407	BN-10	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	5
408	BN-11	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
409	BN-12	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
410	BN-13	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
411	BN-14	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
412	BN-15	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
413	BN-16	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
414	BN-17	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
415	BN-18	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
416	BN-19	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
417	BN-20	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
418	BN-21	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
419	BN-22	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5

表-51-2 豆類及び豆を用いた製品の結果 (ng/g)

試料	識別	ОТА		A	F		ZEN
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN
420	BN-23	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
421	BN-24	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
422	BN-25	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5

表-52 キャッサバの結果

試料番	識別番	OTA		A	F		ZEN
号	号	OTA	B_1	B_2	G_1	G_2	ZEN
423	CSV-1	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
424	CSV-2	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
425	CSV-3	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
426	CSV-4	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
427	CSV-5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5

表-53 野菜及び野菜を用いた製品の結果 (ng/g)

	-	2,00	1 / 1 / 2 0 -	1 // 5 //11 4	7C 2C HH .	> //H //\	(116/ 6/
試料	識別	OTA		A	F		ZEN
番号	番号	OIA	B_1	B_2	G_1	G_2	ZEN
428	VG-1	< 0.5	_	_	_	_	_
429	VG-2	< 0.5	_	_	_	_	_
430	VG-3	< 0.5	_	_	_	_	_
431	VG-4	< 0.5	_	_	_	_	_
432	VG-5	< 0.5	_	_	_	_	_
433	VG-6	< 0.5	_	_	_	_	_
434	VG-7	< 0.5	_	_	_	_	_
435	VG-8	< 0.5	_	_	_	_	_
436	VG-9	< 0.5	_	_	_	_	_
437	VG-10	< 0.5	_	_	_	_	_
438	VG-11	< 0.5	_	_	_	_	_
439	VG-12	< 0.5	_	_	_	_	_
440	VG-13	< 0.5	_	_	_	_	_
441	VG-14	< 0.5	_	_	_	_	_
442	VG-15	< 0.5	_	_	_	_	_
443	VG-16	< 0.5	_	_	_	_	_
444	VG-17	< 0.5	_	_	_	_	_
445	VG-18	< 0.5	_	_	_	_	_
446	VG-19	< 0.5					
447	VG-20	< 0.5	_	_	_	_	_
448	VG-21	< 0.5				_	
449	VG-22	< 0.5	_	_	_	_	_
450	VG-23	< 0.5					
451	VG-24	< 0.5					
452	VG-25	< 0.5	_	_	_	_	_

表-54 果物及び果物を用いた製品

(ドライフルーツ含む)の結果

			(ドノイン	木	(lig/g)		
試料番	識別番	OTA		A	F		ZEN
号	号	OIA	B_1	B_2	G_1	G_2	ZEN
453	DF-1	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
454	DF-2	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
455	DF-3	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
456	DF-4	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
457	DF-5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
458	DF-6	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
459	DF-7	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
460	DF-8	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
461	DF-9	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
462	DF-10	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
463	DF-11	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
464	DF-12	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
465	DF-13	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
466	DF-14	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
467	DF-15	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
468	DF-16	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
469	DF-17	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
470	DF-18	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
471	DF-19	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
472	DF-20	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
473	DF-21	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
474	DF-22	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
475	DF-23	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
476	DF-24	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5
477	DF-25	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 5

試料	識別	OTA		A	F		ZEN		
番号	番号	OTA	B_1	B_2	G_1	G_2	ZEN	α-Zel	β-Zel
478	0P-1	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
479	0P-2	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
480	0P-3	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
481	0P-4	1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
482	0P-5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
483	0P-6	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
484	0P-7	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
485	0P-8	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
486	0P-9	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
487	0P-10	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
488	0P-11	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
489	0P-12	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
490	0P-13	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
491	0P-14	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
492	0P-15	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
493	0P-16	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
494	OP-17	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
495	0P-18	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
496	0P-19	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5
497	0P-20	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 1	< 1	< 5

8 文献調查

下記文献の翻訳を行った。なお、文献及び翻訳文書は別刷りとした。

- (1) 国際機関の評価
- ・JECFAの評価モノグラフ
 - ① ゼアラレノン (第 53 回 JECFA, Food Additives Series 44)
 - ② アフラトキシン(第 49 回 JECFA, Food Additives Series 30)
 - ③ オクラトキシン A(第 37 回 JECFA, Food Additives Series 28)
 - ④ オクラトキシン A(第 56 回 JECFA, Food Additives Series 47)
 - ⑤ アフラトキシン M₁ (第 56 回 JECFA, Food Additives Series 47)
 - ⑥ オクラトキシン A (第 68 回 JECFA, Food Additives Series 59)
 - ⑦ アフラトキシン(第 68 回 JECFA, Food Additives Series 59)
- · IARC 報告書
 - ① ゼアラレノン
 - ② オクラトキシン A
- (2) 世界のカビ毒規制
 - ① 2003年における食品及び飼料中のカビ毒に対する世界各国の規制 (FAO FOOD AND NUTRITION PAPER 81)

9 調査検討会

本調査に関して2回の検討会を開催した。

なお、検討委員は次に示す5名とした(括弧内は所属)。

- •熊谷 進 (座長;東京大学大学院 農学生命科学研究科)
- 石黒 瑛一(社団法人 日本科学飼料協会)
- 小西 良子 (国立医薬品食品衛生研究所 衛生微生物部)
- 田中 敏嗣(神戸市環境衛生研究所)
- 中島 正博 (名古屋市衛生研究所 食品部)
- (1) 第1回検討会 (開催年月日:平成20年10月16日)

調査に先立ち、調査試料の選定に関しての調査検討会を開催し、本調査はこの検討会での意見に基づいて実施した。

(2) 第2回検討会 (開催年月日:平成21年2月18日)

本調査終了後,得られた調査結果に関する第2回調査検討会を開催し,調査結果 を詳細に分析し討議を行い,最後に平成17,18及び20年度の3ヵ年に渡って行われ た本調査結果の総括を行った。

10 まとめ

10.1 汚染実態調査

市場に流通している食品(表-56参照)を購入し、OTA、AF及びZEN(動物性食品については

 α -Zel及び β -Zelも分析) についてそれぞれ350検体の食品について汚染実態調査を実施した。

調査の結果, 0TAが健康食品5検体から $0.5\sim6.4$ ng/g, 料理用ハーブ類1検体(タンポポ) から110 ng/g, その他加工品(サムゲタン)から1.0 ng/gの濃度でそれぞれ検出された。

また、AFが健康食品12検体から $0.1\sim1.6$ ng/g、さとうきび2検体及び黒砂糖8検体から $0.1\sim0.4$ ng/g、菓子類4検体から $0.1\sim0.3$ ng/gの濃度でそれぞれ検出された。

最後に、ZENが健康食品8検体から5~210 ng/g、食肉製品(加工品)1検体(豚肉ランチョンミート)から1 ng/g、血液及び臓器(加工品)1検体(牛レバー加工品)から2 ng/g、ベビーフード2検体からそれぞれ0.1 ng/g、豆類及び豆を用いた製品1検体(小豆)から5 ng/gの濃度でそれぞれ検出された。

会 日 #Y	調査〕	した検体数(検	(出数)
食品群	OTA	AF	ZEN
オリーブ	10	0	0
種子等	20	20	10
養殖魚	10	20	20
健康食品	45(5)	45 (12)	55(8)
食肉製品(生)	5	5	15
食肉製品(加工品)	5	5	25(1)
卵及び卵製品	10	10	10
血液及び臓器(生)	10	10	10
血液及び臓器(加工品)	15	15	30(1)
さとうきび、黒砂糖	0	30(10)	0
料理用ハーブ類	30(1)	10	10
飲料	5	30	5
ベビーフード	35	30	35(2)
幼児向け食品	30	25	30
菓子類	20	20(4)	20
豆類及び豆を用いた製品	25	25	25(1)
キャッサバ	5	5	5
野菜及び野菜を用いた製品	25	0	0
果物及び果物を用いた製品	9.5	95	<u> </u>
(ドライフルーツ含む)	25	25	25
その他加工品	20(1)	20	20
合計	350(7)	350 (26)	350 (13)

表-56 汚染実態調査概要

10.2 分析法の検証結果

10.2.1 OTA

養殖魚(鮭)及び茶を用いた7回の繰り返し試験から得られた添加回収率の平均はそれぞれ,0.5 ng/g添加で97.7 %及び67.1,5 ng/g添加で85.8 %及び69.5 %であった。ベビーフードを用いた7回の繰り返し試験から得られた添加回収率の平均は,0.05 ng/g添加で99.8 %,0.5 ng/g添加で84.6 %であった。また,養殖魚(鮭)及び茶における標準偏差はそれぞれ,0.5 ng/g添加で3.7及び8.3,5 ng/g添加で1.7及び2.3であった。ベビーフー

ドにおける標準偏差は0.05 ng/g添加で10.8, 0.5 ng/g添加で7.2であった。また,定量限界はベビーフード(幼児向け食品含む)で0.05 ng/g, それ以外の食品は0.5 ng/gとした。

10.2.2 AF

食肉製品(チキンナゲット)を用いた7回の繰り返し試験から得られた添加回収率の平均は、1 ng/g添加でB₁は66.3 %、B₂は64.8 %、G₁は 69.3 %、G₂は74.6 %、0.1 ng/g添加でB₁は59.7 %、B₂は52.2 %、G₁は53.6 %、G₂は65.2 %であった。また、ベビーフードの0.1 ng/g添加でB₁は55.1 %、B₂は73.5 %、G₁は 42.6 %、G₂は72.3 %、0.01 ng/g添加でB₁は54.7 %、B₂は68.9 %、G₁は 69.6 %、G₂は64.6 %であった。また、標準偏差は食肉製品(チキンナゲット)の1 ng/g添加でB₁は1.3、B₂は1.3、G₁は2.6、G₂は1.0、0.1 ng/g添加でB₁は7.0、B₂は3.2、G₁は4.9、G₂は5.4、ベビーフードの0.1 ng/g添加でB₁は9.4、B₂は6.8、G₁は6.9、G₂は5.3、0.01 ng/g添加でB₁は6.0、B₂は5.9、G₁は6.4、G₂は6.3であった。

また,定量限界はベビーフード(幼児向け食品含む)で0.01 ng/g,それ以外の食品は0.1 ng/gとしたが,検体によっては妨害物質の影響により定量限界が変更となったものもあった。

10.2.3 ZEN

健康食品 (雑穀)を用いた7回の繰り返し試験から得られた添加回収率の平均は,ZENの5 ng/g及び50 ng/g添加でそれぞれ93.5 %及び95.4 %であった。養殖魚 (鮭) においては,ZENの1 ng/g及び10 ng/g添加でそれぞれ81.4 %及び83.6 %, α -Zelの1 ng/g及び10 ng/g添加でそれぞれ73.1 %及び80.9 %, β -Zelの5 ng/g及び50 ng/g添加でそれぞれ76.0 %及び84.2 %であった。ベビーフードにおいては,ZENの0.1 ng/g及び1 ng/g添加でそれぞれ83.4 %及び85.4 %, α -Zelの0.1 ng/g及び1 ng/g添加でそれぞれ77.7 %及び81.4 %, β -Zelの0.5 ng/g及び5 ng/g添加でそれぞれ74.9 %及び79.3 %であった。また,標準偏差は健康食品 (雑穀)のZENの5 ng/g及び50 ng/g添加でそれぞれ9.6及び2.9であった。養殖魚 (鮭)のZENの1 ng/g及び10 ng/g添加でそれぞれ0.6及び8.4, α -Zelの1 ng/g及び10 ng/g添加でそれぞれ0.6及び8.4, α -Zelの1 ng/g及び7.8であった。ベビーフードのZENの0.1 ng/g及び1 ng/g添加でそれぞれ8.2及び4.9, α -Zelの0.1 ng/g及び1 ng/g添加でそれぞれ8.2及び4.9, α -Zelの0.1 ng/g及び1 ng/g添加でそれぞれ8.0及び5 ng/g添加でそれぞれ7.0及び5.2であった。

また、ZENの定量限界はベビーフード(幼児向け食品含む)で0.1~ng/g、植物原料食品で5~ng/g、動物原料食品で1~ng/gとした。代謝体の α -Ze1の定量限界はベビーフード(幼児向け食品含む)で0.1~ng/g、動物原料食品で1~ng/gとし、 β -Ze1の定量限界はベビーフード(幼児向け食品含む)で0.5~ng/g、動物原料食品で5~ng/gとした。

10.3 平成17, 18及び20年度実態調査結果の総括

各調査品目毎に平成17,18及び20年度の調査結果及び検討会での検討内容をまとめ、表-57~81に各年度毎及び各調査項目毎の調査数を示した。なお、表中()内に検出数を示した。

10.3.1 オリーブ

平成17年度は輸入品・国産品両方、平成18年度は国産品のみ、平成20年度は輸入品のみを調査し、いずれの調査においてもカビ毒は検出されなかった。汚染報告があるため調査対象としたが、今回の調査では汚染は確認されなかった。

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	10	5	10	25	0 %
AF	10	_	_	10	0 %
ZEN	-	_	-	-	-

表-57 オリーブの調査結果概要

10.3.2 種子等

平成17年度はひまわり種子のみ(ひまわりオイル含む),平成18及び20年度は種子全般を対象として調査し、いずれの調査においてもカビ毒は検出されなかった。平成18年度検討会で、東南アジアでカビ毒汚染の報告があったことから調査対象としたが、実際はその地域の種子等は購入できなかった。今回の調査では、汚染は確認されなかった。

	•				
調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	10	10	20	40	0 %
AF	10	10	20	40	0 %
ZEN	_	10	10	20	0 %

表-58 種子等の調査結果概要

10.3.3 輸入養殖エビ

平成17及び18年度に調査を行ったところ、いずれの調査においてもカビ毒は検出されなかった。平成18年度検討会でエビの飼料が汚染されている可能性を踏まえて調査対象としたが、調査の結果汚染は確認されず、また、養魚用飼料はカビ毒汚染の可能性の高い飼料中の穀類の割合があまり高くないとのことから、平成20年度の調査対象から外した。

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	10	5	_	15	0 %
AF	20	5	_	25	0 %
ZEN	10	5	_	15	0 %

表-59 輸入養殖エビの調査結果概要

10.3.4 養殖魚

平成17及び18年度は輸入品・国産品両方(海水魚及び淡水魚), 平成20年度は輸入品の海水魚のみを調査し, いずれの調査においてもカビ毒は検出されなかった。平成18年度検討会では, 東南アジアの養魚用飼料では, カビ毒汚染の可能性のある米を原料にしている可能性が高いことを考慮し, 輸入品・国産品両方を調査対象としたが, 平成20年度第1回検討会では国産養殖魚の飼料は国産品が多く, 汚染の可能性は少ないとの判断から国産品を調査対象から外した。

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	10	10	10	30	0 %
AF	20	10	20	50	0 %
ZEN	20	10	20	50	0 %

表-60 養殖魚の調査結果概要

10.3.5 健康食品

平成17年度はいわゆる健康食品全般を多種購入して調査を行った。

平成18年度は検討会において日本健康食品協議会作成の健康食品リスト(以下,日健協リスト)を基に,はとむぎはいが油,クロレラ,酵母食品,食物繊維加工食品,シイタケ加工食品,鯉加工食品,植物発酵食品,麦類若葉加工食品,マンネンタケ(霊芝)加工食品,ベータカロチン含有食品,プルーンエキス,はいが食品,花粉食品,プロポリス食品,にんにく食品,ローヤルゼリー食品,ブドウ種子エキス食品,ウコン食品及びビルベリーエキス食品を選定し調査対象とした。さらに雑穀も調査対象とした。

平成20年度は検討会において日健協リストから平成18年度と同様の調査対象であるプルーンエキス,はいが食品,花粉食品,麦類若葉加工食品,ローヤルゼリー食品,ブドウ種子エキス食品,ウコン食品及びビルベリーエキス食品以外に,小麦はいが油,米はいが油,スピルリナ含有食品,オタネニンジン根加工食品,タンパク食品,月見草油,たん白質酵素分解物食品,ギムネマシルベスタ加工食品,ガルシニアエキス食品及びイチョウ葉エキス食品を新たに選定し調査対象に加えた。また仕様書で指定された雑穀,ハトムギ,胡麻,玄米及び豆を含有する食品も調査した。

調査の結果、今回の調査対象食品の中では汚染頻度は比較的高く、特にウコンやハトムギ等を含む製品で検出される傾向が認められた。これら健康食品については、検出された濃度は全体的に低いレベルであり、摂取する人も限定的と思われるが、摂取量は多い可能性があることに留意するする必要があると考えられた。

	• •				
調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	25	31	45 (5)	101(5)	5 %
AF	25	31(2)	45 (12)	101(14)	14 %
ZEN	25(4)	31(8)	55(8)	111(20)	18 %

表-61 健康食品の調査結果概要

10.3.6 食肉製品(生, 加工品)

平成17年度は輸入品・国産品両方(牛,鶏中心),平成18及び20年度は輸入品を中心に調査した。食肉製品(生)についてはいずれの調査においてもカビ毒は検出されなかったが,食肉製品(加工品)については平成18及び20年度においてそれぞれ1検体(チキンナ

ゲット及び豚肉ランチョンミート)からZENが検出された。これらのZENの検出は飼料由来と考えられた。

表-62 食肉製品(生)の調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	20	6	5	31	0 %
AF	20	6	5	31	0 %
ZEN	20	6	15	41	0 %

表-63 食肉製品(加工品)の調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	15	6	5	26	0 %
AF	15	6	5	26	0 %
ZEN	15	6(1)	25(1)	46(2)	4 %

10.3.7 卵及び卵製品

輸入品を優先して調査したが、輸入品の生卵は入手できなかった。平成17年度は国産品も調査した。いずれの調査においてもカビ毒は検出されなかった。

表-64 卵及び卵製品の調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	25	9	10	44	0 %
AF	_	9	10	19	0 %
ZEN	25	9	10	44	0 %

10.3.8 乳製品(牛乳,加工品)

乳製品(牛乳)については平成17年度のみ国産品を調査し、乳製品(加工品)については 平成17年度は国産・輸入品両方、平成18年度は輸入ナチュラルチーズのみを調査した。 いずれの調査においてもカビ毒は検出されなかった。

表-65 乳製品(牛乳)の調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	20	-	_	20	0 %
AF	_	_	_	-	-
ZEN	20	_	_	20	0 %

表-66 乳製品(加工品)の調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	15	10	_	25	0 %
AF	15	10	_	25	0 %
ZEN	15	10	-	25	0 %

10.3.9 血液及び臓器(生, 加工品)

輸入品を優先して調査を行ったが、血液及び臓器(生)についてはいずれの調査においてもカビ毒は検出されず、血液及び臓器(加工品)については平成17年度調査でZENが1検体(豚レバーペースト)、平成20年度調査で α -Zelが1検体(牛肝)それぞれ検出された。これらのZEN及び α -Zelの検出は飼料由来と考えられた。

平成17年度 平成18年度 平成20年度 汚染頻度 調査項目 合計 OTA30 30 10 70 0 % AF 30 30 10 70 0 % ZEN 30 30 10 70 0 %

表-67 血液及び臓器(生)の調査結果概要

表-68 血液及び臓器(加工品)の調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	15	15	15	45	0 %
AF	15	15	15	45	0 %
ZEN	15(1)	15	30(1)**	45(2)	4 %

※ α-Zelが検出

10.3.10 さとうきび、黒砂糖

平成18及び20年度調査においてAFが検出された。検出されたものは、平成20年度ブラジル産1検体と国産品10検体であった。

さとうきび及び黒砂糖の両方で汚染が確認されたことから汚染段階を明確に特定する ことはできないが、さとうきびの汚染については切り口のカビ汚染が主な原因と推察さ れた。

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	_	-	-	ı	-
AF	10	5(1)	30(10)	45 (11)	24 %
ZEN	_	_	-	-	-

表-69 さとうきび、黒砂糖の調査結果概要

10.3.11 料理用ハーブ類

平成17年度は国産品・輸入品の両方,平成18及び20年度は輸入品のみ調査を行ったところ,平成18及び20年度においてそれぞれ1検体(18年度はコリアンダーシード製品,20年度はタンポポ製品)で0TAが検出された。

今回の調査結果では、汚染頻度は低いものの、一部のハーブで汚染が認められた。

表-70 料理用ハーブ類の調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	10	10(1)	30(1)	50(2)	4 %
AF	10	10	10	30	0 %
ZEN	10	10	10	30	0 %

10.3.12 飲料

平成17年度はココア粉末及び茶葉を調査し、ココア1検体で0TAが検出された。平成18及び20年度はココアを除外し、汚染が危惧される南方産の輸入品茶葉を中心に調査し、 平成18年度に紅茶1検体でAFが検出されたが、平成20年度は汚染は認められなかった。

表-71 飲料の調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	5(1)	5	5	15(1)	7 %
AF	5	5(1)	30	40(1)	3 %
ZEN	5	5	5	15	0 %

10.3.13 シリアル

平成17年度のみ調査したところ、カビ毒は検出されなかった。

表-72 シリアルの調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	5	_	_	5	0 %
AF	5	_	-	5	0 %
ZEN	5	_	_	5	0 %

10.3.14 ベビーフード及び幼児向け食品

平成18及び20年度において調査対象となった。平成18年度は両食品群において,また 平成20年度はベビーフードのみにおいてZENが検出された。

今回の調査結果では、低濃度汚染ではあるが汚染頻度が比較的高く、今後より広範囲での調査が望まれるとされ、汚染源としてはシリアルやコーン製品等が考えられた。ZENが検出されていることからデオキシニバレノールにも同時に汚染されている可能性が考えられた。

表-73 ベビーフードの調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	_	20	35	55	0 %
AF	_	20	30	50	0 %
ZEN	ı	20(9)	35(2)	55(11)	20 %

表-74 幼児向け食品の調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	_	10	30	40	0 %
AF	_	10	25	35	0 %
ZEN	-	10(2)	30	40(2)	5 %

10.3.15 菓子類

平成18及び20年度において調査対象となり、平成20年度にAFが検出された。いずれもカカオを使用した菓子であった。

カカオのAF汚染は既に報告があることから、今回の調査でもカカオが汚染源として推察された。

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度	
OTA	_	5	20	25	0 %	
AF	_	5	20(4)	25(4)	16 %	
ZEN	_	5	20	25	0 %	

表-75 菓子類の調査結果概要

10.3.16 豆類及び豆を用いた製品

平成18及び20年度において調査対象となり、ZENが検出された。

汚染理由としては収穫後に乾燥が不十分なためZENの原因菌が繁殖し発生したことが考えられた。

27, 12, 27, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12						
調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度	
OTA	ı	5	25	30	0 %	
AF	-	5	25	30	0 %	
ZEN	_	5(1)	25(1)	30(2)	7 %	

表-76 豆類及び豆を用いた食品の調査結果概要

10.3.17 キャッサバ

平成18及び20年度において調査対象となり、いずれの調査においてもカビ毒は検出されなかった。

今回の調査品目の中でタピオカ等については、キャッサバを水にさらす過程(pHが高い)でカビ毒が除去されている可能性が考えられた。

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	_	5	5	10	0 %
AF	_	5	5	10	0 %
ZEN	-	5	5	10	0 %

表-77 キャッサバの調査結果概要

10.3.18 野菜及び野菜を用いた製品

タイ産アスパラガスの汚染報告があることから平成20年度において調査対象としたが、 今回の調査ではカビ毒は検出されなかった。

表-78 野菜及び野菜を用いた製品の調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	_	_	25	25	0 %
AF	_	_	_	-	_
ZEN	-	-	-	-	_

10.3.19 果物及び果物を用いた製品(ドライフルーツ含む)

平成18及び20年度において調査対象となり、いずれの調査においてもカビ毒は検出さ

れなかった。

乾燥果実の汚染報告例はよく知られていることから調査対象としたが、今回の調査では汚染は確認されなかった

表-79 果物及び果物を用いた製品の調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	_	10	25	35	0 %
AF	-	10	25	35	0 %
ZEN	-	10	25	35	0 %

10.3.20 その他加工品

平成20年度において調査対象となった。レトルトのサムゲタン^{注2)}からOTAが検出された。汚染源としては、原材料の一部である栗の可能性が考えられた。

注2) 韓国の代表的なスープ材料の一つ。鶏肉に高麗人参、もち米等を入れて煮込んだもの

表-80 その他加工品の調査結果概要

調査項目	平成17年度	平成18年度	平成20年度	合計	汚染頻度
OTA	ı	_	20(1)	20(1)	5 %
AF	ı	_	20	20	0 %
ZEN	ı	_	20	20	0 %

10.3.21 総括

平成17, 18及び20年度の3年間に渡る調査結果の概要を表-81に示した。全体を通して 汚染頻度は低かったが、穀類を多く使用している食品等の一部で汚染が認められた。検 討会では、動物性食品についてカビ毒の存在形態(代謝物や抱合体を含めた調査の必要 性)や、市販品調査時のサンプリング方法についての国際的な既定やガイドラインがない ことなどが、今後の課題として問題提起された。

表-81 3年間の調査結果概要

調査項目		平成17年度	平成18年度	平成20年度	合計
OTA	調査数	225(1)	207(1)	350(7)	782 (9)
	汚染頻度(%)	0.4	0.5	2	1
AF	調査数	210(0)	207 (4)	350 (26)	767 (30)
	汚染頻度(%)	0	2	7	4
ZEN	調査数	215 (5)	202 (21)	350 (13)	767 (39)
	汚染頻度(%)	2	10	4	5

以 上