

This is provisional English translation of an excerpt from the original full report.

Risk Assessment Report

Dicyclanil

(Veterinary medicinal products)

Food Safety Commission of Japan (FSCJ) August 2017

ABSTRACT

FSCJ conducted a risk assessment of dicycranil (CAS No.112636-83-6), a pyrimidine-derived insect growth regulator, using the evaluation reports from the Joint FAO/WHO Expert Committee on Food Additives (JECFA), the European Medicines Agency (EMEA), and the Australian government.

The data used in the assessment include pharmocokinetics (rats and sheep), residues (sheep), genotoxicity, acute toxicity (rats), subacute toxicity (rats and dogs), combined chronic toxicity/carcinogenicity (mice, rats and dogs), reproductive/developmental toxicity (rats and rabbits).

Major adverse effects of dicycranil observed were suppressed body weight, increased cholesterol, hepatocellular hypertrophy and increase in absolute and relative weight of the liver.

In an 18-month chronic toxicity/carcinogenicity study in mice, incidences of hepatocellular adenomas and carcinomas were increased in females in the 500 ppm group. Considering the weight of evidence from the genotoxicity studies, FSCJ considered it unlikely that dicyclanil exerts the carcinogenicity through a genotoxic mechanism, and thus recognized it as feasible to set the threshold value.

In a developmental toxicity studies, suppressed body weight in dams and delayed ossification and other findings in fetuses were observed. The doses of adverse effects on fetuses were the same or higher than the maternal toxic levels. No teratogenicity was observed.

The adverse effects at the lowest dose in various toxicological studies were increases in plasma cholesterol and phospholipid at 100 ppm (equivalent to 2.7 mg/kg bw/day in males and 3.5 mg/kg bw/day in females) in a 90-day subacute toxicity study in dogs. No observed adverse effect level (NOAEL) of this study was 20ppm (equivalent to 0.61 mg/kg bw/day in males and 0.71 mg/kg bw/day in females).

On the other hand, the NOAEL in a 12-month chronic toxicity study in dogs, a longer term study, was 25 ppm (equivalent to 0.71 mg/kg bw/day in males) based on increased level of plasma cholesterol observed in males only at 150 ppm(equivalent to 4.4 mg/kg bw/day in males and 5.1 mg/kg bw/day in females). The increased cholesterol in plasma was common in both studies in dogs. Therefore FSCJ judged that it was appropriate to choose the NOAEL for the effect on cholesterol in a longer term study, and thus adopted the NOAEL of 0.71 mg/kg bw/day.

Consequently, FSCJ specified the ADI of 0.0071 mg/kg bw/day for dicyclanil based on the NOAEL of 0.71 mg/kg bw/day in a 12-month chronic toxicity study in dogs, by applying a safety factor of 100.

		0	-
Species	Study	Dose	NOAEL
		(mg/kg bw/day)	(mg/kg bw/day)
Mouse	18 month chronic	0, 10, 100, 500, 1 500	M: 1.1
	toxicity/carcinogen	ppm* (in the diet, M: 0,	F: 12
	icity study	1.1, 12, 59, 210, F: 0, 1.1,	Necrosis of hepatocytes and pigmentation
		12, 65, 200)	(M),
			Suppressed body weight (F/M)
			Carcinogenic (F: 500 ppm)
Rat	28-day subacute	0, 5, 30, 300, 1 000	-
	toxicity study	(Dermal study)	
	90-day subacute	0, 5, 25, 125, 500 ppm	M: 1.6
	toxicity study	(in the diet, M: 0, 0.31,	F: 1.7
		1.6, 8.0, 33, F: 0, 0.31,	Decrease in Glu (F/M)
		1.7, 8.4, 34)	Decrease in body weight gain (M)
	24-month	0, 5, 25, 125, 500 ppm	M: 0.97
	chronic toxicity/	(in the diet M: 0, 0.19,	F: 1.2
	carcinogenicity	0.97, 4.8, 22, F: 0, 0.23,	Decrease in body weight gain (F/M)
	study	1.2, 6.0, 26)	(Not carcinogenic)
	Two-generation	0, 5, 30, 200, 500 ppm	Parental toxicity: 2
	reproductive	(in the diet)	Suppressed body weight and decreased feed
	toxicity study		consumption
			(No effect on reproduction)
			Offspring: 21
			Low body weight
	Developmental	0, 1, 5, 25, 75 (by gavage)	Maternal: 5
	toxicity study		Suppressed body weight
			Embryo/fetus: 25
			(Not teratogenic)
Rabbit	Developmental	0, 1, 3, 10, 30 (by	Maternal: 3
	toxicity study	gavage)	Suppressed body weight
			Embryo/fetus: 10
			Low body weight of embryo/fetus and
			delayed ossification
			(Not teratogenic)
Dog	90-day subacute	0, 20, 100, 500, 1 500	M: 0.61
	toxicity study	ppm (in the diet F: 0,	F: 0.71
		0.61, 2.7, 14, 42, M: 0,	Increase levels in Cholesterol and
		0.71, 3.5, 17, 42)	phospholipid (F/M)
			Atrophy of the prostate tissue (M)
			Increase in inflammatory change with
			urothelial cell hypeplasia in urinary bladder
			(F)

Table 1. Levels relevant to toxicological evaluation of dicycranil

Food Safety Commission of Japan

Risk assessment report - Veterinary medicinal products FS/532/2017

	12-month chronic	0, 5, 25, 150, 750 ppm	M: 0.71
	toxicity study	(in the diet F: 0, 0.16,	F: 5.1
		0.71, 4.4, 23, M : 0, 0.15,	Increase in plasma cholesterol (M)
		0.77, 5.1, 23)	Changes in general condition, and in blood
			chemistry (F)
Toxicological ADI (mg/kg bw/day)			0.0071
			NOAEL: 0.71
			SF: 100
The critical study for setting ADI			12-month chronic toxicity study in dogs
ADI (mg/kg bw/day)			0.0071

M, Male; F, Female; F/M, both sexes; ADI, Acceptable daily intake; SF, Safety factor; NOAEL, No-observedadverse-effect level; -, NOAEL could not be specified; *, All rats at 1500 ppm were sacrificed before the termination (during 58 or 59 weeks of treatment)